- -

Formulation of alkali-activated slag binder destined for use in developing countries

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Formulation of alkali-activated slag binder destined for use in developing countries

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Bella, Nabil es_ES
dc.contributor.author Gudiel, Edwin es_ES
dc.contributor.author Soriano Martinez, Lourdes es_ES
dc.contributor.author Font-Pérez, Alba es_ES
dc.contributor.author Borrachero Rosado, María Victoria es_ES
dc.contributor.author Paya Bernabeu, Jorge Juan es_ES
dc.contributor.author Monzó Balbuena, José Mª es_ES
dc.date.accessioned 2021-04-17T03:33:12Z
dc.date.available 2021-04-17T03:33:12Z
dc.date.issued 2020-12 es_ES
dc.identifier.uri http://hdl.handle.net/10251/165295
dc.description.abstract [EN] Worldwide cement production is around 4.2 billion tons, and the fabrication of one ton of ordinary Portland cement emits around 900 kg of CO2. Blast furnace slag (BFS) is a byproduct used to produce alkali-activated materials (AAM). BFS production was estimated at about 350 million tons in 2018, and the BFS reuse rate in construction materials of developing countries is low. AAM can reduce CO2 emissions in relation to Portland cement materials: Its use in construction would be a golden opportunity for developing countries in forthcoming decades. The present research aims to formulate AAM destined for future applications in developing countries. Two activators were used: NaOH, Na2CO3, and a mixture of both. The results showed that compressive strengths within the 42¿56 MPa range after 28 curing days were obtained for the Na2CO3-activated mortars. The characterization analysis confirmed the presence of hydrotalcite, carbonated phases, CSH and CASH. The economic study showed that Na2CO3 was the cheapest activator in terms of the relative cost per ton and MPa of manufactured mortars. Finally, the environmental benefits of mortars based on this reagent were evidenced, and, in terms of kgCO2 emissions per ton and MPa, the mortars with Na2CO3 yielded 50% lower values than with NaOH. es_ES
dc.description.sponsorship We would also like to thank the Spanish Government MINECO/FEDER (ECOSOST project RTI-2018-097612-B-C21) for supporting this research. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Applied Sciences es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Alkali-activated material es_ES
dc.subject Blast furnace slag es_ES
dc.subject Activators es_ES
dc.subject Mechanical properties es_ES
dc.subject Microstructure es_ES
dc.subject Developing countries es_ES
dc.subject.classification INGENIERIA DE LA CONSTRUCCION es_ES
dc.title Formulation of alkali-activated slag binder destined for use in developing countries es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/app10249088 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-097612-B-C21/ES/NUEVOS RETOS EN CEMENTOS ACTIVADOS ALCALINAMENTE:SOSTENIBILIDAD Y EVALUACION AMBIENTAL/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Ciencia y Tecnología del Hormigón - Institut de Ciència i Tecnologia del Formigó es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil es_ES
dc.description.bibliographicCitation Bella, N.; Gudiel, E.; Soriano Martinez, L.; Font-Pérez, A.; Borrachero Rosado, MV.; Paya Bernabeu, JJ.; Monzó Balbuena, JM. (2020). Formulation of alkali-activated slag binder destined for use in developing countries. Applied Sciences. 10(24):1-15. https://doi.org/10.3390/app10249088 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/app10249088 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 15 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 24 es_ES
dc.identifier.eissn 2076-3417 es_ES
dc.relation.pasarela S\431189 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.description.references Statista Major Countries in Worldwide Cement Production from 2015 to 2019https://www.statista.com/statistics/267364/world-cement-production-by-country/ es_ES
dc.description.references Proaño, L., Sarmiento, A. T., Figueredo, M., & Cobo, M. (2020). Techno-economic evaluation of indirect carbonation for CO2 emissions capture in cement industry: A system dynamics approach. Journal of Cleaner Production, 263, 121457. doi:10.1016/j.jclepro.2020.121457 es_ES
dc.description.references Di Maria, A., Snellings, R., Alaerts, L., Quaghebeur, M., & Van Acker, K. (2020). Environmental assessment of CO2 mineralisation for sustainable construction materials. International Journal of Greenhouse Gas Control, 93, 102882. doi:10.1016/j.ijggc.2019.102882 es_ES
dc.description.references Hassan, A., Arif, M., & Shariq, M. (2019). Use of geopolymer concrete for a cleaner and sustainable environment – A review of mechanical properties and microstructure. Journal of Cleaner Production, 223, 704-728. doi:10.1016/j.jclepro.2019.03.051 es_ES
dc.description.references Recovery (Recycling Technology Worldwide) Slag Recyclinghttps://www.recovery-worldwide.com/en/artikel/slag-recycling_3528047.html es_ES
dc.description.references Van Deventer, J. S. J., Provis, J. L., & Duxson, P. (2012). Technical and commercial progress in the adoption of geopolymer cement. Minerals Engineering, 29, 89-104. doi:10.1016/j.mineng.2011.09.009 es_ES
dc.description.references Provis, J. L. (2018). Alkali-activated materials. Cement and Concrete Research, 114, 40-48. doi:10.1016/j.cemconres.2017.02.009 es_ES
dc.description.references Bakharev, T., Sanjayan, J. G., & Cheng, Y.-B. (2002). Sulfate attack on alkali-activated slag concrete. Cement and Concrete Research, 32(2), 211-216. doi:10.1016/s0008-8846(01)00659-7 es_ES
dc.description.references Mellado, A., Catalán, C., Bouzón, N., Borrachero, M. V., Monzó, J. M., & Payá, J. (2014). Carbon footprint of geopolymeric mortar: study of the contribution of the alkaline activating solution and assessment of an alternative route. RSC Adv., 4(45), 23846-23852. doi:10.1039/c4ra03375b es_ES
dc.description.references Shi, C. (1996). Strength, pore structure and permeability of alkali-activated slag mortars. Cement and Concrete Research, 26(12), 1789-1799. doi:10.1016/s0008-8846(96)00174-3 es_ES
dc.description.references Fernández-Jiménez, A., Palomo, J. G., & Puertas, F. (1999). Alkali-activated slag mortars. Cement and Concrete Research, 29(8), 1313-1321. doi:10.1016/s0008-8846(99)00154-4 es_ES
dc.description.references Palomo, A., Krivenko, P., Garcia-Lodeiro, I., Kavalerova, E., Maltseva, O., & Fernández-Jiménez, A. (2014). A review on alkaline activation: new analytical perspectives. Materiales de Construcción, 64(315), e022. doi:10.3989/mc.2014.00314 es_ES
dc.description.references Akturk, B., Kizilkanat, A. B., & Kabay, N. (2019). Effect of calcium hydroxide on fresh state behavior of sodium carbonate activated blast furnace slag pastes. Construction and Building Materials, 212, 388-399. doi:10.1016/j.conbuildmat.2019.03.328 es_ES
dc.description.references Awoyera, P., & Adesina, A. (2019). A critical review on application of alkali activated slag as a sustainable composite binder. Case Studies in Construction Materials, 11, e00268. doi:10.1016/j.cscm.2019.e00268 es_ES
dc.description.references Jin, F., & Al-Tabbaa, A. (2015). Strength and drying shrinkage of slag paste activated by sodium carbonate and reactive MgO. Construction and Building Materials, 81, 58-65. doi:10.1016/j.conbuildmat.2015.01.082 es_ES
dc.description.references Ke, X., Bernal, S. A., & Provis, J. L. (2016). Controlling the reaction kinetics of sodium carbonate-activated slag cements using calcined layered double hydroxides. Cement and Concrete Research, 81, 24-37. doi:10.1016/j.cemconres.2015.11.012 es_ES
dc.description.references Kovtun, M., Kearsley, E. P., & Shekhovtsova, J. (2015). Chemical acceleration of a neutral granulated blast-furnace slag activated by sodium carbonate. Cement and Concrete Research, 72, 1-9. doi:10.1016/j.cemconres.2015.02.014 es_ES
dc.description.references United Nations Sustainable Development Goalshttps://www.un.org/sustainabledevelopment/ es_ES
dc.description.references Methods of Testing Cement Part 1: Determination of Strengthhttps://www.une.org/encuentra-tu-norma/busca-tu-norma/norma?c=N0060675 es_ES
dc.description.references Pacheco-Torgal, F., Castro-Gomes, J., & Jalali, S. (2007). Investigations about the effect of aggregates on strength and microstructure of geopolymeric mine waste mud binders. Cement and Concrete Research, 37(6), 933-941. doi:10.1016/j.cemconres.2007.02.006 es_ES
dc.description.references Wang, S.-D., Scrivener, K. L., & Pratt, P. L. (1994). Factors affecting the strength of alkali-activated slag. Cement and Concrete Research, 24(6), 1033-1043. doi:10.1016/0008-8846(94)90026-4 es_ES
dc.description.references De Moraes Pinheiro, S. M., Font, A., Soriano, L., Tashima, M. M., Monzó, J., Borrachero, M. V., & Payá, J. (2018). Olive-stone biomass ash (OBA): An alternative alkaline source for the blast furnace slag activation. Construction and Building Materials, 178, 327-338. doi:10.1016/j.conbuildmat.2018.05.157 es_ES
dc.description.references Yuan, B., Yu, Q. L., & Brouwers, H. J. H. (2017). Time-dependent characterization of Na 2 CO 3 activated slag. Cement and Concrete Composites, 84, 188-197. doi:10.1016/j.cemconcomp.2017.09.005 es_ES
dc.description.references Collins, F., & Sanjayan, J. . (1998). Early Age Strength and Workability of Slag Pastes Activated by NaOH and Na2CO3. Cement and Concrete Research, 28(5), 655-664. doi:10.1016/s0008-8846(98)00025-8 es_ES
dc.description.references Li, N., Shi, C., & Zhang, Z. (2019). Understanding the roles of activators towards setting and hardening control of alkali-activated slag cement. Composites Part B: Engineering, 171, 34-45. doi:10.1016/j.compositesb.2019.04.024 es_ES
dc.description.references Fernández-Jiménez, A., & Puertas, F. (2003). Effect of activator mix on the hydration and strength behaviour of alkali-activated slag cements. Advances in Cement Research, 15(3), 129-136. doi:10.1680/adcr.2003.15.3.129 es_ES
dc.description.references Bernal, S. A., Provis, J. L., Myers, R. J., San Nicolas, R., & van Deventer, J. S. J. (2014). Role of carbonates in the chemical evolution of sodium carbonate-activated slag binders. Materials and Structures, 48(3), 517-529. doi:10.1617/s11527-014-0412-6 es_ES
dc.description.references Jiao, Z., Wang, Y., Zheng, W., & Huang, W. (2019). Effect of the activator on the performance of alkali-activated slag mortars with pottery sand as fine aggregate. Construction and Building Materials, 197, 83-90. doi:10.1016/j.conbuildmat.2018.11.178 es_ES
dc.description.references Haha, M. B., Lothenbach, B., Le Saout, G., & Winnefeld, F. (2012). Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag — Part II: Effect of Al2O3. Cement and Concrete Research, 42(1), 74-83. doi:10.1016/j.cemconres.2011.08.005 es_ES
dc.description.references Payá, J., Monzó, J., Borrachero, M. V., Velázquez, S., & Bonilla, M. (2003). Determination of the pozzolanic activity of fluid catalytic cracking residue. Thermogravimetric analysis studies on FC3R–lime pastes. Cement and Concrete Research, 33(7), 1085-1091. doi:10.1016/s0008-8846(03)00014-0 es_ES
dc.description.references Puertas, F., & Torres-Carrasco, M. (2014). Use of glass waste as an activator in the preparation of alkali-activated slag. Mechanical strength and paste characterisation. Cement and Concrete Research, 57, 95-104. doi:10.1016/j.cemconres.2013.12.005 es_ES
dc.description.references García Lodeiro, I., Fernández-Jimenez, A., Palomo, A., & Macphee, D. . (2010). Effect on fresh C-S-H gels of the simultaneous addition of alkali and aluminium. Cement and Concrete Research, 40(1), 27-32. doi:10.1016/j.cemconres.2009.08.004 es_ES
dc.description.references López, T., Bosch, P., Asomoza, M., Gómez, R., & Ramos, E. (1997). DTA-TGA and FTIR spectroscopies of sol-gel hydrotalcites: aluminum source effect on physicochemical properties. Materials Letters, 31(3-6), 311-316. doi:10.1016/s0167-577x(96)00296-0 es_ES
dc.description.references Ismail, I., Bernal, S. A., Provis, J. L., San Nicolas, R., Hamdan, S., & van Deventer, J. S. J. (2014). Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash. Cement and Concrete Composites, 45, 125-135. doi:10.1016/j.cemconcomp.2013.09.006 es_ES
dc.description.references Gezer, S., & Atalay, U. (2016). Assessment of soda ash calcination treatment of Turkish trona ore. E3S Web of Conferences, 8, 01013. doi:10.1051/e3sconf/20160801013 es_ES
dc.description.references Methodology for the Free Allocation of Emission Allowances in the EU ETS Post 2012 Sector report for the lime industryhttps://ec.europa.eu/clima/sites/clima/files/ets/allowances/docs/bm_study-lime_en.pdf es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem