Mostrar el registro sencillo del ítem
dc.contributor.author | Salar-Garcia, M.J. | es_ES |
dc.contributor.author | Montilla, F. | es_ES |
dc.contributor.author | Quijada, César | es_ES |
dc.contributor.author | Morallon, E. | es_ES |
dc.contributor.author | Ieropoulos, I. | es_ES |
dc.date.accessioned | 2021-04-17T03:33:18Z | |
dc.date.available | 2021-04-17T03:33:18Z | |
dc.date.issued | 2020-11-15 | es_ES |
dc.identifier.issn | 0306-2619 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/165297 | |
dc.description.abstract | [EN] The need for improving the energy harvesting from Microbial Fuel Cells (MFCs) has boosted the design of new materials in order to increase the power performance of this technology and facilitate its practical application. According to this approach, in this work different poly(3,4-ethylenedioxythiophene)-polystyrenesulfonate (PEDOT-PSS) modified electrodes have been synthesised and evaluated as anodes in urine-fed MFCs. The electrochemical synthesis of PEDOT-PSS was performed by potentiostatic step experiments from aqueous solution at a fixed potential of 1.80 V (vs. a reversible hydrogen electrode) for different times: 30, 60, 120 and 240 s. Compared with other methods, this technique allowed us not only to reduce the processing time of the electrodes but also better control of the chemical composition of the deposited polymer and therefore, obtain more efficient polymer films. All modified anodes outperformed the maximum power output by MFCs working with the bare carbon veil electrode but the maximum value was observed when MFCs were working with the PEDOT-PSS based anode obtained after 30 s of electropolymerisation (535.1 µW). This value was 24.3 % higher than using the bare carbon veil electrode. Moreover, the functionality of the PEDOT-PSS anodes was reported over 90 days working in continuous mode. | es_ES |
dc.description.sponsorship | M.J. Salar-Garcia is supported by Fundacion Seneca (Ref: 20372/PD/17). I. Ieropoulos is grateful to the Gates Foundation (Ref: OPP1149065) for the financial support of parts of this work. The other authors also thank the support of Generalitat Valenciana (Ref: PROMETEO/2018/087). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Applied Energy | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Microbial fuel cells | es_ES |
dc.subject | PEDOT-PSS | es_ES |
dc.subject | Bioenergy | es_ES |
dc.subject | Urine | es_ES |
dc.subject.classification | QUIMICA FISICA | es_ES |
dc.title | Improving the power performance of urine-fed microbial fuel cells using PEDOT-PSS modified anodes | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.apenergy.2020.115528 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F087/ES/Materiales nanoestructurados en análisis químico: Nuevas estrategias de preparación de la muestra basadas en (micro)extracción en fase sólida y desarrollo de nuevos sensores electroquímicos y espectroelectroquímicos/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/f SéNeCa//20372%2FPD%2F17/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/BMGF//OPP1149065/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Textil y Papelera - Departament d'Enginyeria Tèxtil i Paperera | es_ES |
dc.description.bibliographicCitation | Salar-Garcia, M.; Montilla, F.; Quijada, C.; Morallon, E.; Ieropoulos, I. (2020). Improving the power performance of urine-fed microbial fuel cells using PEDOT-PSS modified anodes. Applied Energy. 278:1-10. https://doi.org/10.1016/j.apenergy.2020.115528 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.apenergy.2020.115528 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 10 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 278 | es_ES |
dc.identifier.pmid | 33311834 | es_ES |
dc.identifier.pmcid | PMC7722509 | es_ES |
dc.relation.pasarela | S\417249 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Bill and Melinda Gates Foundation | es_ES |
dc.contributor.funder | Fundación Séneca-Agencia de Ciencia y Tecnología de la Región de Murcia | es_ES |
dc.description.references | Ferreira Mercuri, E. G., Jakubiak Kumata, A. Y., Amaral, E. B., & Simões Vitule, J. R. (2016). Energy by Microbial Fuel Cells: Scientometric global synthesis and challenges. Renewable and Sustainable Energy Reviews, 65, 832-840. doi:10.1016/j.rser.2016.06.050 | es_ES |
dc.description.references | Wu, Q., Jiao, S., Ma, M., & Peng, S. (2020). Microbial fuel cell system: a promising technology for pollutant removal and environmental remediation. Environmental Science and Pollution Research, 27(7), 6749-6764. doi:10.1007/s11356-020-07745-0 | es_ES |
dc.description.references | Gude, V. G. (2016). Wastewater treatment in microbial fuel cells – an overview. Journal of Cleaner Production, 122, 287-307. doi:10.1016/j.jclepro.2016.02.022 | es_ES |
dc.description.references | Pandey, P., Shinde, V. N., Deopurkar, R. L., Kale, S. P., Patil, S. A., & Pant, D. (2016). Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery. Applied Energy, 168, 706-723. doi:10.1016/j.apenergy.2016.01.056 | es_ES |
dc.description.references | Pant, D., Van Bogaert, G., Diels, L., & Vanbroekhoven, K. (2010). A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresource Technology, 101(6), 1533-1543. doi:10.1016/j.biortech.2009.10.017 | es_ES |
dc.description.references | Ieropoulos, I., Greenman, J., & Melhuish, C. (2012). Urine utilisation by microbial fuel cells; energy fuel for the future. Phys. Chem. Chem. Phys., 14(1), 94-98. doi:10.1039/c1cp23213d | es_ES |
dc.description.references | Kuntke, P., Śmiech, K. M., Bruning, H., Zeeman, G., Saakes, M., Sleutels, T. H. J. A., … Buisman, C. J. N. (2012). Ammonium recovery and energy production from urine by a microbial fuel cell. Water Research, 46(8), 2627-2636. doi:10.1016/j.watres.2012.02.025 | es_ES |
dc.description.references | Ledezma, P., Kuntke, P., Buisman, C. J. N., Keller, J., & Freguia, S. (2015). Source-separated urine opens golden opportunities for microbial electrochemical technologies. Trends in Biotechnology, 33(4), 214-220. doi:10.1016/j.tibtech.2015.01.007 | es_ES |
dc.description.references | Ieropoulos, I. A., Ledezma, P., Stinchcombe, A., Papaharalabos, G., Melhuish, C., & Greenman, J. (2013). Waste to real energy: the first MFC powered mobile phone. Physical Chemistry Chemical Physics, 15(37), 15312. doi:10.1039/c3cp52889h | es_ES |
dc.description.references | Walter, X. A., Stinchcombe, A., Greenman, J., & Ieropoulos, I. (2017). Urine transduction to usable energy: A modular MFC approach for smartphone and remote system charging. Applied Energy, 192, 575-581. doi:10.1016/j.apenergy.2016.06.006 | es_ES |
dc.description.references | Ieropoulos, I. A., Stinchcombe, A., Gajda, I., Forbes, S., Merino-Jimenez, I., Pasternak, G., … Greenman, J. (2016). Pee power urinal – microbial fuel cell technology field trials in the context of sanitation. Environmental Science: Water Research & Technology, 2(2), 336-343. doi:10.1039/c5ew00270b | es_ES |
dc.description.references | Walter, X. A., Merino-Jiménez, I., Greenman, J., & Ieropoulos, I. (2018). PEE POWER® urinal II – Urinal scale-up with microbial fuel cell scale-down for improved lighting. Journal of Power Sources, 392, 150-158. doi:10.1016/j.jpowsour.2018.02.047 | es_ES |
dc.description.references | STIRLING, J. L., BENNETTO, H. P., DELANEY, G. M., MASON, J. R., ROLLER, S. D., TANAKA, K., & THURSTON, C. F. (1983). Microbial fuel cells. Biochemical Society Transactions, 11(4), 451-453. doi:10.1042/bst0110451 | es_ES |
dc.description.references | Logan, B. E., Hamelers, B., Rozendal, R., Schröder, U., Keller, J., Freguia, S., … Rabaey, K. (2006). Microbial Fuel Cells: Methodology and Technology. Environmental Science & Technology, 40(17), 5181-5192. doi:10.1021/es0605016 | es_ES |
dc.description.references | Hernández-Fernández FJ, Pérez De Los Ríos A, Salar-García MJ, Ortiz-Martínez VM, Lozano-Blanco LJ, Godínez C, et al. Recent progress and perspectives in microbial fuel cells for bioenergy generation and wastewater treatment. Fuel Process Technol 2015;138:284–97. https://doi.org/10.1016/j.fuproc.2015.05.022. | es_ES |
dc.description.references | Winfield, J., Gajda, I., Greenman, J., & Ieropoulos, I. (2016). A review into the use of ceramics in microbial fuel cells. Bioresource Technology, 215, 296-303. doi:10.1016/j.biortech.2016.03.135 | es_ES |
dc.description.references | Yousefi, V., Mohebbi-Kalhori, D., & Samimi, A. (2017). Ceramic-based microbial fuel cells (MFCs): A review. International Journal of Hydrogen Energy, 42(3), 1672-1690. doi:10.1016/j.ijhydene.2016.06.054 | es_ES |
dc.description.references | Mačiulaitis, R., & Malaiškienė, J. (2009). Possibilities to control ceramics properties by changing firing cycles. Construction and Building Materials, 23(1), 226-232. doi:10.1016/j.conbuildmat.2007.12.012 | es_ES |
dc.description.references | Salar-García, M. J., & Ieropoulos, I. (2020). Optimisation of the internal structure of ceramic membranes for electricity production in urine-fed microbial fuel cells. Journal of Power Sources, 451, 227741. doi:10.1016/j.jpowsour.2020.227741 | es_ES |
dc.description.references | Ghadge, A. N., & Ghangrekar, M. M. (2015). Development of low cost ceramic separator using mineral cation exchanger to enhance performance of microbial fuel cells. Electrochimica Acta, 166, 320-328. doi:10.1016/j.electacta.2015.03.105 | es_ES |
dc.description.references | Santoro, C., Arbizzani, C., Erable, B., & Ieropoulos, I. (2017). Microbial fuel cells: From fundamentals to applications. A review. Journal of Power Sources, 356, 225-244. doi:10.1016/j.jpowsour.2017.03.109 | es_ES |
dc.description.references | Salar Garcia, M. J., Santoro, C., Kodali, M., Serov, A., Artyushkova, K., Atanassov, P., & Ieropoulos, I. (2019). Iron-streptomycin derived catalyst for efficient oxygen reduction reaction in ceramic microbial fuel cells operating with urine. Journal of Power Sources, 425, 50-59. doi:10.1016/j.jpowsour.2019.03.052 | es_ES |
dc.description.references | Ortiz-Martínez, V. M., Touati, K., Salar-García, M. J., Hernández-Fernández, F. J., & de los Ríos, A. P. (2019). Mixed transition metal-manganese oxides as catalysts in MFCs for bioenergy generation from industrial wastewater. Biochemical Engineering Journal, 151, 107310. doi:10.1016/j.bej.2019.107310 | es_ES |
dc.description.references | Touach, N., Ortiz-Martínez, V. M., Salar-García, M. J., Benzaouak, A., Hernández-Fernández, F., P. de Ríos, A., … Lotfi, E. M. (2017). On the use of ferroelectric material LiNbO3 as novel photocatalyst in wastewater-fed microbial fuel cells. Particuology, 34, 147-155. doi:10.1016/j.partic.2017.02.006 | es_ES |
dc.description.references | Obata, O., Salar-Garcia, M. J., Greenman, J., Kurt, H., Chandran, K., & Ieropoulos, I. (2020). Development of efficient electroactive biofilm in urine-fed microbial fuel cell cascades for bioelectricity generation. Journal of Environmental Management, 258, 109992. doi:10.1016/j.jenvman.2019.109992 | es_ES |
dc.description.references | Zhou, M., Chi, M., Luo, J., He, H., & Jin, T. (2011). An overview of electrode materials in microbial fuel cells. Journal of Power Sources, 196(10), 4427-4435. doi:10.1016/j.jpowsour.2011.01.012 | es_ES |
dc.description.references | Wei, J., Liang, P., & Huang, X. (2011). Recent progress in electrodes for microbial fuel cells. Bioresource Technology, 102(20), 9335-9344. doi:10.1016/j.biortech.2011.07.019 | es_ES |
dc.description.references | Sonawane JM, Yadav A, Ghosh PC, Adeloju SB. Recent advances in the development and utilization of modern anode materials for high performance microbial fuel cells 2016;90:558–76. https://doi.org/10.1016/j.bios.2016.10.014. | es_ES |
dc.description.references | Cai, T., Meng, L., Chen, G., Xi, Y., Jiang, N., Song, J., … Huang, M. (2020). Application of advanced anodes in microbial fuel cells for power generation: A review. Chemosphere, 248, 125985. doi:10.1016/j.chemosphere.2020.125985 | es_ES |
dc.description.references | Huang, L., Li, X., Ren, Y., & Wang, X. (2016). In-situ modified carbon cloth with polyaniline/graphene as anode to enhance performance of microbial fuel cell. International Journal of Hydrogen Energy, 41(26), 11369-11379. doi:10.1016/j.ijhydene.2016.05.048 | es_ES |
dc.description.references | Jian, M., Xue, P., Shi, K., Li, R., Ma, L., & Li, P. (2020). Efficient degradation of indole by microbial fuel cell based Fe2O3-polyaniline-dopamine hybrid composite modified carbon felt anode. Journal of Hazardous Materials, 388, 122123. doi:10.1016/j.jhazmat.2020.122123 | es_ES |
dc.description.references | Jia, Y., Ma, D., & Wang, X. (2019). Electrochemical preparation and application of PANI/MWNT and PPy/MWNT composite anodes for anaerobic fluidized bed microbial fuel cell. 3 Biotech, 10(1). doi:10.1007/s13205-019-1950-y | es_ES |
dc.description.references | López-Bernabeu, S., Gamero-Quijano, A., Huerta, F., Morallón, E., & Montilla, F. (2017). Enhancement of the direct electron transfer to encapsulated cytochrome c by electrochemical functionalization with a conducting polymer. Journal of Electroanalytical Chemistry, 793, 34-40. doi:10.1016/j.jelechem.2016.12.044 | es_ES |
dc.description.references | Cho, E.-C., Chang-Jian, C.-W., Syu, W.-L., Tseng, H.-S., Lee, K.-C., Huang, J.-H., & Hsiao, Y.-S. (2020). PEDOT-modified laser-scribed graphene films as bginder– and metallic current collector–free electrodes for large-sized supercapacitors. Applied Surface Science, 518, 146193. doi:10.1016/j.apsusc.2020.146193 | es_ES |
dc.description.references | Li, Q., Sun, Y., Yang, C., Liu, K., Islam, M. R., Li, L., … Qu, S. (2020). Optimizing the component ratio of PEDOT:PSS by water rinse for high efficiency organic solar cells over 16.7%. Science Bulletin, 65(9), 747-752. doi:10.1016/j.scib.2019.12.021 | es_ES |
dc.description.references | Song, W., Fanady, B., Peng, R., Hong, L., Wu, L., Zhang, W., … Ge, Z. (2020). Foldable Semitransparent Organic Solar Cells for Photovoltaic and Photosynthesis. Advanced Energy Materials, 10(15), 2000136. doi:10.1002/aenm.202000136 | es_ES |
dc.description.references | Yang, Q., Yu, S., Fu, P., Yu, W., Liu, Y., Liu, X., … Li, C. (2020). Boosting Performance of Non‐Fullerene Organic Solar Cells by 2D g‐C 3 N 4 Doped PEDOT:PSS. Advanced Functional Materials, 30(15), 1910205. doi:10.1002/adfm.201910205 | es_ES |
dc.description.references | Zhong, Z., Ma, Y., Liu, H., Peng, F., Ying, L., Wang, S., … Cao, Y. (2020). Improving the Performance of Blue Polymer Light-Emitting Diodes Using a Hole Injection Layer with a High Work Function and Nanotexture. ACS Applied Materials & Interfaces, 12(18), 20750-20756. doi:10.1021/acsami.0c03821 | es_ES |
dc.description.references | López-Bernabeu, S., Huerta, F., Morallón, E., & Montilla, F. (2017). Direct Electron Transfer to Cytochrome c Induced by a Conducting Polymer. The Journal of Physical Chemistry C, 121(29), 15870-15879. doi:10.1021/acs.jpcc.7b05204 | es_ES |
dc.description.references | Walter, X. A., Greenman, J., & Ieropoulos, I. (2018). Binder materials for the cathodes applied to self-stratifying membraneless microbial fuel cell. Bioelectrochemistry, 123, 119-124. doi:10.1016/j.bioelechem.2018.04.011 | es_ES |
dc.description.references | Quijada, C., & Vázquez, J. L. (2005). Electrochemical reactivity of aqueous SO2 on glassy carbon electrodes in acidic media. Electrochimica Acta, 50(27), 5449-5457. doi:10.1016/j.electacta.2005.03.027 | es_ES |
dc.description.references | Li, C., & Imae, T. (2004). Electrochemical and Optical Properties of the Poly(3,4-ethylenedioxythiophene) Film Electropolymerized in an Aqueous Sodium Dodecyl Sulfate and Lithium Tetrafluoroborate Medium. Macromolecules, 37(7), 2411-2416. doi:10.1021/ma035188w | es_ES |
dc.description.references | Tamburri, E., Orlanducci, S., Toschi, F., Terranova, M. L., & Passeri, D. (2009). Growth mechanisms, morphology, and electroactivity of PEDOT layers produced by electrochemical routes in aqueous medium. Synthetic Metals, 159(5-6), 406-414. doi:10.1016/j.synthmet.2008.10.014 | es_ES |
dc.description.references | Quijada, Leite-Rosa, Berenguer, & Bou-Belda. (2019). Enhanced Adsorptive Properties and Pseudocapacitance of Flexible Polyaniline-Activated Carbon Cloth Composites Synthesized Electrochemically in a Filter-Press Cell. Materials, 12(16), 2516. doi:10.3390/ma12162516 | es_ES |
dc.description.references | Pandey, G. P., & Rastogi, A. C. (2013). Synthesis and characterization of pulsed polymerized poly(3,4-ethylenedioxythiophene) electrodes for high-performance electrochemical capacitors. Electrochimica Acta, 87, 158-168. doi:10.1016/j.electacta.2012.08.125 | es_ES |
dc.description.references | Gamero-Quijano, A., Huerta, F., Morallón, E., & Montilla, F. (2014). Modulation of the Silica Sol–Gel Composition for the Promotion of Direct Electron Transfer to Encapsulated Cytochrome c. Langmuir, 30(34), 10531-10538. doi:10.1021/la5023517 | es_ES |
dc.description.references | Bandosz TJ. Surface chemistry of carbon materials. Carbon Mater. Catal., Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2008, p. 45–92. https://doi.org/10.1002/9780470403709.ch2. | es_ES |
dc.description.references | Djelad, H., Huerta, F., Morallón, E., & Montilla, F. (2018). Modulation of the electrocatalytic performance of PEDOT-PSS by reactive insertion into a sol-gel silica matrix. European Polymer Journal, 105, 323-330. doi:10.1016/j.eurpolymj.2018.06.010 | es_ES |
dc.description.references | Huang, H.-C., Ye, D.-Q., & Huang, B.-C. (2007). Nitrogen plasma modification of viscose-based activated carbon fibers. Surface and Coatings Technology, 201(24), 9533-9540. doi:10.1016/j.surfcoat.2007.04.029 | es_ES |
dc.description.references | Ji, T., Tan, L., Hu, X., Dai, Y., & Chen, Y. (2015). A comprehensive study of sulfonated carbon materials as conductive composites for polymer solar cells. Physical Chemistry Chemical Physics, 17(6), 4137-4145. doi:10.1039/c4cp04965a | es_ES |
dc.description.references | Greczynski, G., Kugler, T., & Salaneck, W. . (1999). Characterization of the PEDOT-PSS system by means of X-ray and ultraviolet photoelectron spectroscopy. Thin Solid Films, 354(1-2), 129-135. doi:10.1016/s0040-6090(99)00422-8 | es_ES |
dc.description.references | Marciniak, S., Crispin, X., Uvdal, K., Trzcinski, M., Birgerson, J., Groenendaal, L., … Salaneck, W. . (2004). Light induced damage in poly(3,4-ethylenedioxythiophene) and its derivatives studied by photoelectron spectroscopy. Synthetic Metals, 141(1-2), 67-73. doi:10.1016/j.synthmet.2003.08.017 | es_ES |
dc.description.references | Zhao, X., Zhang, Q., Chen, C.-M., Zhang, B., Reiche, S., Wang, A., … Sheng Su, D. (2012). Aromatic sulfide, sulfoxide, and sulfone mediated mesoporous carbon monolith for use in supercapacitor. Nano Energy, 1(4), 624-630. doi:10.1016/j.nanoen.2012.04.003 | es_ES |
dc.description.references | Kang, Y. L., Pichiah, S., & Ibrahim, S. (2017). Facile reconstruction of microbial fuel cell (MFC) anode with enhanced exoelectrogens selection for intensified electricity generation. International Journal of Hydrogen Energy, 42(3), 1661-1671. doi:10.1016/j.ijhydene.2016.09.059 | es_ES |
dc.description.references | Liu, X., Wu, W., & Gu, Z. (2015). Poly (3,4-ethylenedioxythiophene) promotes direct electron transfer at the interface between Shewanella loihica and the anode in a microbial fuel cell. Journal of Power Sources, 277, 110-115. doi:10.1016/j.jpowsour.2014.11.129 | es_ES |
dc.description.references | Kang, Y. L., Ibrahim, S., & Pichiah, S. (2015). Synergetic effect of conductive polymer poly(3,4-ethylenedioxythiophene) with different structural configuration of anode for microbial fuel cell application. Bioresource Technology, 189, 364-369. doi:10.1016/j.biortech.2015.04.044 | es_ES |
dc.description.references | Zajdel, T. J., Baruch, M., Méhes, G., Stavrinidou, E., Berggren, M., Maharbiz, M. M., … Ajo-Franklin, C. M. (2018). PEDOT:PSS-based Multilayer Bacterial-Composite Films for Bioelectronics. Scientific Reports, 8(1). doi:10.1038/s41598-018-33521-9 | es_ES |
dc.description.references | Ma, Q., Pu, K.-B., Cai, W.-F., Wang, Y.-H., Chen, Q.-Y., & Li, F.-J. (2018). Characteristics of Poly(3,4-ethylenedioxythiophene) Modified Stainless Steel as Anode in Air-Cathode Microbial Fuel Cells. Industrial & Engineering Chemistry Research, 57(19), 6633-6638. doi:10.1021/acs.iecr.8b00563 | es_ES |
dc.subject.ods | 13.- Tomar medidas urgentes para combatir el cambio climático y sus efectos | es_ES |
dc.subject.ods | 06.- Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos | es_ES |
dc.subject.ods | 07.- Asegurar el acceso a energías asequibles, fiables, sostenibles y modernas para todos | es_ES |