- -

The reduction of gas concentrations in broiler houses through ventilation: Assessment of the thermal and electrical energy consumption

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The reduction of gas concentrations in broiler houses through ventilation: Assessment of the thermal and electrical energy consumption

Mostrar el registro completo del ítem

Costantino, A.; Fabrizio, E.; Villagrá, A.; Estellés, F.; Calvet, S. (2020). The reduction of gas concentrations in broiler houses through ventilation: Assessment of the thermal and electrical energy consumption. Biosystems Engineering. 199:135-148. https://doi.org/10.1016/j.biosystemseng.2020.01.002

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/165300

Ficheros en el ítem

Metadatos del ítem

Título: The reduction of gas concentrations in broiler houses through ventilation: Assessment of the thermal and electrical energy consumption
Autor: Costantino, Andrea Fabrizio, Enrico Villagrá, Arantxa Estellés, F. Calvet, S.
Entidad UPV: Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal
Fecha difusión:
Resumen:
[EN] Ammonia and carbon dioxide are the most relevant among the harmful gases present in broiler houses and their effects on animal health depend on concentration and exposure time. Inside these houses, increasing ventilation ...[+]
Palabras clave: Broiler production , Climate control , Animal breeding , Energy assessment , Ammonia emission , Animal welfare
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Biosystems Engineering. (issn: 1537-5110 )
DOI: 10.1016/j.biosystemseng.2020.01.002
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.biosystemseng.2020.01.002
Código del Proyecto:
info:eu-repo/grantAgreement/AEI//RTA2017-00013-00-00/ES/Valoración del manejo animal y el manejo ambiental como alternativas al uso de antibióticos en pollos y conejos de cebo. Efecto sobre las multirresistencias/
Agradecimientos:
This work was supported by the Spanish Ministry of Science and Innovation [Project RTA2017-00013].
Tipo: Artículo

References

Anderson, D. P., Beard, C. W., & Hanson, R. P. (1964). The Adverse Effects of Ammonia on Chickens Including Resistance to Infection with Newcastle Disease Virus. Avian Diseases, 8(3), 369. doi:10.2307/1587967

Beker, A., Vanhooser, S. L., Swartzlander, J. H., & Teeter, R. G. (2004). Atmospheric Ammonia Concentration Effects on Broiler Growth and Performance. Journal of Applied Poultry Research, 13(1), 5-9. doi:10.1093/japr/13.1.5

Calvet, S., Cambra-López, M., Blanes-Vidal, V., Estellés, F., & Torres, A. G. (2010). Ventilation rates in mechanically-ventilated commercial poultry buildings in Southern Europe: Measurement system development and uncertainty analysis. Biosystems Engineering, 106(4), 423-432. doi:10.1016/j.biosystemseng.2010.05.006 [+]
Anderson, D. P., Beard, C. W., & Hanson, R. P. (1964). The Adverse Effects of Ammonia on Chickens Including Resistance to Infection with Newcastle Disease Virus. Avian Diseases, 8(3), 369. doi:10.2307/1587967

Beker, A., Vanhooser, S. L., Swartzlander, J. H., & Teeter, R. G. (2004). Atmospheric Ammonia Concentration Effects on Broiler Growth and Performance. Journal of Applied Poultry Research, 13(1), 5-9. doi:10.1093/japr/13.1.5

Calvet, S., Cambra-López, M., Blanes-Vidal, V., Estellés, F., & Torres, A. G. (2010). Ventilation rates in mechanically-ventilated commercial poultry buildings in Southern Europe: Measurement system development and uncertainty analysis. Biosystems Engineering, 106(4), 423-432. doi:10.1016/j.biosystemseng.2010.05.006

Calvet, S., Estellés, F., Cambra-López, M., Torres, A. G., & Van den Weghe, H. F. A. (2011). The influence of broiler activity, growth rate, and litter on carbon dioxide balances for the determination of ventilation flow rates in broiler production. Poultry Science, 90(11), 2449-2458. doi:10.3382/ps.2011-01580

Costantino, A., Fabrizio, E., Biglia, A., Cornale, P., & Battaglini, L. (2016). Energy Use for Climate Control of Animal Houses: The State of the Art in Europe. Energy Procedia, 101, 184-191. doi:10.1016/j.egypro.2016.11.024

Costantino, A., Fabrizio, E., Ghiggini, A., & Bariani, M. (2018). Climate control in broiler houses: A thermal model for the calculation of the energy use and indoor environmental conditions. Energy and Buildings, 169, 110-126. doi:10.1016/j.enbuild.2018.03.056

Gerritzen, M. A., Lambooij, E., Hillebrand, S. J., Lankhaar, J. A., & Pieterse, C. (2000). Behavioral Responses of Broilers to Different Gaseous Atmospheres. Poultry Science, 79(6), 928-933. doi:10.1093/ps/79.6.928

Gerritzen, M., Lambooij, B., Reimert, H., Stegeman, A., & Spruijt, B. (2007). A note on behaviour of poultry exposed to increasing carbon dioxide concentrations. Applied Animal Behaviour Science, 108(1-2), 179-185. doi:10.1016/j.applanim.2006.11.014

Groot Koerkamp, P. W. G., Metz, J. H. M., Uenk, G. H., Phillips, V. R., Holden, M. R., Sneath, R. W., … Wathes, C. M. (1998). Concentrations and Emissions of Ammonia in Livestock Buildings in Northern Europe. Journal of Agricultural Engineering Research, 70(1), 79-95. doi:10.1006/jaer.1998.0275

Gustin, P., Urbain, B., Prouvost, J. F., & Ansay, M. (1994). Effects of Atmospheric Ammonia on Pulmonary Hemodynamics and Vascular Permeability in Pigs: Interaction with Endotoxins. Toxicology and Applied Pharmacology, 125(1), 17-26. doi:10.1006/taap.1994.1044

Jones, T. A., Donnelly, C. A., & Stamp Dawkins, M. (2005). Environmental and management factors affecting the welfare of chickens on commercial farms in the United Kingdom and Denmark stocked at five densities. Poultry Science, 84(8), 1155-1165. doi:10.1093/ps/84.8.1155

Knížatová, M., Mihina, Š., Brouček, J., Karandušovská, I., Sauter, G. J., & Mačuhová, J. (2010). Effect of the age and season of fattening period on carbon dioxide emissions from broiler housing. Czech Journal of Animal Science, 55(No. 10), 436-444. doi:10.17221/1701-cjas

Kristensen, H. H., Burgess, L. R., Demmers, T. G. ., & Wathes, C. M. (2000). The preferences of laying hens for different concentrations of atmospheric ammonia. Applied Animal Behaviour Science, 68(4), 307-318. doi:10.1016/s0168-1591(00)00110-6

Kristensen, H. H., & Wathes, C. M. (2000). Ammonia and poultry welfare: a review. World’s Poultry Science Journal, 56(3), 235-245. doi:10.1079/wps20000018

Morsing, S., Strøm, J. S., Zhang, G., & Kai, P. (2008). Scale model experiments to determine the effects of internal airflow and floor design on gaseous emissions from animal houses. Biosystems Engineering, 99(1), 99-104. doi:10.1016/j.biosystemseng.2007.09.028

Olanrewaju, H. A., III, W. A. D., Purswell, J. L., Branton, S. L., Miles, D. M., Lott, B. D., … Thaxton, J. P. (2008). Growth Performance and Physiological Variables for Broiler Chickens Subjected to Short-Term Elevated Carbon Dioxide Concentrations. International Journal of Poultry Science, 7(8), 738-742. doi:10.3923/ijps.2008.738.742

W. Miller, W., R. Maslin, W., P. Thaxton, J., A. Olanrew, H., Dozier, II, W. A., Purswell, J., & L. Branton, S. (2007). Interactive Effects of Ammonia and Light Intensity on Ocular, Fear and Leg Health in Broiler Chickens. International Journal of Poultry Science, 6(10), 762-769. doi:10.3923/ijps.2007.762.769

Quarles, C. L., & Kling, H. F. (1974). Evaluation of Ammonia and Infectious Bronchitis Vaccination Stress on Broiler Performance and Carcass Quality. Poultry Science, 53(4), 1592-1596. doi:10.3382/ps.0531592

Reindl, D. T., Beckman, W. A., & Duffie, J. A. (1990). Diffuse fraction correlations. Solar Energy, 45(1), 1-7. doi:10.1016/0038-092x(90)90060-p

Ritz, C. W., Fairchild, B. D., & Lacy, M. P. (2004). Implications of Ammonia Production and Emissions from Commercial Poultry Facilities: A Review. Journal of Applied Poultry Research, 13(4), 684-692. doi:10.1093/japr/13.4.684

Thornton, P. K. (2010). Livestock production: recent trends, future prospects. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1554), 2853-2867. doi:10.1098/rstb.2010.0134

Valentine, H. (1964). A study of the effect of different ventilation rates on the ammonia concentrations in the atmosphere of broiler houses. British Poultry Science, 5(2), 149-159. doi:10.1080/00071666408415526

Verspecht, A., Vanhonacker, F., Verbeke, W., Zoons, J., & Van Huylenbroeck, G. (2011). Economic impact of decreasing stocking densities in broiler production in Belgium. Poultry Science, 90(8), 1844-1851. doi:10.3382/ps.2010-01277

C. M. Wathes, J. B. Jones, H. H. Kristensen, E. K. M. Jones, & A. J. F. Webster. (2002). AVERSION OF PIGS AND DOMESTIC FOWL TO ATMOSPHERIC AMMONIA. Transactions of the ASAE, 45(5). doi:10.13031/2013.11067

WEAVER, W. D., & MEIJERHOF, R. (1991). The Effect of Different Levels of Relative Humidity and Air Movement on Litter Conditions, Ammonia Levels, Growth, and Carcass Quality for Broiler Chickens. Poultry Science, 70(4), 746-755. doi:10.3382/ps.0700746

Yi, B., Chen, L., Sa, R., Zhong, R., Xing, H., & Zhang, H. (2016). Transcriptome Profile Analysis of Breast Muscle Tissues from High or Low Levels of Atmospheric Ammonia Exposed Broilers (Gallus gallus). PLOS ONE, 11(9), e0162631. doi:10.1371/journal.pone.0162631

Zhang, Y., & Barber, E. M. (1995). An Evaluation of Heating and Ventilation Control Strategies for Livestock Buildings. Journal of Agricultural Engineering Research, 60(4), 217-225. doi:10.1006/jaer.1995.1016

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem