- -

The reduction of gas concentrations in broiler houses through ventilation: Assessment of the thermal and electrical energy consumption

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The reduction of gas concentrations in broiler houses through ventilation: Assessment of the thermal and electrical energy consumption

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Costantino, Andrea es_ES
dc.contributor.author Fabrizio, Enrico es_ES
dc.contributor.author Villagrá, Arantxa es_ES
dc.contributor.author Estellés, F. es_ES
dc.contributor.author Calvet, S. es_ES
dc.date.accessioned 2021-04-17T03:33:24Z
dc.date.available 2021-04-17T03:33:24Z
dc.date.issued 2020-11 es_ES
dc.identifier.issn 1537-5110 es_ES
dc.identifier.uri http://hdl.handle.net/10251/165300
dc.description.abstract [EN] Ammonia and carbon dioxide are the most relevant among the harmful gases present in broiler houses and their effects on animal health depend on concentration and exposure time. Inside these houses, increasing ventilation is the most common strategy adopted to control the concentration of these gases. This strategy is effective but increases electrical energy consumption (for fan operation) and thermal energy consumption (for inlet air heating). In this work, the variations of energy consumption due to the increase of ventilation to maintain ammonia and carbon dioxide concentrations below established thresholds were evaluated. To carry out this analysis, various parameters (e.g. indoor air temperature and gas concentrations) of a broiler house located in the Mediterranean area were monitored during a production cycle in the cool (winter) season in which outdoor air temperature varied between 2 and 25 °C. The assessment of the increase in the energy consumption for climate control was carried out using the Specific Fan Performance and a customised building energy simulation model. The analysis showed that during the monitored period, the established thresholds of gas concentrations were exceeded approximately 60% of the time. To maintain the desired gas concentrations, the ventilation flow rate should be increased by 9%. This variation in the ventilation flow rate entailed a rise in the energy consumption by about 10% for electrical energy and by about 14% for thermal energy. Maintaining the gas concentration below the established thresholds entails an extra cost of around 0.02 € per harvested broiler. es_ES
dc.description.sponsorship This work was supported by the Spanish Ministry of Science and Innovation [Project RTA2017-00013]. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Biosystems Engineering es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Broiler production es_ES
dc.subject Climate control es_ES
dc.subject Animal breeding es_ES
dc.subject Energy assessment es_ES
dc.subject Ammonia emission es_ES
dc.subject Animal welfare es_ES
dc.subject.classification PRODUCCION ANIMAL es_ES
dc.title The reduction of gas concentrations in broiler houses through ventilation: Assessment of the thermal and electrical energy consumption es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.biosystemseng.2020.01.002 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//RTA2017-00013-00-00/ES/Valoración del manejo animal y el manejo ambiental como alternativas al uso de antibióticos en pollos y conejos de cebo. Efecto sobre las multirresistencias/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal es_ES
dc.description.bibliographicCitation Costantino, A.; Fabrizio, E.; Villagrá, A.; Estellés, F.; Calvet, S. (2020). The reduction of gas concentrations in broiler houses through ventilation: Assessment of the thermal and electrical energy consumption. Biosystems Engineering. 199:135-148. https://doi.org/10.1016/j.biosystemseng.2020.01.002 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.biosystemseng.2020.01.002 es_ES
dc.description.upvformatpinicio 135 es_ES
dc.description.upvformatpfin 148 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 199 es_ES
dc.relation.pasarela S\401492 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Anderson, D. P., Beard, C. W., & Hanson, R. P. (1964). The Adverse Effects of Ammonia on Chickens Including Resistance to Infection with Newcastle Disease Virus. Avian Diseases, 8(3), 369. doi:10.2307/1587967 es_ES
dc.description.references Beker, A., Vanhooser, S. L., Swartzlander, J. H., & Teeter, R. G. (2004). Atmospheric Ammonia Concentration Effects on Broiler Growth and Performance. Journal of Applied Poultry Research, 13(1), 5-9. doi:10.1093/japr/13.1.5 es_ES
dc.description.references Calvet, S., Cambra-López, M., Blanes-Vidal, V., Estellés, F., & Torres, A. G. (2010). Ventilation rates in mechanically-ventilated commercial poultry buildings in Southern Europe: Measurement system development and uncertainty analysis. Biosystems Engineering, 106(4), 423-432. doi:10.1016/j.biosystemseng.2010.05.006 es_ES
dc.description.references Calvet, S., Estellés, F., Cambra-López, M., Torres, A. G., & Van den Weghe, H. F. A. (2011). The influence of broiler activity, growth rate, and litter on carbon dioxide balances for the determination of ventilation flow rates in broiler production. Poultry Science, 90(11), 2449-2458. doi:10.3382/ps.2011-01580 es_ES
dc.description.references Costantino, A., Fabrizio, E., Biglia, A., Cornale, P., & Battaglini, L. (2016). Energy Use for Climate Control of Animal Houses: The State of the Art in Europe. Energy Procedia, 101, 184-191. doi:10.1016/j.egypro.2016.11.024 es_ES
dc.description.references Costantino, A., Fabrizio, E., Ghiggini, A., & Bariani, M. (2018). Climate control in broiler houses: A thermal model for the calculation of the energy use and indoor environmental conditions. Energy and Buildings, 169, 110-126. doi:10.1016/j.enbuild.2018.03.056 es_ES
dc.description.references Gerritzen, M. A., Lambooij, E., Hillebrand, S. J., Lankhaar, J. A., & Pieterse, C. (2000). Behavioral Responses of Broilers to Different Gaseous Atmospheres. Poultry Science, 79(6), 928-933. doi:10.1093/ps/79.6.928 es_ES
dc.description.references Gerritzen, M., Lambooij, B., Reimert, H., Stegeman, A., & Spruijt, B. (2007). A note on behaviour of poultry exposed to increasing carbon dioxide concentrations. Applied Animal Behaviour Science, 108(1-2), 179-185. doi:10.1016/j.applanim.2006.11.014 es_ES
dc.description.references Groot Koerkamp, P. W. G., Metz, J. H. M., Uenk, G. H., Phillips, V. R., Holden, M. R., Sneath, R. W., … Wathes, C. M. (1998). Concentrations and Emissions of Ammonia in Livestock Buildings in Northern Europe. Journal of Agricultural Engineering Research, 70(1), 79-95. doi:10.1006/jaer.1998.0275 es_ES
dc.description.references Gustin, P., Urbain, B., Prouvost, J. F., & Ansay, M. (1994). Effects of Atmospheric Ammonia on Pulmonary Hemodynamics and Vascular Permeability in Pigs: Interaction with Endotoxins. Toxicology and Applied Pharmacology, 125(1), 17-26. doi:10.1006/taap.1994.1044 es_ES
dc.description.references Jones, T. A., Donnelly, C. A., & Stamp Dawkins, M. (2005). Environmental and management factors affecting the welfare of chickens on commercial farms in the United Kingdom and Denmark stocked at five densities. Poultry Science, 84(8), 1155-1165. doi:10.1093/ps/84.8.1155 es_ES
dc.description.references Knížatová, M., Mihina, Š., Brouček, J., Karandušovská, I., Sauter, G. J., & Mačuhová, J. (2010). Effect of the age and season of fattening period on carbon dioxide emissions from broiler housing. Czech Journal of Animal Science, 55(No. 10), 436-444. doi:10.17221/1701-cjas es_ES
dc.description.references Kristensen, H. H., Burgess, L. R., Demmers, T. G. ., & Wathes, C. M. (2000). The preferences of laying hens for different concentrations of atmospheric ammonia. Applied Animal Behaviour Science, 68(4), 307-318. doi:10.1016/s0168-1591(00)00110-6 es_ES
dc.description.references Kristensen, H. H., & Wathes, C. M. (2000). Ammonia and poultry welfare: a review. World’s Poultry Science Journal, 56(3), 235-245. doi:10.1079/wps20000018 es_ES
dc.description.references Morsing, S., Strøm, J. S., Zhang, G., & Kai, P. (2008). Scale model experiments to determine the effects of internal airflow and floor design on gaseous emissions from animal houses. Biosystems Engineering, 99(1), 99-104. doi:10.1016/j.biosystemseng.2007.09.028 es_ES
dc.description.references Olanrewaju, H. A., III, W. A. D., Purswell, J. L., Branton, S. L., Miles, D. M., Lott, B. D., … Thaxton, J. P. (2008). Growth Performance and Physiological Variables for Broiler Chickens Subjected to Short-Term Elevated Carbon Dioxide Concentrations. International Journal of Poultry Science, 7(8), 738-742. doi:10.3923/ijps.2008.738.742 es_ES
dc.description.references W. Miller, W., R. Maslin, W., P. Thaxton, J., A. Olanrew, H., Dozier, II, W. A., Purswell, J., & L. Branton, S. (2007). Interactive Effects of Ammonia and Light Intensity on Ocular, Fear and Leg Health in Broiler Chickens. International Journal of Poultry Science, 6(10), 762-769. doi:10.3923/ijps.2007.762.769 es_ES
dc.description.references Quarles, C. L., & Kling, H. F. (1974). Evaluation of Ammonia and Infectious Bronchitis Vaccination Stress on Broiler Performance and Carcass Quality. Poultry Science, 53(4), 1592-1596. doi:10.3382/ps.0531592 es_ES
dc.description.references Reindl, D. T., Beckman, W. A., & Duffie, J. A. (1990). Diffuse fraction correlations. Solar Energy, 45(1), 1-7. doi:10.1016/0038-092x(90)90060-p es_ES
dc.description.references Ritz, C. W., Fairchild, B. D., & Lacy, M. P. (2004). Implications of Ammonia Production and Emissions from Commercial Poultry Facilities: A Review. Journal of Applied Poultry Research, 13(4), 684-692. doi:10.1093/japr/13.4.684 es_ES
dc.description.references Thornton, P. K. (2010). Livestock production: recent trends, future prospects. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1554), 2853-2867. doi:10.1098/rstb.2010.0134 es_ES
dc.description.references Valentine, H. (1964). A study of the effect of different ventilation rates on the ammonia concentrations in the atmosphere of broiler houses. British Poultry Science, 5(2), 149-159. doi:10.1080/00071666408415526 es_ES
dc.description.references Verspecht, A., Vanhonacker, F., Verbeke, W., Zoons, J., & Van Huylenbroeck, G. (2011). Economic impact of decreasing stocking densities in broiler production in Belgium. Poultry Science, 90(8), 1844-1851. doi:10.3382/ps.2010-01277 es_ES
dc.description.references C. M. Wathes, J. B. Jones, H. H. Kristensen, E. K. M. Jones, & A. J. F. Webster. (2002). AVERSION OF PIGS AND DOMESTIC FOWL TO ATMOSPHERIC AMMONIA. Transactions of the ASAE, 45(5). doi:10.13031/2013.11067 es_ES
dc.description.references WEAVER, W. D., & MEIJERHOF, R. (1991). The Effect of Different Levels of Relative Humidity and Air Movement on Litter Conditions, Ammonia Levels, Growth, and Carcass Quality for Broiler Chickens. Poultry Science, 70(4), 746-755. doi:10.3382/ps.0700746 es_ES
dc.description.references Yi, B., Chen, L., Sa, R., Zhong, R., Xing, H., & Zhang, H. (2016). Transcriptome Profile Analysis of Breast Muscle Tissues from High or Low Levels of Atmospheric Ammonia Exposed Broilers (Gallus gallus). PLOS ONE, 11(9), e0162631. doi:10.1371/journal.pone.0162631 es_ES
dc.description.references Zhang, Y., & Barber, E. M. (1995). An Evaluation of Heating and Ventilation Control Strategies for Livestock Buildings. Journal of Agricultural Engineering Research, 60(4), 217-225. doi:10.1006/jaer.1995.1016 es_ES
dc.subject.ods 12.- Garantizar las pautas de consumo y de producción sostenibles es_ES
dc.subject.ods 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación es_ES
dc.subject.ods 07.- Asegurar el acceso a energías asequibles, fiables, sostenibles y modernas para todos es_ES
dc.subject.ods 02.- Poner fin al hambre, conseguir la seguridad alimentaria y una mejor nutrición, y promover la agricultura sostenible es_ES
dc.subject.ods 13.- Tomar medidas urgentes para combatir el cambio climático y sus efectos es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem