Mostrar el registro sencillo del ítem
dc.contributor.author | Bella, Nabil | es_ES |
dc.contributor.author | Gudiel, Edwin | es_ES |
dc.contributor.author | Soriano Martinez, Lourdes | es_ES |
dc.contributor.author | Font-Pérez, Alba | es_ES |
dc.contributor.author | Borrachero Rosado, María Victoria | es_ES |
dc.contributor.author | Paya Bernabeu, Jorge Juan | es_ES |
dc.contributor.author | Monzó Balbuena, José Mª | es_ES |
dc.date.accessioned | 2021-04-17T03:33:12Z | |
dc.date.available | 2021-04-17T03:33:12Z | |
dc.date.issued | 2020-12 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/165295 | |
dc.description.abstract | [EN] Worldwide cement production is around 4.2 billion tons, and the fabrication of one ton of ordinary Portland cement emits around 900 kg of CO2. Blast furnace slag (BFS) is a byproduct used to produce alkali-activated materials (AAM). BFS production was estimated at about 350 million tons in 2018, and the BFS reuse rate in construction materials of developing countries is low. AAM can reduce CO2 emissions in relation to Portland cement materials: Its use in construction would be a golden opportunity for developing countries in forthcoming decades. The present research aims to formulate AAM destined for future applications in developing countries. Two activators were used: NaOH, Na2CO3, and a mixture of both. The results showed that compressive strengths within the 42¿56 MPa range after 28 curing days were obtained for the Na2CO3-activated mortars. The characterization analysis confirmed the presence of hydrotalcite, carbonated phases, CSH and CASH. The economic study showed that Na2CO3 was the cheapest activator in terms of the relative cost per ton and MPa of manufactured mortars. Finally, the environmental benefits of mortars based on this reagent were evidenced, and, in terms of kgCO2 emissions per ton and MPa, the mortars with Na2CO3 yielded 50% lower values than with NaOH. | es_ES |
dc.description.sponsorship | We would also like to thank the Spanish Government MINECO/FEDER (ECOSOST project RTI-2018-097612-B-C21) for supporting this research. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Applied Sciences | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Alkali-activated material | es_ES |
dc.subject | Blast furnace slag | es_ES |
dc.subject | Activators | es_ES |
dc.subject | Mechanical properties | es_ES |
dc.subject | Microstructure | es_ES |
dc.subject | Developing countries | es_ES |
dc.subject.classification | INGENIERIA DE LA CONSTRUCCION | es_ES |
dc.title | Formulation of alkali-activated slag binder destined for use in developing countries | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/app10249088 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-097612-B-C21/ES/NUEVOS RETOS EN CEMENTOS ACTIVADOS ALCALINAMENTE:SOSTENIBILIDAD Y EVALUACION AMBIENTAL/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Ciencia y Tecnología del Hormigón - Institut de Ciència i Tecnologia del Formigó | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil | es_ES |
dc.description.bibliographicCitation | Bella, N.; Gudiel, E.; Soriano Martinez, L.; Font-Pérez, A.; Borrachero Rosado, MV.; Paya Bernabeu, JJ.; Monzó Balbuena, JM. (2020). Formulation of alkali-activated slag binder destined for use in developing countries. Applied Sciences. 10(24):1-15. https://doi.org/10.3390/app10249088 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/app10249088 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 15 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 10 | es_ES |
dc.description.issue | 24 | es_ES |
dc.identifier.eissn | 2076-3417 | es_ES |
dc.relation.pasarela | S\431189 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.description.references | Statista Major Countries in Worldwide Cement Production from 2015 to 2019https://www.statista.com/statistics/267364/world-cement-production-by-country/ | es_ES |
dc.description.references | Proaño, L., Sarmiento, A. T., Figueredo, M., & Cobo, M. (2020). Techno-economic evaluation of indirect carbonation for CO2 emissions capture in cement industry: A system dynamics approach. Journal of Cleaner Production, 263, 121457. doi:10.1016/j.jclepro.2020.121457 | es_ES |
dc.description.references | Di Maria, A., Snellings, R., Alaerts, L., Quaghebeur, M., & Van Acker, K. (2020). Environmental assessment of CO2 mineralisation for sustainable construction materials. International Journal of Greenhouse Gas Control, 93, 102882. doi:10.1016/j.ijggc.2019.102882 | es_ES |
dc.description.references | Hassan, A., Arif, M., & Shariq, M. (2019). Use of geopolymer concrete for a cleaner and sustainable environment – A review of mechanical properties and microstructure. Journal of Cleaner Production, 223, 704-728. doi:10.1016/j.jclepro.2019.03.051 | es_ES |
dc.description.references | Recovery (Recycling Technology Worldwide) Slag Recyclinghttps://www.recovery-worldwide.com/en/artikel/slag-recycling_3528047.html | es_ES |
dc.description.references | Van Deventer, J. S. J., Provis, J. L., & Duxson, P. (2012). Technical and commercial progress in the adoption of geopolymer cement. Minerals Engineering, 29, 89-104. doi:10.1016/j.mineng.2011.09.009 | es_ES |
dc.description.references | Provis, J. L. (2018). Alkali-activated materials. Cement and Concrete Research, 114, 40-48. doi:10.1016/j.cemconres.2017.02.009 | es_ES |
dc.description.references | Bakharev, T., Sanjayan, J. G., & Cheng, Y.-B. (2002). Sulfate attack on alkali-activated slag concrete. Cement and Concrete Research, 32(2), 211-216. doi:10.1016/s0008-8846(01)00659-7 | es_ES |
dc.description.references | Mellado, A., Catalán, C., Bouzón, N., Borrachero, M. V., Monzó, J. M., & Payá, J. (2014). Carbon footprint of geopolymeric mortar: study of the contribution of the alkaline activating solution and assessment of an alternative route. RSC Adv., 4(45), 23846-23852. doi:10.1039/c4ra03375b | es_ES |
dc.description.references | Shi, C. (1996). Strength, pore structure and permeability of alkali-activated slag mortars. Cement and Concrete Research, 26(12), 1789-1799. doi:10.1016/s0008-8846(96)00174-3 | es_ES |
dc.description.references | Fernández-Jiménez, A., Palomo, J. G., & Puertas, F. (1999). Alkali-activated slag mortars. Cement and Concrete Research, 29(8), 1313-1321. doi:10.1016/s0008-8846(99)00154-4 | es_ES |
dc.description.references | Palomo, A., Krivenko, P., Garcia-Lodeiro, I., Kavalerova, E., Maltseva, O., & Fernández-Jiménez, A. (2014). A review on alkaline activation: new analytical perspectives. Materiales de Construcción, 64(315), e022. doi:10.3989/mc.2014.00314 | es_ES |
dc.description.references | Akturk, B., Kizilkanat, A. B., & Kabay, N. (2019). Effect of calcium hydroxide on fresh state behavior of sodium carbonate activated blast furnace slag pastes. Construction and Building Materials, 212, 388-399. doi:10.1016/j.conbuildmat.2019.03.328 | es_ES |
dc.description.references | Awoyera, P., & Adesina, A. (2019). A critical review on application of alkali activated slag as a sustainable composite binder. Case Studies in Construction Materials, 11, e00268. doi:10.1016/j.cscm.2019.e00268 | es_ES |
dc.description.references | Jin, F., & Al-Tabbaa, A. (2015). Strength and drying shrinkage of slag paste activated by sodium carbonate and reactive MgO. Construction and Building Materials, 81, 58-65. doi:10.1016/j.conbuildmat.2015.01.082 | es_ES |
dc.description.references | Ke, X., Bernal, S. A., & Provis, J. L. (2016). Controlling the reaction kinetics of sodium carbonate-activated slag cements using calcined layered double hydroxides. Cement and Concrete Research, 81, 24-37. doi:10.1016/j.cemconres.2015.11.012 | es_ES |
dc.description.references | Kovtun, M., Kearsley, E. P., & Shekhovtsova, J. (2015). Chemical acceleration of a neutral granulated blast-furnace slag activated by sodium carbonate. Cement and Concrete Research, 72, 1-9. doi:10.1016/j.cemconres.2015.02.014 | es_ES |
dc.description.references | United Nations Sustainable Development Goalshttps://www.un.org/sustainabledevelopment/ | es_ES |
dc.description.references | Methods of Testing Cement Part 1: Determination of Strengthhttps://www.une.org/encuentra-tu-norma/busca-tu-norma/norma?c=N0060675 | es_ES |
dc.description.references | Pacheco-Torgal, F., Castro-Gomes, J., & Jalali, S. (2007). Investigations about the effect of aggregates on strength and microstructure of geopolymeric mine waste mud binders. Cement and Concrete Research, 37(6), 933-941. doi:10.1016/j.cemconres.2007.02.006 | es_ES |
dc.description.references | Wang, S.-D., Scrivener, K. L., & Pratt, P. L. (1994). Factors affecting the strength of alkali-activated slag. Cement and Concrete Research, 24(6), 1033-1043. doi:10.1016/0008-8846(94)90026-4 | es_ES |
dc.description.references | De Moraes Pinheiro, S. M., Font, A., Soriano, L., Tashima, M. M., Monzó, J., Borrachero, M. V., & Payá, J. (2018). Olive-stone biomass ash (OBA): An alternative alkaline source for the blast furnace slag activation. Construction and Building Materials, 178, 327-338. doi:10.1016/j.conbuildmat.2018.05.157 | es_ES |
dc.description.references | Yuan, B., Yu, Q. L., & Brouwers, H. J. H. (2017). Time-dependent characterization of Na 2 CO 3 activated slag. Cement and Concrete Composites, 84, 188-197. doi:10.1016/j.cemconcomp.2017.09.005 | es_ES |
dc.description.references | Collins, F., & Sanjayan, J. . (1998). Early Age Strength and Workability of Slag Pastes Activated by NaOH and Na2CO3. Cement and Concrete Research, 28(5), 655-664. doi:10.1016/s0008-8846(98)00025-8 | es_ES |
dc.description.references | Li, N., Shi, C., & Zhang, Z. (2019). Understanding the roles of activators towards setting and hardening control of alkali-activated slag cement. Composites Part B: Engineering, 171, 34-45. doi:10.1016/j.compositesb.2019.04.024 | es_ES |
dc.description.references | Fernández-Jiménez, A., & Puertas, F. (2003). Effect of activator mix on the hydration and strength behaviour of alkali-activated slag cements. Advances in Cement Research, 15(3), 129-136. doi:10.1680/adcr.2003.15.3.129 | es_ES |
dc.description.references | Bernal, S. A., Provis, J. L., Myers, R. J., San Nicolas, R., & van Deventer, J. S. J. (2014). Role of carbonates in the chemical evolution of sodium carbonate-activated slag binders. Materials and Structures, 48(3), 517-529. doi:10.1617/s11527-014-0412-6 | es_ES |
dc.description.references | Jiao, Z., Wang, Y., Zheng, W., & Huang, W. (2019). Effect of the activator on the performance of alkali-activated slag mortars with pottery sand as fine aggregate. Construction and Building Materials, 197, 83-90. doi:10.1016/j.conbuildmat.2018.11.178 | es_ES |
dc.description.references | Haha, M. B., Lothenbach, B., Le Saout, G., & Winnefeld, F. (2012). Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag — Part II: Effect of Al2O3. Cement and Concrete Research, 42(1), 74-83. doi:10.1016/j.cemconres.2011.08.005 | es_ES |
dc.description.references | Payá, J., Monzó, J., Borrachero, M. V., Velázquez, S., & Bonilla, M. (2003). Determination of the pozzolanic activity of fluid catalytic cracking residue. Thermogravimetric analysis studies on FC3R–lime pastes. Cement and Concrete Research, 33(7), 1085-1091. doi:10.1016/s0008-8846(03)00014-0 | es_ES |
dc.description.references | Puertas, F., & Torres-Carrasco, M. (2014). Use of glass waste as an activator in the preparation of alkali-activated slag. Mechanical strength and paste characterisation. Cement and Concrete Research, 57, 95-104. doi:10.1016/j.cemconres.2013.12.005 | es_ES |
dc.description.references | García Lodeiro, I., Fernández-Jimenez, A., Palomo, A., & Macphee, D. . (2010). Effect on fresh C-S-H gels of the simultaneous addition of alkali and aluminium. Cement and Concrete Research, 40(1), 27-32. doi:10.1016/j.cemconres.2009.08.004 | es_ES |
dc.description.references | López, T., Bosch, P., Asomoza, M., Gómez, R., & Ramos, E. (1997). DTA-TGA and FTIR spectroscopies of sol-gel hydrotalcites: aluminum source effect on physicochemical properties. Materials Letters, 31(3-6), 311-316. doi:10.1016/s0167-577x(96)00296-0 | es_ES |
dc.description.references | Ismail, I., Bernal, S. A., Provis, J. L., San Nicolas, R., Hamdan, S., & van Deventer, J. S. J. (2014). Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash. Cement and Concrete Composites, 45, 125-135. doi:10.1016/j.cemconcomp.2013.09.006 | es_ES |
dc.description.references | Gezer, S., & Atalay, U. (2016). Assessment of soda ash calcination treatment of Turkish trona ore. E3S Web of Conferences, 8, 01013. doi:10.1051/e3sconf/20160801013 | es_ES |
dc.description.references | Methodology for the Free Allocation of Emission Allowances in the EU ETS Post 2012 Sector report for the lime industryhttps://ec.europa.eu/clima/sites/clima/files/ets/allowances/docs/bm_study-lime_en.pdf | es_ES |