Mostrar el registro sencillo del ítem
dc.contributor.author | Costantino, Andrea | es_ES |
dc.contributor.author | Fabrizio, Enrico | es_ES |
dc.contributor.author | Villagrá, Arantxa | es_ES |
dc.contributor.author | Estellés, F. | es_ES |
dc.contributor.author | Calvet, S. | es_ES |
dc.date.accessioned | 2021-04-17T03:33:24Z | |
dc.date.available | 2021-04-17T03:33:24Z | |
dc.date.issued | 2020-11 | es_ES |
dc.identifier.issn | 1537-5110 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/165300 | |
dc.description.abstract | [EN] Ammonia and carbon dioxide are the most relevant among the harmful gases present in broiler houses and their effects on animal health depend on concentration and exposure time. Inside these houses, increasing ventilation is the most common strategy adopted to control the concentration of these gases. This strategy is effective but increases electrical energy consumption (for fan operation) and thermal energy consumption (for inlet air heating). In this work, the variations of energy consumption due to the increase of ventilation to maintain ammonia and carbon dioxide concentrations below established thresholds were evaluated. To carry out this analysis, various parameters (e.g. indoor air temperature and gas concentrations) of a broiler house located in the Mediterranean area were monitored during a production cycle in the cool (winter) season in which outdoor air temperature varied between 2 and 25 °C. The assessment of the increase in the energy consumption for climate control was carried out using the Specific Fan Performance and a customised building energy simulation model. The analysis showed that during the monitored period, the established thresholds of gas concentrations were exceeded approximately 60% of the time. To maintain the desired gas concentrations, the ventilation flow rate should be increased by 9%. This variation in the ventilation flow rate entailed a rise in the energy consumption by about 10% for electrical energy and by about 14% for thermal energy. Maintaining the gas concentration below the established thresholds entails an extra cost of around 0.02 € per harvested broiler. | es_ES |
dc.description.sponsorship | This work was supported by the Spanish Ministry of Science and Innovation [Project RTA2017-00013]. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Biosystems Engineering | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Broiler production | es_ES |
dc.subject | Climate control | es_ES |
dc.subject | Animal breeding | es_ES |
dc.subject | Energy assessment | es_ES |
dc.subject | Ammonia emission | es_ES |
dc.subject | Animal welfare | es_ES |
dc.subject.classification | PRODUCCION ANIMAL | es_ES |
dc.title | The reduction of gas concentrations in broiler houses through ventilation: Assessment of the thermal and electrical energy consumption | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.biosystemseng.2020.01.002 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//RTA2017-00013-00-00/ES/Valoración del manejo animal y el manejo ambiental como alternativas al uso de antibióticos en pollos y conejos de cebo. Efecto sobre las multirresistencias/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal | es_ES |
dc.description.bibliographicCitation | Costantino, A.; Fabrizio, E.; Villagrá, A.; Estellés, F.; Calvet, S. (2020). The reduction of gas concentrations in broiler houses through ventilation: Assessment of the thermal and electrical energy consumption. Biosystems Engineering. 199:135-148. https://doi.org/10.1016/j.biosystemseng.2020.01.002 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.biosystemseng.2020.01.002 | es_ES |
dc.description.upvformatpinicio | 135 | es_ES |
dc.description.upvformatpfin | 148 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 199 | es_ES |
dc.relation.pasarela | S\401492 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Anderson, D. P., Beard, C. W., & Hanson, R. P. (1964). The Adverse Effects of Ammonia on Chickens Including Resistance to Infection with Newcastle Disease Virus. Avian Diseases, 8(3), 369. doi:10.2307/1587967 | es_ES |
dc.description.references | Beker, A., Vanhooser, S. L., Swartzlander, J. H., & Teeter, R. G. (2004). Atmospheric Ammonia Concentration Effects on Broiler Growth and Performance. Journal of Applied Poultry Research, 13(1), 5-9. doi:10.1093/japr/13.1.5 | es_ES |
dc.description.references | Calvet, S., Cambra-López, M., Blanes-Vidal, V., Estellés, F., & Torres, A. G. (2010). Ventilation rates in mechanically-ventilated commercial poultry buildings in Southern Europe: Measurement system development and uncertainty analysis. Biosystems Engineering, 106(4), 423-432. doi:10.1016/j.biosystemseng.2010.05.006 | es_ES |
dc.description.references | Calvet, S., Estellés, F., Cambra-López, M., Torres, A. G., & Van den Weghe, H. F. A. (2011). The influence of broiler activity, growth rate, and litter on carbon dioxide balances for the determination of ventilation flow rates in broiler production. Poultry Science, 90(11), 2449-2458. doi:10.3382/ps.2011-01580 | es_ES |
dc.description.references | Costantino, A., Fabrizio, E., Biglia, A., Cornale, P., & Battaglini, L. (2016). Energy Use for Climate Control of Animal Houses: The State of the Art in Europe. Energy Procedia, 101, 184-191. doi:10.1016/j.egypro.2016.11.024 | es_ES |
dc.description.references | Costantino, A., Fabrizio, E., Ghiggini, A., & Bariani, M. (2018). Climate control in broiler houses: A thermal model for the calculation of the energy use and indoor environmental conditions. Energy and Buildings, 169, 110-126. doi:10.1016/j.enbuild.2018.03.056 | es_ES |
dc.description.references | Gerritzen, M. A., Lambooij, E., Hillebrand, S. J., Lankhaar, J. A., & Pieterse, C. (2000). Behavioral Responses of Broilers to Different Gaseous Atmospheres. Poultry Science, 79(6), 928-933. doi:10.1093/ps/79.6.928 | es_ES |
dc.description.references | Gerritzen, M., Lambooij, B., Reimert, H., Stegeman, A., & Spruijt, B. (2007). A note on behaviour of poultry exposed to increasing carbon dioxide concentrations. Applied Animal Behaviour Science, 108(1-2), 179-185. doi:10.1016/j.applanim.2006.11.014 | es_ES |
dc.description.references | Groot Koerkamp, P. W. G., Metz, J. H. M., Uenk, G. H., Phillips, V. R., Holden, M. R., Sneath, R. W., … Wathes, C. M. (1998). Concentrations and Emissions of Ammonia in Livestock Buildings in Northern Europe. Journal of Agricultural Engineering Research, 70(1), 79-95. doi:10.1006/jaer.1998.0275 | es_ES |
dc.description.references | Gustin, P., Urbain, B., Prouvost, J. F., & Ansay, M. (1994). Effects of Atmospheric Ammonia on Pulmonary Hemodynamics and Vascular Permeability in Pigs: Interaction with Endotoxins. Toxicology and Applied Pharmacology, 125(1), 17-26. doi:10.1006/taap.1994.1044 | es_ES |
dc.description.references | Jones, T. A., Donnelly, C. A., & Stamp Dawkins, M. (2005). Environmental and management factors affecting the welfare of chickens on commercial farms in the United Kingdom and Denmark stocked at five densities. Poultry Science, 84(8), 1155-1165. doi:10.1093/ps/84.8.1155 | es_ES |
dc.description.references | Knížatová, M., Mihina, Š., Brouček, J., Karandušovská, I., Sauter, G. J., & Mačuhová, J. (2010). Effect of the age and season of fattening period on carbon dioxide emissions from broiler housing. Czech Journal of Animal Science, 55(No. 10), 436-444. doi:10.17221/1701-cjas | es_ES |
dc.description.references | Kristensen, H. H., Burgess, L. R., Demmers, T. G. ., & Wathes, C. M. (2000). The preferences of laying hens for different concentrations of atmospheric ammonia. Applied Animal Behaviour Science, 68(4), 307-318. doi:10.1016/s0168-1591(00)00110-6 | es_ES |
dc.description.references | Kristensen, H. H., & Wathes, C. M. (2000). Ammonia and poultry welfare: a review. World’s Poultry Science Journal, 56(3), 235-245. doi:10.1079/wps20000018 | es_ES |
dc.description.references | Morsing, S., Strøm, J. S., Zhang, G., & Kai, P. (2008). Scale model experiments to determine the effects of internal airflow and floor design on gaseous emissions from animal houses. Biosystems Engineering, 99(1), 99-104. doi:10.1016/j.biosystemseng.2007.09.028 | es_ES |
dc.description.references | Olanrewaju, H. A., III, W. A. D., Purswell, J. L., Branton, S. L., Miles, D. M., Lott, B. D., … Thaxton, J. P. (2008). Growth Performance and Physiological Variables for Broiler Chickens Subjected to Short-Term Elevated Carbon Dioxide Concentrations. International Journal of Poultry Science, 7(8), 738-742. doi:10.3923/ijps.2008.738.742 | es_ES |
dc.description.references | W. Miller, W., R. Maslin, W., P. Thaxton, J., A. Olanrew, H., Dozier, II, W. A., Purswell, J., & L. Branton, S. (2007). Interactive Effects of Ammonia and Light Intensity on Ocular, Fear and Leg Health in Broiler Chickens. International Journal of Poultry Science, 6(10), 762-769. doi:10.3923/ijps.2007.762.769 | es_ES |
dc.description.references | Quarles, C. L., & Kling, H. F. (1974). Evaluation of Ammonia and Infectious Bronchitis Vaccination Stress on Broiler Performance and Carcass Quality. Poultry Science, 53(4), 1592-1596. doi:10.3382/ps.0531592 | es_ES |
dc.description.references | Reindl, D. T., Beckman, W. A., & Duffie, J. A. (1990). Diffuse fraction correlations. Solar Energy, 45(1), 1-7. doi:10.1016/0038-092x(90)90060-p | es_ES |
dc.description.references | Ritz, C. W., Fairchild, B. D., & Lacy, M. P. (2004). Implications of Ammonia Production and Emissions from Commercial Poultry Facilities: A Review. Journal of Applied Poultry Research, 13(4), 684-692. doi:10.1093/japr/13.4.684 | es_ES |
dc.description.references | Thornton, P. K. (2010). Livestock production: recent trends, future prospects. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1554), 2853-2867. doi:10.1098/rstb.2010.0134 | es_ES |
dc.description.references | Valentine, H. (1964). A study of the effect of different ventilation rates on the ammonia concentrations in the atmosphere of broiler houses. British Poultry Science, 5(2), 149-159. doi:10.1080/00071666408415526 | es_ES |
dc.description.references | Verspecht, A., Vanhonacker, F., Verbeke, W., Zoons, J., & Van Huylenbroeck, G. (2011). Economic impact of decreasing stocking densities in broiler production in Belgium. Poultry Science, 90(8), 1844-1851. doi:10.3382/ps.2010-01277 | es_ES |
dc.description.references | C. M. Wathes, J. B. Jones, H. H. Kristensen, E. K. M. Jones, & A. J. F. Webster. (2002). AVERSION OF PIGS AND DOMESTIC FOWL TO ATMOSPHERIC AMMONIA. Transactions of the ASAE, 45(5). doi:10.13031/2013.11067 | es_ES |
dc.description.references | WEAVER, W. D., & MEIJERHOF, R. (1991). The Effect of Different Levels of Relative Humidity and Air Movement on Litter Conditions, Ammonia Levels, Growth, and Carcass Quality for Broiler Chickens. Poultry Science, 70(4), 746-755. doi:10.3382/ps.0700746 | es_ES |
dc.description.references | Yi, B., Chen, L., Sa, R., Zhong, R., Xing, H., & Zhang, H. (2016). Transcriptome Profile Analysis of Breast Muscle Tissues from High or Low Levels of Atmospheric Ammonia Exposed Broilers (Gallus gallus). PLOS ONE, 11(9), e0162631. doi:10.1371/journal.pone.0162631 | es_ES |
dc.description.references | Zhang, Y., & Barber, E. M. (1995). An Evaluation of Heating and Ventilation Control Strategies for Livestock Buildings. Journal of Agricultural Engineering Research, 60(4), 217-225. doi:10.1006/jaer.1995.1016 | es_ES |
dc.subject.ods | 12.- Garantizar las pautas de consumo y de producción sostenibles | es_ES |
dc.subject.ods | 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación | es_ES |
dc.subject.ods | 07.- Asegurar el acceso a energías asequibles, fiables, sostenibles y modernas para todos | es_ES |
dc.subject.ods | 02.- Poner fin al hambre, conseguir la seguridad alimentaria y una mejor nutrición, y promover la agricultura sostenible | es_ES |
dc.subject.ods | 13.- Tomar medidas urgentes para combatir el cambio climático y sus efectos | es_ES |