Ferreira Mercuri, E. G., Jakubiak Kumata, A. Y., Amaral, E. B., & Simões Vitule, J. R. (2016). Energy by Microbial Fuel Cells: Scientometric global synthesis and challenges. Renewable and Sustainable Energy Reviews, 65, 832-840. doi:10.1016/j.rser.2016.06.050
Wu, Q., Jiao, S., Ma, M., & Peng, S. (2020). Microbial fuel cell system: a promising technology for pollutant removal and environmental remediation. Environmental Science and Pollution Research, 27(7), 6749-6764. doi:10.1007/s11356-020-07745-0
Gude, V. G. (2016). Wastewater treatment in microbial fuel cells – an overview. Journal of Cleaner Production, 122, 287-307. doi:10.1016/j.jclepro.2016.02.022
[+]
Ferreira Mercuri, E. G., Jakubiak Kumata, A. Y., Amaral, E. B., & Simões Vitule, J. R. (2016). Energy by Microbial Fuel Cells: Scientometric global synthesis and challenges. Renewable and Sustainable Energy Reviews, 65, 832-840. doi:10.1016/j.rser.2016.06.050
Wu, Q., Jiao, S., Ma, M., & Peng, S. (2020). Microbial fuel cell system: a promising technology for pollutant removal and environmental remediation. Environmental Science and Pollution Research, 27(7), 6749-6764. doi:10.1007/s11356-020-07745-0
Gude, V. G. (2016). Wastewater treatment in microbial fuel cells – an overview. Journal of Cleaner Production, 122, 287-307. doi:10.1016/j.jclepro.2016.02.022
Pandey, P., Shinde, V. N., Deopurkar, R. L., Kale, S. P., Patil, S. A., & Pant, D. (2016). Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery. Applied Energy, 168, 706-723. doi:10.1016/j.apenergy.2016.01.056
Pant, D., Van Bogaert, G., Diels, L., & Vanbroekhoven, K. (2010). A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresource Technology, 101(6), 1533-1543. doi:10.1016/j.biortech.2009.10.017
Ieropoulos, I., Greenman, J., & Melhuish, C. (2012). Urine utilisation by microbial fuel cells; energy fuel for the future. Phys. Chem. Chem. Phys., 14(1), 94-98. doi:10.1039/c1cp23213d
Kuntke, P., Śmiech, K. M., Bruning, H., Zeeman, G., Saakes, M., Sleutels, T. H. J. A., … Buisman, C. J. N. (2012). Ammonium recovery and energy production from urine by a microbial fuel cell. Water Research, 46(8), 2627-2636. doi:10.1016/j.watres.2012.02.025
Ledezma, P., Kuntke, P., Buisman, C. J. N., Keller, J., & Freguia, S. (2015). Source-separated urine opens golden opportunities for microbial electrochemical technologies. Trends in Biotechnology, 33(4), 214-220. doi:10.1016/j.tibtech.2015.01.007
Ieropoulos, I. A., Ledezma, P., Stinchcombe, A., Papaharalabos, G., Melhuish, C., & Greenman, J. (2013). Waste to real energy: the first MFC powered mobile phone. Physical Chemistry Chemical Physics, 15(37), 15312. doi:10.1039/c3cp52889h
Walter, X. A., Stinchcombe, A., Greenman, J., & Ieropoulos, I. (2017). Urine transduction to usable energy: A modular MFC approach for smartphone and remote system charging. Applied Energy, 192, 575-581. doi:10.1016/j.apenergy.2016.06.006
Ieropoulos, I. A., Stinchcombe, A., Gajda, I., Forbes, S., Merino-Jimenez, I., Pasternak, G., … Greenman, J. (2016). Pee power urinal – microbial fuel cell technology field trials in the context of sanitation. Environmental Science: Water Research & Technology, 2(2), 336-343. doi:10.1039/c5ew00270b
Walter, X. A., Merino-Jiménez, I., Greenman, J., & Ieropoulos, I. (2018). PEE POWER® urinal II – Urinal scale-up with microbial fuel cell scale-down for improved lighting. Journal of Power Sources, 392, 150-158. doi:10.1016/j.jpowsour.2018.02.047
STIRLING, J. L., BENNETTO, H. P., DELANEY, G. M., MASON, J. R., ROLLER, S. D., TANAKA, K., & THURSTON, C. F. (1983). Microbial fuel cells. Biochemical Society Transactions, 11(4), 451-453. doi:10.1042/bst0110451
Logan, B. E., Hamelers, B., Rozendal, R., Schröder, U., Keller, J., Freguia, S., … Rabaey, K. (2006). Microbial Fuel Cells: Methodology and Technology. Environmental Science & Technology, 40(17), 5181-5192. doi:10.1021/es0605016
Hernández-Fernández FJ, Pérez De Los Ríos A, Salar-García MJ, Ortiz-Martínez VM, Lozano-Blanco LJ, Godínez C, et al. Recent progress and perspectives in microbial fuel cells for bioenergy generation and wastewater treatment. Fuel Process Technol 2015;138:284–97. https://doi.org/10.1016/j.fuproc.2015.05.022.
Winfield, J., Gajda, I., Greenman, J., & Ieropoulos, I. (2016). A review into the use of ceramics in microbial fuel cells. Bioresource Technology, 215, 296-303. doi:10.1016/j.biortech.2016.03.135
Yousefi, V., Mohebbi-Kalhori, D., & Samimi, A. (2017). Ceramic-based microbial fuel cells (MFCs): A review. International Journal of Hydrogen Energy, 42(3), 1672-1690. doi:10.1016/j.ijhydene.2016.06.054
Mačiulaitis, R., & Malaiškienė, J. (2009). Possibilities to control ceramics properties by changing firing cycles. Construction and Building Materials, 23(1), 226-232. doi:10.1016/j.conbuildmat.2007.12.012
Salar-García, M. J., & Ieropoulos, I. (2020). Optimisation of the internal structure of ceramic membranes for electricity production in urine-fed microbial fuel cells. Journal of Power Sources, 451, 227741. doi:10.1016/j.jpowsour.2020.227741
Ghadge, A. N., & Ghangrekar, M. M. (2015). Development of low cost ceramic separator using mineral cation exchanger to enhance performance of microbial fuel cells. Electrochimica Acta, 166, 320-328. doi:10.1016/j.electacta.2015.03.105
Santoro, C., Arbizzani, C., Erable, B., & Ieropoulos, I. (2017). Microbial fuel cells: From fundamentals to applications. A review. Journal of Power Sources, 356, 225-244. doi:10.1016/j.jpowsour.2017.03.109
Salar Garcia, M. J., Santoro, C., Kodali, M., Serov, A., Artyushkova, K., Atanassov, P., & Ieropoulos, I. (2019). Iron-streptomycin derived catalyst for efficient oxygen reduction reaction in ceramic microbial fuel cells operating with urine. Journal of Power Sources, 425, 50-59. doi:10.1016/j.jpowsour.2019.03.052
Ortiz-Martínez, V. M., Touati, K., Salar-García, M. J., Hernández-Fernández, F. J., & de los Ríos, A. P. (2019). Mixed transition metal-manganese oxides as catalysts in MFCs for bioenergy generation from industrial wastewater. Biochemical Engineering Journal, 151, 107310. doi:10.1016/j.bej.2019.107310
Touach, N., Ortiz-Martínez, V. M., Salar-García, M. J., Benzaouak, A., Hernández-Fernández, F., P. de Ríos, A., … Lotfi, E. M. (2017). On the use of ferroelectric material LiNbO3 as novel photocatalyst in wastewater-fed microbial fuel cells. Particuology, 34, 147-155. doi:10.1016/j.partic.2017.02.006
Obata, O., Salar-Garcia, M. J., Greenman, J., Kurt, H., Chandran, K., & Ieropoulos, I. (2020). Development of efficient electroactive biofilm in urine-fed microbial fuel cell cascades for bioelectricity generation. Journal of Environmental Management, 258, 109992. doi:10.1016/j.jenvman.2019.109992
Zhou, M., Chi, M., Luo, J., He, H., & Jin, T. (2011). An overview of electrode materials in microbial fuel cells. Journal of Power Sources, 196(10), 4427-4435. doi:10.1016/j.jpowsour.2011.01.012
Wei, J., Liang, P., & Huang, X. (2011). Recent progress in electrodes for microbial fuel cells. Bioresource Technology, 102(20), 9335-9344. doi:10.1016/j.biortech.2011.07.019
Sonawane JM, Yadav A, Ghosh PC, Adeloju SB. Recent advances in the development and utilization of modern anode materials for high performance microbial fuel cells 2016;90:558–76. https://doi.org/10.1016/j.bios.2016.10.014.
Cai, T., Meng, L., Chen, G., Xi, Y., Jiang, N., Song, J., … Huang, M. (2020). Application of advanced anodes in microbial fuel cells for power generation: A review. Chemosphere, 248, 125985. doi:10.1016/j.chemosphere.2020.125985
Huang, L., Li, X., Ren, Y., & Wang, X. (2016). In-situ modified carbon cloth with polyaniline/graphene as anode to enhance performance of microbial fuel cell. International Journal of Hydrogen Energy, 41(26), 11369-11379. doi:10.1016/j.ijhydene.2016.05.048
Jian, M., Xue, P., Shi, K., Li, R., Ma, L., & Li, P. (2020). Efficient degradation of indole by microbial fuel cell based Fe2O3-polyaniline-dopamine hybrid composite modified carbon felt anode. Journal of Hazardous Materials, 388, 122123. doi:10.1016/j.jhazmat.2020.122123
Jia, Y., Ma, D., & Wang, X. (2019). Electrochemical preparation and application of PANI/MWNT and PPy/MWNT composite anodes for anaerobic fluidized bed microbial fuel cell. 3 Biotech, 10(1). doi:10.1007/s13205-019-1950-y
López-Bernabeu, S., Gamero-Quijano, A., Huerta, F., Morallón, E., & Montilla, F. (2017). Enhancement of the direct electron transfer to encapsulated cytochrome c by electrochemical functionalization with a conducting polymer. Journal of Electroanalytical Chemistry, 793, 34-40. doi:10.1016/j.jelechem.2016.12.044
Cho, E.-C., Chang-Jian, C.-W., Syu, W.-L., Tseng, H.-S., Lee, K.-C., Huang, J.-H., & Hsiao, Y.-S. (2020). PEDOT-modified laser-scribed graphene films as bginder– and metallic current collector–free electrodes for large-sized supercapacitors. Applied Surface Science, 518, 146193. doi:10.1016/j.apsusc.2020.146193
Li, Q., Sun, Y., Yang, C., Liu, K., Islam, M. R., Li, L., … Qu, S. (2020). Optimizing the component ratio of PEDOT:PSS by water rinse for high efficiency organic solar cells over 16.7%. Science Bulletin, 65(9), 747-752. doi:10.1016/j.scib.2019.12.021
Song, W., Fanady, B., Peng, R., Hong, L., Wu, L., Zhang, W., … Ge, Z. (2020). Foldable Semitransparent Organic Solar Cells for Photovoltaic and Photosynthesis. Advanced Energy Materials, 10(15), 2000136. doi:10.1002/aenm.202000136
Yang, Q., Yu, S., Fu, P., Yu, W., Liu, Y., Liu, X., … Li, C. (2020). Boosting Performance of Non‐Fullerene Organic Solar Cells by 2D g‐C
3
N
4
Doped PEDOT:PSS. Advanced Functional Materials, 30(15), 1910205. doi:10.1002/adfm.201910205
Zhong, Z., Ma, Y., Liu, H., Peng, F., Ying, L., Wang, S., … Cao, Y. (2020). Improving the Performance of Blue Polymer Light-Emitting Diodes Using a Hole Injection Layer with a High Work Function and Nanotexture. ACS Applied Materials & Interfaces, 12(18), 20750-20756. doi:10.1021/acsami.0c03821
López-Bernabeu, S., Huerta, F., Morallón, E., & Montilla, F. (2017). Direct Electron Transfer to Cytochrome c Induced by a Conducting Polymer. The Journal of Physical Chemistry C, 121(29), 15870-15879. doi:10.1021/acs.jpcc.7b05204
Walter, X. A., Greenman, J., & Ieropoulos, I. (2018). Binder materials for the cathodes applied to self-stratifying membraneless microbial fuel cell. Bioelectrochemistry, 123, 119-124. doi:10.1016/j.bioelechem.2018.04.011
Quijada, C., & Vázquez, J. L. (2005). Electrochemical reactivity of aqueous SO2 on glassy carbon electrodes in acidic media. Electrochimica Acta, 50(27), 5449-5457. doi:10.1016/j.electacta.2005.03.027
Li, C., & Imae, T. (2004). Electrochemical and Optical Properties of the Poly(3,4-ethylenedioxythiophene) Film Electropolymerized in an Aqueous Sodium Dodecyl Sulfate and Lithium Tetrafluoroborate Medium. Macromolecules, 37(7), 2411-2416. doi:10.1021/ma035188w
Tamburri, E., Orlanducci, S., Toschi, F., Terranova, M. L., & Passeri, D. (2009). Growth mechanisms, morphology, and electroactivity of PEDOT layers produced by electrochemical routes in aqueous medium. Synthetic Metals, 159(5-6), 406-414. doi:10.1016/j.synthmet.2008.10.014
Quijada, Leite-Rosa, Berenguer, & Bou-Belda. (2019). Enhanced Adsorptive Properties and Pseudocapacitance of Flexible Polyaniline-Activated Carbon Cloth Composites Synthesized Electrochemically in a Filter-Press Cell. Materials, 12(16), 2516. doi:10.3390/ma12162516
Pandey, G. P., & Rastogi, A. C. (2013). Synthesis and characterization of pulsed polymerized poly(3,4-ethylenedioxythiophene) electrodes for high-performance electrochemical capacitors. Electrochimica Acta, 87, 158-168. doi:10.1016/j.electacta.2012.08.125
Gamero-Quijano, A., Huerta, F., Morallón, E., & Montilla, F. (2014). Modulation of the Silica Sol–Gel Composition for the Promotion of Direct Electron Transfer to Encapsulated Cytochrome c. Langmuir, 30(34), 10531-10538. doi:10.1021/la5023517
Bandosz TJ. Surface chemistry of carbon materials. Carbon Mater. Catal., Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2008, p. 45–92. https://doi.org/10.1002/9780470403709.ch2.
Djelad, H., Huerta, F., Morallón, E., & Montilla, F. (2018). Modulation of the electrocatalytic performance of PEDOT-PSS by reactive insertion into a sol-gel silica matrix. European Polymer Journal, 105, 323-330. doi:10.1016/j.eurpolymj.2018.06.010
Huang, H.-C., Ye, D.-Q., & Huang, B.-C. (2007). Nitrogen plasma modification of viscose-based activated carbon fibers. Surface and Coatings Technology, 201(24), 9533-9540. doi:10.1016/j.surfcoat.2007.04.029
Ji, T., Tan, L., Hu, X., Dai, Y., & Chen, Y. (2015). A comprehensive study of sulfonated carbon materials as conductive composites for polymer solar cells. Physical Chemistry Chemical Physics, 17(6), 4137-4145. doi:10.1039/c4cp04965a
Greczynski, G., Kugler, T., & Salaneck, W. . (1999). Characterization of the PEDOT-PSS system by means of X-ray and ultraviolet photoelectron spectroscopy. Thin Solid Films, 354(1-2), 129-135. doi:10.1016/s0040-6090(99)00422-8
Marciniak, S., Crispin, X., Uvdal, K., Trzcinski, M., Birgerson, J., Groenendaal, L., … Salaneck, W. . (2004). Light induced damage in poly(3,4-ethylenedioxythiophene) and its derivatives studied by photoelectron spectroscopy. Synthetic Metals, 141(1-2), 67-73. doi:10.1016/j.synthmet.2003.08.017
Zhao, X., Zhang, Q., Chen, C.-M., Zhang, B., Reiche, S., Wang, A., … Sheng Su, D. (2012). Aromatic sulfide, sulfoxide, and sulfone mediated mesoporous carbon monolith for use in supercapacitor. Nano Energy, 1(4), 624-630. doi:10.1016/j.nanoen.2012.04.003
Kang, Y. L., Pichiah, S., & Ibrahim, S. (2017). Facile reconstruction of microbial fuel cell (MFC) anode with enhanced exoelectrogens selection for intensified electricity generation. International Journal of Hydrogen Energy, 42(3), 1661-1671. doi:10.1016/j.ijhydene.2016.09.059
Liu, X., Wu, W., & Gu, Z. (2015). Poly (3,4-ethylenedioxythiophene) promotes direct electron transfer at the interface between Shewanella loihica and the anode in a microbial fuel cell. Journal of Power Sources, 277, 110-115. doi:10.1016/j.jpowsour.2014.11.129
Kang, Y. L., Ibrahim, S., & Pichiah, S. (2015). Synergetic effect of conductive polymer poly(3,4-ethylenedioxythiophene) with different structural configuration of anode for microbial fuel cell application. Bioresource Technology, 189, 364-369. doi:10.1016/j.biortech.2015.04.044
Zajdel, T. J., Baruch, M., Méhes, G., Stavrinidou, E., Berggren, M., Maharbiz, M. M., … Ajo-Franklin, C. M. (2018). PEDOT:PSS-based Multilayer Bacterial-Composite Films for Bioelectronics. Scientific Reports, 8(1). doi:10.1038/s41598-018-33521-9
Ma, Q., Pu, K.-B., Cai, W.-F., Wang, Y.-H., Chen, Q.-Y., & Li, F.-J. (2018). Characteristics of Poly(3,4-ethylenedioxythiophene) Modified Stainless Steel as Anode in Air-Cathode Microbial Fuel Cells. Industrial & Engineering Chemistry Research, 57(19), 6633-6638. doi:10.1021/acs.iecr.8b00563
[-]