- -

Improving the power performance of urine-fed microbial fuel cells using PEDOT-PSS modified anodes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Improving the power performance of urine-fed microbial fuel cells using PEDOT-PSS modified anodes

Mostrar el registro completo del ítem

Salar-Garcia, M.; Montilla, F.; Quijada, C.; Morallon, E.; Ieropoulos, I. (2020). Improving the power performance of urine-fed microbial fuel cells using PEDOT-PSS modified anodes. Applied Energy. 278:1-10. https://doi.org/10.1016/j.apenergy.2020.115528

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/165297

Ficheros en el ítem

Metadatos del ítem

Título: Improving the power performance of urine-fed microbial fuel cells using PEDOT-PSS modified anodes
Autor: Salar-Garcia, M.J. Montilla, F. Quijada, César Morallon, E. Ieropoulos, I.
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Textil y Papelera - Departament d'Enginyeria Tèxtil i Paperera
Fecha difusión:
Resumen:
[EN] The need for improving the energy harvesting from Microbial Fuel Cells (MFCs) has boosted the design of new materials in order to increase the power performance of this technology and facilitate its practical application. ...[+]
Palabras clave: Microbial fuel cells , PEDOT-PSS , Bioenergy , Urine
Derechos de uso: Reconocimiento (by)
Fuente:
Applied Energy. (issn: 0306-2619 )
DOI: 10.1016/j.apenergy.2020.115528
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.apenergy.2020.115528
Código del Proyecto:
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F087/ES/Materiales nanoestructurados en análisis químico: Nuevas estrategias de preparación de la muestra basadas en (micro)extracción en fase sólida y desarrollo de nuevos sensores electroquímicos y espectroelectroquímicos/
info:eu-repo/grantAgreement/f SéNeCa//20372%2FPD%2F17/
info:eu-repo/grantAgreement/BMGF//OPP1149065/
Agradecimientos:
M.J. Salar-Garcia is supported by Fundacion Seneca (Ref: 20372/PD/17). I. Ieropoulos is grateful to the Gates Foundation (Ref: OPP1149065) for the financial support of parts of this work. The other authors also thank the ...[+]
Tipo: Artículo

References

Ferreira Mercuri, E. G., Jakubiak Kumata, A. Y., Amaral, E. B., & Simões Vitule, J. R. (2016). Energy by Microbial Fuel Cells: Scientometric global synthesis and challenges. Renewable and Sustainable Energy Reviews, 65, 832-840. doi:10.1016/j.rser.2016.06.050

Wu, Q., Jiao, S., Ma, M., & Peng, S. (2020). Microbial fuel cell system: a promising technology for pollutant removal and environmental remediation. Environmental Science and Pollution Research, 27(7), 6749-6764. doi:10.1007/s11356-020-07745-0

Gude, V. G. (2016). Wastewater treatment in microbial fuel cells – an overview. Journal of Cleaner Production, 122, 287-307. doi:10.1016/j.jclepro.2016.02.022 [+]
Ferreira Mercuri, E. G., Jakubiak Kumata, A. Y., Amaral, E. B., & Simões Vitule, J. R. (2016). Energy by Microbial Fuel Cells: Scientometric global synthesis and challenges. Renewable and Sustainable Energy Reviews, 65, 832-840. doi:10.1016/j.rser.2016.06.050

Wu, Q., Jiao, S., Ma, M., & Peng, S. (2020). Microbial fuel cell system: a promising technology for pollutant removal and environmental remediation. Environmental Science and Pollution Research, 27(7), 6749-6764. doi:10.1007/s11356-020-07745-0

Gude, V. G. (2016). Wastewater treatment in microbial fuel cells – an overview. Journal of Cleaner Production, 122, 287-307. doi:10.1016/j.jclepro.2016.02.022

Pandey, P., Shinde, V. N., Deopurkar, R. L., Kale, S. P., Patil, S. A., & Pant, D. (2016). Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery. Applied Energy, 168, 706-723. doi:10.1016/j.apenergy.2016.01.056

Pant, D., Van Bogaert, G., Diels, L., & Vanbroekhoven, K. (2010). A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresource Technology, 101(6), 1533-1543. doi:10.1016/j.biortech.2009.10.017

Ieropoulos, I., Greenman, J., & Melhuish, C. (2012). Urine utilisation by microbial fuel cells; energy fuel for the future. Phys. Chem. Chem. Phys., 14(1), 94-98. doi:10.1039/c1cp23213d

Kuntke, P., Śmiech, K. M., Bruning, H., Zeeman, G., Saakes, M., Sleutels, T. H. J. A., … Buisman, C. J. N. (2012). Ammonium recovery and energy production from urine by a microbial fuel cell. Water Research, 46(8), 2627-2636. doi:10.1016/j.watres.2012.02.025

Ledezma, P., Kuntke, P., Buisman, C. J. N., Keller, J., & Freguia, S. (2015). Source-separated urine opens golden opportunities for microbial electrochemical technologies. Trends in Biotechnology, 33(4), 214-220. doi:10.1016/j.tibtech.2015.01.007

Ieropoulos, I. A., Ledezma, P., Stinchcombe, A., Papaharalabos, G., Melhuish, C., & Greenman, J. (2013). Waste to real energy: the first MFC powered mobile phone. Physical Chemistry Chemical Physics, 15(37), 15312. doi:10.1039/c3cp52889h

Walter, X. A., Stinchcombe, A., Greenman, J., & Ieropoulos, I. (2017). Urine transduction to usable energy: A modular MFC approach for smartphone and remote system charging. Applied Energy, 192, 575-581. doi:10.1016/j.apenergy.2016.06.006

Ieropoulos, I. A., Stinchcombe, A., Gajda, I., Forbes, S., Merino-Jimenez, I., Pasternak, G., … Greenman, J. (2016). Pee power urinal – microbial fuel cell technology field trials in the context of sanitation. Environmental Science: Water Research & Technology, 2(2), 336-343. doi:10.1039/c5ew00270b

Walter, X. A., Merino-Jiménez, I., Greenman, J., & Ieropoulos, I. (2018). PEE POWER® urinal II – Urinal scale-up with microbial fuel cell scale-down for improved lighting. Journal of Power Sources, 392, 150-158. doi:10.1016/j.jpowsour.2018.02.047

STIRLING, J. L., BENNETTO, H. P., DELANEY, G. M., MASON, J. R., ROLLER, S. D., TANAKA, K., & THURSTON, C. F. (1983). Microbial fuel cells. Biochemical Society Transactions, 11(4), 451-453. doi:10.1042/bst0110451

Logan, B. E., Hamelers, B., Rozendal, R., Schröder, U., Keller, J., Freguia, S., … Rabaey, K. (2006). Microbial Fuel Cells:  Methodology and Technology. Environmental Science & Technology, 40(17), 5181-5192. doi:10.1021/es0605016

Hernández-Fernández FJ, Pérez De Los Ríos A, Salar-García MJ, Ortiz-Martínez VM, Lozano-Blanco LJ, Godínez C, et al. Recent progress and perspectives in microbial fuel cells for bioenergy generation and wastewater treatment. Fuel Process Technol 2015;138:284–97. https://doi.org/10.1016/j.fuproc.2015.05.022.

Winfield, J., Gajda, I., Greenman, J., & Ieropoulos, I. (2016). A review into the use of ceramics in microbial fuel cells. Bioresource Technology, 215, 296-303. doi:10.1016/j.biortech.2016.03.135

Yousefi, V., Mohebbi-Kalhori, D., & Samimi, A. (2017). Ceramic-based microbial fuel cells (MFCs): A review. International Journal of Hydrogen Energy, 42(3), 1672-1690. doi:10.1016/j.ijhydene.2016.06.054

Mačiulaitis, R., & Malaiškienė, J. (2009). Possibilities to control ceramics properties by changing firing cycles. Construction and Building Materials, 23(1), 226-232. doi:10.1016/j.conbuildmat.2007.12.012

Salar-García, M. J., & Ieropoulos, I. (2020). Optimisation of the internal structure of ceramic membranes for electricity production in urine-fed microbial fuel cells. Journal of Power Sources, 451, 227741. doi:10.1016/j.jpowsour.2020.227741

Ghadge, A. N., & Ghangrekar, M. M. (2015). Development of low cost ceramic separator using mineral cation exchanger to enhance performance of microbial fuel cells. Electrochimica Acta, 166, 320-328. doi:10.1016/j.electacta.2015.03.105

Santoro, C., Arbizzani, C., Erable, B., & Ieropoulos, I. (2017). Microbial fuel cells: From fundamentals to applications. A review. Journal of Power Sources, 356, 225-244. doi:10.1016/j.jpowsour.2017.03.109

Salar Garcia, M. J., Santoro, C., Kodali, M., Serov, A., Artyushkova, K., Atanassov, P., & Ieropoulos, I. (2019). Iron-streptomycin derived catalyst for efficient oxygen reduction reaction in ceramic microbial fuel cells operating with urine. Journal of Power Sources, 425, 50-59. doi:10.1016/j.jpowsour.2019.03.052

Ortiz-Martínez, V. M., Touati, K., Salar-García, M. J., Hernández-Fernández, F. J., & de los Ríos, A. P. (2019). Mixed transition metal-manganese oxides as catalysts in MFCs for bioenergy generation from industrial wastewater. Biochemical Engineering Journal, 151, 107310. doi:10.1016/j.bej.2019.107310

Touach, N., Ortiz-Martínez, V. M., Salar-García, M. J., Benzaouak, A., Hernández-Fernández, F., P. de Ríos, A., … Lotfi, E. M. (2017). On the use of ferroelectric material LiNbO3 as novel photocatalyst in wastewater-fed microbial fuel cells. Particuology, 34, 147-155. doi:10.1016/j.partic.2017.02.006

Obata, O., Salar-Garcia, M. J., Greenman, J., Kurt, H., Chandran, K., & Ieropoulos, I. (2020). Development of efficient electroactive biofilm in urine-fed microbial fuel cell cascades for bioelectricity generation. Journal of Environmental Management, 258, 109992. doi:10.1016/j.jenvman.2019.109992

Zhou, M., Chi, M., Luo, J., He, H., & Jin, T. (2011). An overview of electrode materials in microbial fuel cells. Journal of Power Sources, 196(10), 4427-4435. doi:10.1016/j.jpowsour.2011.01.012

Wei, J., Liang, P., & Huang, X. (2011). Recent progress in electrodes for microbial fuel cells. Bioresource Technology, 102(20), 9335-9344. doi:10.1016/j.biortech.2011.07.019

Sonawane JM, Yadav A, Ghosh PC, Adeloju SB. Recent advances in the development and utilization of modern anode materials for high performance microbial fuel cells 2016;90:558–76. https://doi.org/10.1016/j.bios.2016.10.014.

Cai, T., Meng, L., Chen, G., Xi, Y., Jiang, N., Song, J., … Huang, M. (2020). Application of advanced anodes in microbial fuel cells for power generation: A review. Chemosphere, 248, 125985. doi:10.1016/j.chemosphere.2020.125985

Huang, L., Li, X., Ren, Y., & Wang, X. (2016). In-situ modified carbon cloth with polyaniline/graphene as anode to enhance performance of microbial fuel cell. International Journal of Hydrogen Energy, 41(26), 11369-11379. doi:10.1016/j.ijhydene.2016.05.048

Jian, M., Xue, P., Shi, K., Li, R., Ma, L., & Li, P. (2020). Efficient degradation of indole by microbial fuel cell based Fe2O3-polyaniline-dopamine hybrid composite modified carbon felt anode. Journal of Hazardous Materials, 388, 122123. doi:10.1016/j.jhazmat.2020.122123

Jia, Y., Ma, D., & Wang, X. (2019). Electrochemical preparation and application of PANI/MWNT and PPy/MWNT composite anodes for anaerobic fluidized bed microbial fuel cell. 3 Biotech, 10(1). doi:10.1007/s13205-019-1950-y

López-Bernabeu, S., Gamero-Quijano, A., Huerta, F., Morallón, E., & Montilla, F. (2017). Enhancement of the direct electron transfer to encapsulated cytochrome c by electrochemical functionalization with a conducting polymer. Journal of Electroanalytical Chemistry, 793, 34-40. doi:10.1016/j.jelechem.2016.12.044

Cho, E.-C., Chang-Jian, C.-W., Syu, W.-L., Tseng, H.-S., Lee, K.-C., Huang, J.-H., & Hsiao, Y.-S. (2020). PEDOT-modified laser-scribed graphene films as bginder– and metallic current collector–free electrodes for large-sized supercapacitors. Applied Surface Science, 518, 146193. doi:10.1016/j.apsusc.2020.146193

Li, Q., Sun, Y., Yang, C., Liu, K., Islam, M. R., Li, L., … Qu, S. (2020). Optimizing the component ratio of PEDOT:PSS by water rinse for high efficiency organic solar cells over 16.7%. Science Bulletin, 65(9), 747-752. doi:10.1016/j.scib.2019.12.021

Song, W., Fanady, B., Peng, R., Hong, L., Wu, L., Zhang, W., … Ge, Z. (2020). Foldable Semitransparent Organic Solar Cells for Photovoltaic and Photosynthesis. Advanced Energy Materials, 10(15), 2000136. doi:10.1002/aenm.202000136

Yang, Q., Yu, S., Fu, P., Yu, W., Liu, Y., Liu, X., … Li, C. (2020). Boosting Performance of Non‐Fullerene Organic Solar Cells by 2D g‐C 3 N 4 Doped PEDOT:PSS. Advanced Functional Materials, 30(15), 1910205. doi:10.1002/adfm.201910205

Zhong, Z., Ma, Y., Liu, H., Peng, F., Ying, L., Wang, S., … Cao, Y. (2020). Improving the Performance of Blue Polymer Light-Emitting Diodes Using a Hole Injection Layer with a High Work Function and Nanotexture. ACS Applied Materials & Interfaces, 12(18), 20750-20756. doi:10.1021/acsami.0c03821

López-Bernabeu, S., Huerta, F., Morallón, E., & Montilla, F. (2017). Direct Electron Transfer to Cytochrome c Induced by a Conducting Polymer. The Journal of Physical Chemistry C, 121(29), 15870-15879. doi:10.1021/acs.jpcc.7b05204

Walter, X. A., Greenman, J., & Ieropoulos, I. (2018). Binder materials for the cathodes applied to self-stratifying membraneless microbial fuel cell. Bioelectrochemistry, 123, 119-124. doi:10.1016/j.bioelechem.2018.04.011

Quijada, C., & Vázquez, J. L. (2005). Electrochemical reactivity of aqueous SO2 on glassy carbon electrodes in acidic media. Electrochimica Acta, 50(27), 5449-5457. doi:10.1016/j.electacta.2005.03.027

Li, C., & Imae, T. (2004). Electrochemical and Optical Properties of the Poly(3,4-ethylenedioxythiophene) Film Electropolymerized in an Aqueous Sodium Dodecyl Sulfate and Lithium Tetrafluoroborate Medium. Macromolecules, 37(7), 2411-2416. doi:10.1021/ma035188w

Tamburri, E., Orlanducci, S., Toschi, F., Terranova, M. L., & Passeri, D. (2009). Growth mechanisms, morphology, and electroactivity of PEDOT layers produced by electrochemical routes in aqueous medium. Synthetic Metals, 159(5-6), 406-414. doi:10.1016/j.synthmet.2008.10.014

Quijada, Leite-Rosa, Berenguer, & Bou-Belda. (2019). Enhanced Adsorptive Properties and Pseudocapacitance of Flexible Polyaniline-Activated Carbon Cloth Composites Synthesized Electrochemically in a Filter-Press Cell. Materials, 12(16), 2516. doi:10.3390/ma12162516

Pandey, G. P., & Rastogi, A. C. (2013). Synthesis and characterization of pulsed polymerized poly(3,4-ethylenedioxythiophene) electrodes for high-performance electrochemical capacitors. Electrochimica Acta, 87, 158-168. doi:10.1016/j.electacta.2012.08.125

Gamero-Quijano, A., Huerta, F., Morallón, E., & Montilla, F. (2014). Modulation of the Silica Sol–Gel Composition for the Promotion of Direct Electron Transfer to Encapsulated Cytochrome c. Langmuir, 30(34), 10531-10538. doi:10.1021/la5023517

Bandosz TJ. Surface chemistry of carbon materials. Carbon Mater. Catal., Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2008, p. 45–92. https://doi.org/10.1002/9780470403709.ch2.

Djelad, H., Huerta, F., Morallón, E., & Montilla, F. (2018). Modulation of the electrocatalytic performance of PEDOT-PSS by reactive insertion into a sol-gel silica matrix. European Polymer Journal, 105, 323-330. doi:10.1016/j.eurpolymj.2018.06.010

Huang, H.-C., Ye, D.-Q., & Huang, B.-C. (2007). Nitrogen plasma modification of viscose-based activated carbon fibers. Surface and Coatings Technology, 201(24), 9533-9540. doi:10.1016/j.surfcoat.2007.04.029

Ji, T., Tan, L., Hu, X., Dai, Y., & Chen, Y. (2015). A comprehensive study of sulfonated carbon materials as conductive composites for polymer solar cells. Physical Chemistry Chemical Physics, 17(6), 4137-4145. doi:10.1039/c4cp04965a

Greczynski, G., Kugler, T., & Salaneck, W. . (1999). Characterization of the PEDOT-PSS system by means of X-ray and ultraviolet photoelectron spectroscopy. Thin Solid Films, 354(1-2), 129-135. doi:10.1016/s0040-6090(99)00422-8

Marciniak, S., Crispin, X., Uvdal, K., Trzcinski, M., Birgerson, J., Groenendaal, L., … Salaneck, W. . (2004). Light induced damage in poly(3,4-ethylenedioxythiophene) and its derivatives studied by photoelectron spectroscopy. Synthetic Metals, 141(1-2), 67-73. doi:10.1016/j.synthmet.2003.08.017

Zhao, X., Zhang, Q., Chen, C.-M., Zhang, B., Reiche, S., Wang, A., … Sheng Su, D. (2012). Aromatic sulfide, sulfoxide, and sulfone mediated mesoporous carbon monolith for use in supercapacitor. Nano Energy, 1(4), 624-630. doi:10.1016/j.nanoen.2012.04.003

Kang, Y. L., Pichiah, S., & Ibrahim, S. (2017). Facile reconstruction of microbial fuel cell (MFC) anode with enhanced exoelectrogens selection for intensified electricity generation. International Journal of Hydrogen Energy, 42(3), 1661-1671. doi:10.1016/j.ijhydene.2016.09.059

Liu, X., Wu, W., & Gu, Z. (2015). Poly (3,4-ethylenedioxythiophene) promotes direct electron transfer at the interface between Shewanella loihica and the anode in a microbial fuel cell. Journal of Power Sources, 277, 110-115. doi:10.1016/j.jpowsour.2014.11.129

Kang, Y. L., Ibrahim, S., & Pichiah, S. (2015). Synergetic effect of conductive polymer poly(3,4-ethylenedioxythiophene) with different structural configuration of anode for microbial fuel cell application. Bioresource Technology, 189, 364-369. doi:10.1016/j.biortech.2015.04.044

Zajdel, T. J., Baruch, M., Méhes, G., Stavrinidou, E., Berggren, M., Maharbiz, M. M., … Ajo-Franklin, C. M. (2018). PEDOT:PSS-based Multilayer Bacterial-Composite Films for Bioelectronics. Scientific Reports, 8(1). doi:10.1038/s41598-018-33521-9

Ma, Q., Pu, K.-B., Cai, W.-F., Wang, Y.-H., Chen, Q.-Y., & Li, F.-J. (2018). Characteristics of Poly(3,4-ethylenedioxythiophene) Modified Stainless Steel as Anode in Air-Cathode Microbial Fuel Cells. Industrial & Engineering Chemistry Research, 57(19), 6633-6638. doi:10.1021/acs.iecr.8b00563

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem