- -

Porous Single-Crystal-Based Inorganic Semiconductor Photocatalysts for Energy Production and Environmental Remediation: Preparation, Modification, and Applications

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Porous Single-Crystal-Based Inorganic Semiconductor Photocatalysts for Energy Production and Environmental Remediation: Preparation, Modification, and Applications

Mostrar el registro completo del ítem

Niu, J.; Albero-Sancho, J.; Atienzar Corvillo, PE.; García Gómez, H. (2020). Porous Single-Crystal-Based Inorganic Semiconductor Photocatalysts for Energy Production and Environmental Remediation: Preparation, Modification, and Applications. Advanced Functional Materials. 30(15):1-51. https://doi.org/10.1002/adfm.201908984

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/165302

Ficheros en el ítem

Metadatos del ítem

Título: Porous Single-Crystal-Based Inorganic Semiconductor Photocatalysts for Energy Production and Environmental Remediation: Preparation, Modification, and Applications
Autor: Niu, Jinan Albero-Sancho, Josep Atienzar Corvillo, Pedro Enrique García Gómez, Hermenegildo
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Fecha difusión:
Resumen:
[EN] Semiconductor photocatalytic and photovoltaic performance depends on crystallinity and surface area to a large extent. One strategy that has recently emergyed to improve semiconductor photoresponse efficiency is their ...[+]
Palabras clave: Environmental remediation , Photocatalysis , Photovoltaics , Single crystals , Solar fuels
Derechos de uso: Reserva de todos los derechos
Fuente:
Advanced Functional Materials. (issn: 1616-301X )
DOI: 10.1002/adfm.201908984
Editorial:
John Wiley & Sons
Versión del editor: https://doi.org/10.1002/adfm.201908984
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/
info:eu-repo/grantAgreement/Fundamental Research Funds for the Central Universities//2019XKQYMS76/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F083/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-098237-B-C21/ES/HETEROUNIONES DE GRAFENO CON CONFIGURACION CONTROLADA. SINTESIS Y APLICACIONES COMO SOPORTE EN CATALISIS Y EN ELECTRODOS/
Descripción: This is the peer reviewed version of the following article: Niu, J., Albero, J., Atienzar, P., García, H., Porous Single-Crystal-Based Inorganic Semiconductor Photocatalysts for Energy Production and Environmental Remediation: Preparation, Modification, and Applications. Adv. Funct. Mater. 2020, 30, 1908984, which has been published in final form at https://doi.org/10.1002/adfm.201908984. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.
Agradecimientos:
Financial support by the Spanish Ministry of Economy and Competitiveness (Severo Ochoa SEV2016-0683 and RTI2018-89023-CO2-R1) and by the Generalitat Valenciana (Prometeo 2017-083) is gratefully acknowledged. J.N. also ...[+]
Tipo: Artículo

References

Lee, B., Yamashita, T., Lu, D., Kondo, J. N., & Domen, K. (2002). Single-Crystal Particles of Mesoporous Niobium−Tantalum Mixed Oxide. Chemistry of Materials, 14(2), 867-875. doi:10.1021/cm010775m

Crossland, E. J. W., Noel, N., Sivaram, V., Leijtens, T., Alexander-Webber, J. A., & Snaith, H. J. (2013). Mesoporous TiO2 single crystals delivering enhanced mobility and optoelectronic device performance. Nature, 495(7440), 215-219. doi:10.1038/nature11936

Liu, G., Yang, H. G., Pan, J., Yang, Y. Q., Lu, G. Q. (Max), & Cheng, H.-M. (2014). Titanium Dioxide Crystals with Tailored Facets. Chemical Reviews, 114(19), 9559-9612. doi:10.1021/cr400621z [+]
Lee, B., Yamashita, T., Lu, D., Kondo, J. N., & Domen, K. (2002). Single-Crystal Particles of Mesoporous Niobium−Tantalum Mixed Oxide. Chemistry of Materials, 14(2), 867-875. doi:10.1021/cm010775m

Crossland, E. J. W., Noel, N., Sivaram, V., Leijtens, T., Alexander-Webber, J. A., & Snaith, H. J. (2013). Mesoporous TiO2 single crystals delivering enhanced mobility and optoelectronic device performance. Nature, 495(7440), 215-219. doi:10.1038/nature11936

Liu, G., Yang, H. G., Pan, J., Yang, Y. Q., Lu, G. Q. (Max), & Cheng, H.-M. (2014). Titanium Dioxide Crystals with Tailored Facets. Chemical Reviews, 114(19), 9559-9612. doi:10.1021/cr400621z

Zheng, X., Lv, Y., Kuang, Q., Zhu, Z., Long, X., & Yang, S. (2014). Close-Packed Colloidal SiO2 as a Nanoreactor: Generalized Synthesis of Metal Oxide Mesoporous Single Crystals and Mesocrystals. Chemistry of Materials, 26(19), 5700-5709. doi:10.1021/cm5025475

Jiao, W., Xie, Y., Chen, R., Zhen, C., Liu, G., Ma, X., & Cheng, H.-M. (2013). Synthesis of mesoporous single crystal rutile TiO2 with improved photocatalytic and photoelectrochemical activities. Chemical Communications, 49(100), 11770. doi:10.1039/c3cc46527f

Fang, W. Q., Huo, Z., Liu, P., Wang, X. L., Zhang, M., Jia, Y., … Yao, X. (2014). Fluorine-Doped Porous Single-Crystal Rutile TiO2Nanorods for Enhancing Photoelectrochemical Water Splitting. Chemistry - A European Journal, 20(36), 11439-11444. doi:10.1002/chem.201402914

Bian, Z., Zhu, J., Wen, J., Cao, F., Huo, Y., Qian, X., … Lu, Y. (2010). Single-Crystal-like Titania Mesocages. Angewandte Chemie International Edition, 50(5), 1105-1108. doi:10.1002/anie.201004972

Cho, S., Kim, S., Jung, D.-W., & Lee, K.-H. (2011). Formation of quasi-single crystalline porous ZnO nanostructures with a single large cavity. Nanoscale, 3(9), 3841. doi:10.1039/c1nr10609k

Xu, G., Deng, S., Zhang, Y., Wei, X., Yang, X., Liu, Y., … Han, G. (2014). Mesoporous-structure-tailored hydrothermal synthesis and mechanism of the SrTiO3 mesoporous spheres by controlling the silicate semipermeable membranes with the KOH concentrations. CrystEngComm, 16(10), 2025. doi:10.1039/c3ce41809j

Wei, L., Yang, Z., Ren, H., & Chen, X. (2010). Phase Transitional Behavior and Electrical Properties of Sr2K0.1Na0.9Nb5−xTaxO15 Ceramics. Journal of the American Ceramic Society, 93(12), 3986-3989. doi:10.1111/j.1551-2916.2010.04177.x

Hong, Z., Zhou, K., Huang, Z., & Wei, M. (2015). Iso-Oriented Anatase TiO2 Mesocages as a High Performance Anode Material for Sodium-Ion Storage. Scientific Reports, 5(1). doi:10.1038/srep11960

Song, R.-Q., & Cölfen, H. (2009). Mesocrystals-Ordered Nanoparticle Superstructures. Advanced Materials, 22(12), 1301-1330. doi:10.1002/adma.200901365

Weckhuysen, B. M., & Yu, J. (2015). Recent advances in zeolite chemistry and catalysis. Chemical Society Reviews, 44(20), 7022-7024. doi:10.1039/c5cs90100f

Rangnekar, N., Mittal, N., Elyassi, B., Caro, J., & Tsapatsis, M. (2015). Zeolite membranes – a review and comparison with MOFs. Chemical Society Reviews, 44(20), 7128-7154. doi:10.1039/c5cs00292c

Wang, C. W., Yang, S., Fang, W. Q., Liu, P., Zhao, H., & Yang, H. G. (2015). Engineered Hematite Mesoporous Single Crystals Drive Drastic Enhancement in Solar Water Splitting. Nano Letters, 16(1), 427-433. doi:10.1021/acs.nanolett.5b04059

Wu, Q., Bao, S., Tian, B., Xiao, Y., & Zhang, J. (2016). Double-diffusion-based synthesis of BiVO4 mesoporous single crystals with enhanced photocatalytic activity for oxygen evolution. Chemical Communications, 52(47), 7478-7481. doi:10.1039/c6cc02737g

Niu, J., Shen, S., Zhou, L., Liu, Z., Feng, P., Ou, X., & Qiang, Y. (2016). Synthesis and hydrogenation of anatase TiO2 microspheres composed of porous single crystals for significantly improved photocatalytic activity. RSC Advances, 6(67), 62907-62910. doi:10.1039/c6ra12053a

Lu, D., Ouyang, S., Xu, H., Li, D., Zhang, X., Li, Y., & Ye, J. (2016). Designing Au Surface-Modified Nanoporous-Single-Crystalline SrTiO3 to Optimize Diffusion of Surface Plasmon Resonance-Induce Photoelectron toward Enhanced Visible-Light Photoactivity. ACS Applied Materials & Interfaces, 8(14), 9506-9513. doi:10.1021/acsami.6b00889

Jiang, S., Zhang, J., Qi, X., He, M., & Li, J. (2013). Large-area synthesis of diameter-controllable porous single crystal gallium nitride micro/nanotube arrays. CrystEngComm, 15(46), 9837. doi:10.1039/c3ce41803k

Liu, H., Chen, X., Yan, S., Li, Z., & Zou, Z. (2014). Basic Molten Salt Route to Prepare Porous SrTiO3Nanocrystals for Efficient Photocatalytic Hydrogen Production. European Journal of Inorganic Chemistry, 2014(23), 3731-3735. doi:10.1002/ejic.201402280

Li, C., Chen, G., Sun, J., Rao, J., Han, Z., Hu, Y., & Zhou, Y. (2015). A Novel Mesoporous Single-Crystal-Like Bi2WO6 with Enhanced Photocatalytic Activity for Pollutants Degradation and Oxygen Production. ACS Applied Materials & Interfaces, 7(46), 25716-25724. doi:10.1021/acsami.5b06995

Choi, J., Song, S., Hörantner, M. T., Snaith, H. J., & Park, T. (2016). Well-Defined Nanostructured, Single-Crystalline TiO2 Electron Transport Layer for Efficient Planar Perovskite Solar Cells. ACS Nano, 10(6), 6029-6036. doi:10.1021/acsnano.6b01575

Yu, Y., Zhang, J., Wu, X., Zhao, W., & Zhang, B. (2011). Nanoporous Single-Crystal-Like CdxZn1−xS Nanosheets Fabricated by the Cation-Exchange Reaction of Inorganic-Organic Hybrid ZnS-Amine with Cadmium Ions. Angewandte Chemie International Edition, 51(4), 897-900. doi:10.1002/anie.201105786

Zhao, W., Liu, C., Cao, L., Yin, X., Xu, H., & Zhang, B. (2013). Porous single-crystalline CdS nanosheets as efficient visible light catalysts for aerobic oxidative coupling of amines to imines. RSC Advances, 3(45), 22944. doi:10.1039/c3ra43929a

Liu, J., Hu, Z.-Y., Peng, Y., Huang, H.-W., Li, Y., Wu, M., … Su, B.-L. (2016). 2D ZnO mesoporous single-crystal nanosheets with exposed {0001} polar facets for the depollution of cationic dye molecules by highly selective adsorption and photocatalytic decomposition. Applied Catalysis B: Environmental, 181, 138-145. doi:10.1016/j.apcatb.2015.07.054

Niu, J., Shen, S., He, S., Liu, Z., Feng, P., Zhang, S., … Zhu, Z. (2015). Synthesis and photoactivity of anatase porous single crystals with different pore sizes. Ceramics International, 41(9), 11936-11944. doi:10.1016/j.ceramint.2015.06.005

Sivaram, V., Crossland, E. J. W., Leijtens, T., Noel, N. K., Alexander-Webber, J., Docampo, P., & Snaith, H. J. (2014). Observation of Annealing-Induced Doping in TiO2 Mesoporous Single Crystals for Use in Solid State Dye Sensitized Solar Cells. The Journal of Physical Chemistry C, 118(4), 1821-1827. doi:10.1021/jp410495k

Kondo, J. N., Takahara, Y., Lee, B., Lu, D., & Domen, K. (2002). Topics in Catalysis, 19(2), 171-177. doi:10.1023/a:1015255906229

Jiang, H., Meng, X., Dai, H., Deng, J., Liu, Y., Zhang, L., … Zhang, R. (2012). High-performance porous spherical or octapod-like single-crystalline BiVO4 photocatalysts for the removal of phenol and methylene blue under visible-light illumination. Journal of Hazardous Materials, 217-218, 92-99. doi:10.1016/j.jhazmat.2012.02.073

Liu, Y., Luo, Y., Elzatahry, A. A., Luo, W., Che, R., Fan, J., … Zhao, D. (2015). Mesoporous TiO2 Mesocrystals: Remarkable Defects-Induced Crystallite-Interface Reactivity and Their in Situ Conversion to Single Crystals. ACS Central Science, 1(7), 400-408. doi:10.1021/acscentsci.5b00256

Xiong, Y., Liu, Y., Lan, K., Mei, A., Sheng, Y., Zhao, D., & Han, H. (2018). Fully printable hole-conductor-free mesoscopic perovskite solar cells based on mesoporous anatase single crystals. New Journal of Chemistry, 42(4), 2669-2674. doi:10.1039/c7nj04448h

Girija, K., Thirumalairajan, S., Patra, A. K., Mangalaraj, D., Ponpandian, N., & Viswanathan, C. (2013). Organic additives assisted synthesis of mesoporous β-Ga2O3 nanostructures for photocatalytic dye degradation. Semiconductor Science and Technology, 28(3), 035015. doi:10.1088/0268-1242/28/3/035015

Liu, H., Luo, M., Hu, J., Zhou, T., Chen, R., & Li, J. (2013). β-Bi2O3 and Er3+ doped β-Bi2O3 single crystalline nanosheets with exposed reactive {001} facets and enhanced photocatalytic performance. Applied Catalysis B: Environmental, 140-141, 141-150. doi:10.1016/j.apcatb.2013.04.009

Qiu, Y., Xu, G.-L., Kuang, Q., Sun, S.-G., & Yang, S. (2012). Hierarchical WO3 flowers comprising porous single-crystalline nanoplates show enhanced lithium storage and photocatalysis. Nano Research, 5(11), 826-832. doi:10.1007/s12274-012-0266-6

Cha, H. G., Kim, S. J., Lee, K. J., Jung, M. H., & Kang, Y. S. (2011). Single-Crystalline Porous Hematite Nanorods: Photocatalytic and Magnetic Properties. The Journal of Physical Chemistry C, 115(39), 19129-19135. doi:10.1021/jp206958g

Bharathi, S., Nataraj, D., Mangalaraj, D., Masuda, Y., Senthil, K., & Yong, K. (2009). Highly mesoporous α-Fe2O3nanostructures: preparation, characterization and improved photocatalytic performance towards Rhodamine B (RhB). Journal of Physics D: Applied Physics, 43(1), 015501. doi:10.1088/0022-3727/43/1/015501

Liao, A., He, H., Tang, L., Li, Y., Zhang, J., Chen, J., … Zou, Z. (2018). Quasi-Topotactic Transformation of FeOOH Nanorods to Robust Fe2O3 Porous Nanopillars Triggered with a Facile Rapid Dehydration Strategy for Efficient Photoelectrochemical Water Splitting. ACS Applied Materials & Interfaces, 10(12), 10141-10146. doi:10.1021/acsami.8b00367

Li, L., Yu, Y., Meng, F., Tan, Y., Hamers, R. J., & Jin, S. (2012). Facile Solution Synthesis of α-FeF3·3H2O Nanowires and Their Conversion to α-Fe2O3 Nanowires for Photoelectrochemical Application. Nano Letters, 12(2), 724-731. doi:10.1021/nl2036854

Xu, T., Zheng, H., Zhang, P., Lin, W., & Sekiguchi, Y. (2015). Hydrothermal preparation of nanoporous TiO2 films with exposed {001} facets and superior photocatalytic activity. Journal of Materials Chemistry A, 3(37), 19115-19122. doi:10.1039/c5ta02640g

Xu, T., Zheng, H., Zhang, P., & Lin, W. (2016). Photocatalytic degradation of a low concentration pharmaceutical pollutant by nanoporous TiO2film with exposed {001} facets. RSC Advances, 6(98), 95818-95824. doi:10.1039/c6ra22011h

Liu, Y., Shen, S., Ren, F., Chen, J., Fu, Y., Zheng, X., … Jiang, C. (2016). Fabrication of porous TiO2nanorod array photoelectrodes with enhanced photoelectrochemical water splitting by helium ion implantation. Nanoscale, 8(20), 10642-10648. doi:10.1039/c5nr05594f

Stein, A., Li, F., & Denny, N. R. (2007). Morphological Control in Colloidal Crystal Templating of Inverse Opals, Hierarchical Structures, and Shaped Particles. Chemistry of Materials, 20(3), 649-666. doi:10.1021/cm702107n

Yamamoto, E., & Kuroda, K. (2016). Colloidal Mesoporous Silica Nanoparticles. Bulletin of the Chemical Society of Japan, 89(5), 501-539. doi:10.1246/bcsj.20150420

Li, J., Chang, H., Ma, L., Hao, J., & Yang, R. T. (2011). Low-temperature selective catalytic reduction of NOx with NH3 over metal oxide and zeolite catalysts—A review. Catalysis Today, 175(1), 147-156. doi:10.1016/j.cattod.2011.03.034

Ilić, B., & Wettstein, S. G. (2017). A review of adsorbate and temperature-induced zeolite framework flexibility. Microporous and Mesoporous Materials, 239, 221-234. doi:10.1016/j.micromeso.2016.10.005

Zheng, X., Kuang, Q., Yan, K., Qiu, Y., Qiu, J., & Yang, S. (2013). Mesoporous TiO2 Single Crystals: Facile Shape-, Size-, and Phase-Controlled Growth and Efficient Photocatalytic Performance. ACS Applied Materials & Interfaces, 5(21), 11249-11257. doi:10.1021/am403482g

Zhou, Y., Yi, Q., Xing, M., Shang, L., Zhang, T., & Zhang, J. (2016). Graphene modified mesoporous titania single crystals with controlled and selective photoredox surfaces. Chemical Communications, 52(8), 1689-1692. doi:10.1039/c5cc07567j

Dong, C., Song, H., Zhou, Y., Dong, C., Shen, B., Yang, H., … Zhang, J. (2016). Sulfur nanoparticles in situ growth on TiO2 mesoporous single crystals with enhanced solar light photocatalytic performance. RSC Advances, 6(81), 77863-77869. doi:10.1039/c6ra17884g

Xing, M., Zhou, Y., Dong, C., Cai, L., Zeng, L., Shen, B., … Yin, Y. (2018). Modulation of the Reduction Potential of TiO2–x by Fluorination for Efficient and Selective CH4 Generation from CO2 Photoreduction. Nano Letters, 18(6), 3384-3390. doi:10.1021/acs.nanolett.8b00197

Zhu, Z., Zheng, X., Bai, Y., Zhang, T., Wang, Z., Xiao, S., & Yang, S. (2015). Mesoporous SnO2 single crystals as an effective electron collector for perovskite solar cells. Physical Chemistry Chemical Physics, 17(28), 18265-18268. doi:10.1039/c5cp01534k

Wang, Y., Deng, Y., Fan, L., Zhao, Y., Shen, B., Wu, D., … Zhang, J. (2017). In situ strategy to prepare PDPB/SnO2 p–n heterojunction with a high photocatalytic activity. RSC Advances, 7(39), 24064-24069. doi:10.1039/c7ra02608k

Liu, G., Yu, J. C., Lu, G. Q. (Max), & Cheng, H.-M. (2011). Crystal facet engineering of semiconductor photocatalysts: motivations, advances and unique properties. Chemical Communications, 47(24), 6763. doi:10.1039/c1cc10665a

Chen, X., & Mao, S. S. (2007). Titanium Dioxide Nanomaterials:  Synthesis, Properties, Modifications, and Applications. Chemical Reviews, 107(7), 2891-2959. doi:10.1021/cr0500535

Ong, W.-J., Tan, L.-L., Chai, S.-P., Yong, S.-T., & Mohamed, A. R. (2014). Highly reactive {001} facets of TiO2-based composites: synthesis, formation mechanism and characterization. Nanoscale, 6(4), 1946. doi:10.1039/c3nr04655a

Yang, H. G., Sun, C. H., Qiao, S. Z., Zou, J., Liu, G., Smith, S. C., … Lu, G. Q. (2008). Anatase TiO2 single crystals with a large percentage of reactive facets. Nature, 453(7195), 638-641. doi:10.1038/nature06964

Wu, T., Kang, X., Kadi, M. W., Ismail, I., Liu, G., & Cheng, H.-M. (2015). Enhanced photocatalytic hydrogen generation of mesoporous rutile TiO2 single crystal with wholly exposed {111} facets. Chinese Journal of Catalysis, 36(12), 2103-2108. doi:10.1016/s1872-2067(15)60996-2

Yu, H., Wang, L., & Dargusch, M. (2016). Low-temperature templated synthesis of porous TiO2 single-crystals for solar cell applications. Solar Energy, 123, 17-22. doi:10.1016/j.solener.2015.10.044

Zhen, C., Wu, T., Kadi, M. W., Ismail, I., Liu, G., & Cheng, H.-M. (2015). Design and construction of a film of mesoporous single-crystal rutile TiO2 rod arrays for photoelectrochemical water oxidation. Chinese Journal of Catalysis, 36(12), 2171-2177. doi:10.1016/s1872-2067(15)60981-0

Wang, J., Bian, Z., Zhu, J., & Li, H. (2013). Ordered mesoporous TiO2with exposed (001) facets and enhanced activity in photocatalytic selective oxidation of alcohols. J. Mater. Chem. A, 1(4), 1296-1302. doi:10.1039/c2ta00035k

Yue, W., Randorn, C., Attidekou, P. S., Su, Z., Irvine, J. T. S., & Zhou, W. (2009). Syntheses, Li Insertion, and Photoactivity of Mesoporous Crystalline TiO2. Advanced Functional Materials, 19(17), 2826-2833. doi:10.1002/adfm.200900658

Malgras, V., Ji, Q., Kamachi, Y., Mori, T., Shieh, F.-K., Wu, K. C.-W., … Yamauchi, Y. (2015). Templated Synthesis for Nanoarchitectured Porous Materials. Bulletin of the Chemical Society of Japan, 88(9), 1171-1200. doi:10.1246/bcsj.20150143

Liu, Y., Lan, K., Li, S., Liu, Y., Kong, B., Wang, G., … Zhao, D. (2016). Constructing Three-Dimensional Mesoporous Bouquet-Posy-like TiO2 Superstructures with Radially Oriented Mesochannels and Single-Crystal Walls. Journal of the American Chemical Society, 139(1), 517-526. doi:10.1021/jacs.6b11641

Lin, J., Zhao, L., Heo, Y.-U., Wang, L., Bijarbooneh, F. H., Mozer, A. J., … Kim, J. H. (2015). Mesoporous anatase single crystals for efficient Co(2+/3+)-based dye-sensitized solar cells. Nano Energy, 11, 557-567. doi:10.1016/j.nanoen.2014.11.017

Shi, W., Zhang, X., Brillet, J., Huang, D., Li, M., Wang, M., & Shen, Y. (2016). Significant enhancement of the photoelectrochemical activity of WO3 nanoflakes by carbon quantum dots decoration. Carbon, 105, 387-393. doi:10.1016/j.carbon.2016.04.051

Wang, Q., Yuan, L., Dun, M., Yang, X., Chen, H., Li, J., & Hu, J. (2016). Synthesis and characterization of visible light responsive Bi3NbO7 porous nanosheets photocatalyst. Applied Catalysis B: Environmental, 196, 127-134. doi:10.1016/j.apcatb.2016.05.026

Tan, B., Zhang, X., Li, Y., Chen, H., Ye, X., Wang, Y., & Ye, J. (2017). Anatase TiO 2 Mesocrystals: Green Synthesis, In Situ Conversion to Porous Single Crystals, and Self‐Doping Ti 3+ for Enhanced Visible Light Driven Photocatalytic Removal of NO. Chemistry – A European Journal, 23(23), 5478-5487. doi:10.1002/chem.201605294

Chetia, T. R., Ansari, M. S., & Qureshi, M. (2015). Ethyl Cellulose and Cetrimonium Bromide Assisted Synthesis of Mesoporous, Hexagon Shaped ZnO Nanodisks with Exposed ±{0001} Polar Facets for Enhanced Photovoltaic Performance in Quantum Dot Sensitized Solar Cells. ACS Applied Materials & Interfaces, 7(24), 13266-13279. doi:10.1021/acsami.5b01039

Zhao, Y., Zhang, Y., Liu, H., Ji, H., Ma, W., Chen, C., … Zhao, J. (2013). Control of Exposed Facet and Morphology of Anatase Crystals through TiOxFy Precursor Synthesis and Impact of the Facet on Crystal Phase Transition. Chemistry of Materials, 26(2), 1014-1018. doi:10.1021/cm403054w

Jin, Z., Zhang, Y.-X., Meng, F.-L., Jia, Y., Luo, T., Yu, X.-Y., … Huang, X.-J. (2014). Facile synthesis of porous single crystalline ZnO nanoplates and their application in photocatalytic reduction of Cr(VI) in the presence of phenol. Journal of Hazardous Materials, 276, 400-407. doi:10.1016/j.jhazmat.2014.05.059

Li, Z., Zhou, Y., Xue, G., Yu, T., Liu, J., & Zou, Z. (2012). Fabrication of hierarchically assembled microspheres consisting of nanoporous ZnO nanosheets for high-efficiency dye-sensitized solar cells. Journal of Materials Chemistry, 22(29), 14341. doi:10.1039/c2jm32823b

Qiu, Y., Chen, W., & Yang, S. (2010). Facile hydrothermal preparation of hierarchically assembled, porous single-crystalline ZnO nanoplates and their application in dye-sensitized solar cells. J. Mater. Chem., 20(5), 1001-1006. doi:10.1039/b917305f

Hosono, E., Tokunaga, T., Ueno, S., Oaki, Y., Imai, H., Zhou, H., & Fujihara, S. (2012). Crystal-Growth Process of Single-Crystal-like Mesoporous ZnO through a Competitive Reaction in Solution. Crystal Growth & Design, 12(6), 2923-2931. doi:10.1021/cg300116h

Dong, J.-Y., Lin, C.-H., Hsu, Y.-J., Lu, S.-Y., & Wong, D. S.-H. (2012). Single-crystalline mesoporous ZnO nanosheets prepared with a green antisolvent method exhibiting excellent photocatalytic efficiencies. CrystEngComm, 14(14), 4732. doi:10.1039/c2ce06739k

Luo, Q.-P., Wang, B., & Cao, Y. (2017). Single-crystalline porous ZnO nanosheet frameworks for efficient fully flexible dye-sensitized solar cells. Journal of Alloys and Compounds, 695, 3324-3330. doi:10.1016/j.jallcom.2016.10.130

Xu, Y., Wen, W., & Wu, J.-M. (2018). Titania nanowires functionalized polyester fabrics with enhanced photocatalytic and antibacterial performances. Journal of Hazardous Materials, 343, 285-297. doi:10.1016/j.jhazmat.2017.09.044

Dong, Q., Yin, S., Guo, C., Wu, X., Kumada, N., Takei, T., … Sato, T. (2014). Single-crystalline porous NiO nanosheets prepared from β-Ni(OH)2 nanosheets: Magnetic property and photocatalytic activity. Applied Catalysis B: Environmental, 147, 741-747. doi:10.1016/j.apcatb.2013.10.007

Ghosh, S., Roy, M., & Naskar, M. K. (2014). Template-free synthesis of mesoporous single-crystal CuO particles with dumbbell-shaped morphology. Materials Letters, 132, 98-101. doi:10.1016/j.matlet.2014.06.045

Tu, H., Xu, L., Mou, F., & Guan, J. (2016). Highly active Ta2O5 microcubic single crystals: facet energy calculation, facile fabrication and enhanced photocatalytic activity of hydrogen production. Journal of Materials Chemistry A, 4(42), 16562-16568. doi:10.1039/c6ta06648h

Wang, W., Dahl, M., & Yin, Y. (2012). Hollow Nanocrystals through the Nanoscale Kirkendall Effect. Chemistry of Materials, 25(8), 1179-1189. doi:10.1021/cm3030928

Yin, Y., Rioux, R. M., Erdonmez, C. K., Hughes, S., Somorjai, G. A., & Alivisatos, A. P. (2004). Formation of Hollow Nanocrystals Through the Nanoscale Kirkendall Effect. Science, 304(5671), 711-714. doi:10.1126/science.1096566

Zhao, J., Zou, Y., Zou, X., Bai, T., Liu, Y., Gao, R., … Li, G.-D. (2014). Self-template construction of hollow Co3O4 microspheres from porous ultrathin nanosheets and efficient noble metal-free water oxidation catalysts. Nanoscale, 6(13), 7255. doi:10.1039/c4nr00002a

Tu, H., Xu, L., Mou, F., & Guan, J. (2015). Single crystalline tantalum oxychloride microcubes: controllable synthesis, formation mechanism and enhanced photocatalytic hydrogen production activity. Chemical Communications, 51(62), 12455-12458. doi:10.1039/c5cc03455h

Xu, L., Bu, F.-X., Hu, M., Jin, C.-Y., Jiang, D.-M., Zhao, Z.-J., … Jiang, J.-S. (2014). Monocrystalline mesoporous metal oxide with perovskite structure: a facile solid-state transformation of a coordination polymer. Chem. Commun., 50(89), 13849-13852. doi:10.1039/c4cc06101b

Thrall, M., Freer, R., Martin, C., Azough, F., Patterson, B., & Cernik, R. J. (2008). An in situ study of the formation of multiferroic bismuth ferrite using high resolution synchrotron X-ray powder diffraction. Journal of the European Ceramic Society, 28(13), 2567-2572. doi:10.1016/j.jeurceramsoc.2008.03.029

Kuang, Q., & Yang, S. (2013). Template Synthesis of Single-Crystal-Like Porous SrTiO3 Nanocube Assemblies and Their Enhanced Photocatalytic Hydrogen Evolution. ACS Applied Materials & Interfaces, 5(9), 3683-3690. doi:10.1021/am400254n

Cheng, C., Shi, Y., Zhu, C., Li, W., Wang, L., Fung, K. K., & Wang, N. (2011). ZnO hierarchical structures for efficient quasi-solid dye-sensitized solar cells. Physical Chemistry Chemical Physics, 13(22), 10631. doi:10.1039/c1cp21068h

Li, K., Liu, J., Sheng, X., Chen, L., Xu, T., Zhu, K., & Feng, X. (2017). 100-Fold Enhancement of Charge Transport in Uniaxially Oriented Mesoporous Anatase TiO2 Films. Chemistry - A European Journal, 24(1), 89-92. doi:10.1002/chem.201704944

Yu, H., Yan, S., Zhou, P., & Zou, Z. (2018). CO2 photoreduction on hydroxyl-group-rich mesoporous single crystal TiO2. Applied Surface Science, 427, 603-607. doi:10.1016/j.apsusc.2017.08.073

Xu, M., Ruan, P., Xie, H., Yu, A., & Zhou, X. (2014). Mesoporous TiO2 Single-Crystal Polyhedron-Constructed Core–Shell Microspheres: Anisotropic Etching and Photovoltaic Property. ACS Sustainable Chemistry & Engineering, 2(4), 621-628. doi:10.1021/sc4005586

Dong, Y., Fei, X., & Zhou, Y. (2017). Synthesis and photocatalytic activity of mesoporous – (001) facets TiO2 single crystals. Applied Surface Science, 403, 662-669. doi:10.1016/j.apsusc.2017.01.210

Xu, H., Wang, W., & Zhu, W. (2006). A facile strategy to porous materials: Coordination-assisted heterogeneous dissolution route to the spherical Cu2O single crystallites with hierarchical pores. Microporous and Mesoporous Materials, 95(1-3), 321-328. doi:10.1016/j.micromeso.2006.06.007

Wang, Z., Wang, Z., Wu, H., & Lou, X. W. (2013). Mesoporous Single-crystal CoSn(OH)6 Hollow Structures with Multilevel Interiors. Scientific Reports, 3(1). doi:10.1038/srep01391

Son, D. H., Hughes, S. M., Yin, Y., & Paul Alivisatos, A. (2004). Cation Exchange Reactions in Ionic Nanocrystals. Science, 306(5698), 1009-1012. doi:10.1126/science.1103755

Bothe, C., Kornowski, A., Tornatzky, H., Schmidtke, C., Lange, H., Maultzsch, J., & Weller, H. (2015). Solid-State Chemistry on the Nanoscale: Ion Transport through Interstitial Sites or Vacancies? Angewandte Chemie International Edition, 54(47), 14183-14186. doi:10.1002/anie.201507263

Zhang, B., Jung, Y., Chung, H.-S., Vugt, L. V., & Agarwal, R. (2009). Nanowire Transformation by Size-Dependent Cation Exchange Reactions. Nano Letters, 10(1), 149-155. doi:10.1021/nl903059c

Lee, J. Y., Kim, D. S., & Park, J. (2007). Chemical Conversion Reaction between CdS Nanobelts and ZnS Nanobelts by Vapor Transport. Chemistry of Materials, 19(19), 4663-4669. doi:10.1021/cm070814f

Guo, Z., Su, Y., Li, Y.-X., Li, G., & Huang, X.-J. (2018). Porous Single-Crystalline CdSe Nanobelts: Cation-Exchange Synthesis and Highly Selective Photoelectric Sensing toward Cu2+. Chemistry - A European Journal, 24(39), 9877-9883. doi:10.1002/chem.201801215

Butburee, T., Bai, Y., Wang, H., Chen, H., Wang, Z., Liu, G., … Wang, L. (2018). 2D Porous TiO 2 Single‐Crystalline Nanostructure Demonstrating High Photo‐Electrochemical Water Splitting Performance. Advanced Materials, 30(21), 1705666. doi:10.1002/adma.201705666

Zhang, F., Yamakata, A., Maeda, K., Moriya, Y., Takata, T., Kubota, J., … Domen, K. (2012). Cobalt-Modified Porous Single-Crystalline LaTiO2N for Highly Efficient Water Oxidation under Visible Light. Journal of the American Chemical Society, 134(20), 8348-8351. doi:10.1021/ja301726c

Wagata, H., Zettsu, N., Yamaguchi, A., Nishikiori, H., Yubuta, K., Oishi, S., & Teshima, K. (2014). Chloride Flux Growth of La2Ti2O7 Crystals and Subsequent Nitridation To Form LaTiO2N Crystals. Crystal Growth & Design, 15(1), 124-128. doi:10.1021/cg5010006

Pokrant, S., Dilger, S., & Landsmann, S. (2016). Morphology and mesopores in photoelectrochemically active LaTiO2N single crystals. Journal of Materials Research, 31(11), 1574-1579. doi:10.1557/jmr.2016.9

Chen, L., Dai, H., Zhou, Y., Hu, Y., Yu, T., Liu, J., & Zou, Z. (2014). Porous, single crystalline titanium nitride nanoplates grown on carbon fibers: excellent counter electrodes for low-cost, high performance, fiber-shaped dye-sensitized solar cells. Chem. Commun., 50(92), 14321-14324. doi:10.1039/c4cc03882g

Han, Q., Zhou, Y., Tang, L., Li, P., Tu, W., Li, L., … Zou, Z. (2016). Synthesis of single-crystalline, porous TaON microspheres toward visible-light photocatalytic conversion of CO2 into liquid hydrocarbon fuels. RSC Advances, 6(93), 90792-90796. doi:10.1039/c6ra19368d

Nasi, L., Calestani, D., Fabbri, F., Ferro, P., Besagni, T., Fedeli, P., … Mosca, R. (2013). Mesoporous single-crystal ZnO nanobelts: supported preparation and patterning. Nanoscale, 5(3), 1060-1066. doi:10.1039/c2nr33123c

De Marco, L., Calestani, D., Qualtieri, A., Giannuzzi, R., Manca, M., Ferro, P., … Mosca, R. (2017). Single crystal mesoporous ZnO platelets as efficient photoanodes for sensitized solar cells. Solar Energy Materials and Solar Cells, 168, 227-233. doi:10.1016/j.solmat.2017.04.001

Jin, X.-B., Li, Y.-X., Su, Y., Guo, Z., Gu, C.-P., Huang, J.-R., … Liu, J.-H. (2016). Porous and single-crystalline ZnO nanobelts: fabrication with annealing precursor nanobelts, and gas-sensing and optoelectronic performance. Nanotechnology, 27(35), 355702. doi:10.1088/0957-4484/27/35/355702

Sun, J., Tian, S., Cai, X., Xiong, D., Verma, S. K., Zhang, Q., … Zhao, X. (2016). Low-temperature solution synthesis of a ZnO nanorod array with a mesoporous surface mediated by cadmium ions. CrystEngComm, 18(42), 8277-8283. doi:10.1039/c6ce01989g

Elliman, R. G., & Williams, J. S. (2015). Advances in ion beam modification of semiconductors. Current Opinion in Solid State and Materials Science, 19(1), 49-67. doi:10.1016/j.cossms.2014.11.007

Asahi, R., Morikawa, T., Irie, H., & Ohwaki, T. (2014). Nitrogen-Doped Titanium Dioxide as Visible-Light-Sensitive Photocatalyst: Designs, Developments, and Prospects. Chemical Reviews, 114(19), 9824-9852. doi:10.1021/cr5000738

Md Saad, S. K., Umar, A. A., Nguyen, H. Q., Dee, C. F., Salleh, M. M., & Oyama, M. (2014). Porous (001)-faceted Zn-doped anatase TiO2 nanowalls and their heterogeneous photocatalytic characterization. RSC Adv., 4(100), 57054-57063. doi:10.1039/c4ra08991j

Kitahara, M., Shimasaki, Y., Matsuno, T., Kuroda, Y., Shimojima, A., Wada, H., & Kuroda, K. (2015). The Critical Effect of Niobium Doping on the Formation of Mesostructured TiO2: Single-Crystalline Ordered Mesoporous Nb-TiO2and Plate-like Nb-TiO2with Ordered Mesoscale Dimples. Chemistry - A European Journal, 21(37), 13073-13079. doi:10.1002/chem.201501509

Shen, S., Niu, J., Shen, S., Zhou, L., Chen, H., Zhang, S., … Qiang, Y. (2017). A method for adjusting nitrogen doping amount in anatase TiO 2 single crystals with well-faceted shape and micron size. Journal of Physics and Chemistry of Solids, 107, 75-82. doi:10.1016/j.jpcs.2017.01.031

Yang, S., Xu, Y., Cao, Y., Zhang, G., Sun, Y., & Gao, D. (2013). Zn(ii)-doped γ-Fe2O3 single-crystalline nanoplates with high phase-transition temperature, superparamagnetic property and good photocatalytic property. RSC Advances, 3(44), 21994. doi:10.1039/c3ra43695k

Bai, S., Jiang, J., Zhang, Q., & Xiong, Y. (2015). Steering charge kinetics in photocatalysis: intersection of materials syntheses, characterization techniques and theoretical simulations. Chemical Society Reviews, 44(10), 2893-2939. doi:10.1039/c5cs00064e

Linic, S., Christopher, P., & Ingram, D. B. (2011). Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nature Materials, 10(12), 911-921. doi:10.1038/nmat3151

Linsebigler, A. L., Lu, G., & Yates, J. T. (1995). Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. Chemical Reviews, 95(3), 735-758. doi:10.1021/cr00035a013

Mou, H., Song, C., Zhou, Y., Zhang, B., & Wang, D. (2018). Design and synthesis of porous Ag/ZnO nanosheets assemblies as super photocatalysts for enhanced visible-light degradation of 4-nitrophenol and hydrogen evolution. Applied Catalysis B: Environmental, 221, 565-573. doi:10.1016/j.apcatb.2017.09.061

Chen, D., Huang, Z., Quan, H., Chen, S., Lin, J., Luo, X., & Guo, L. (2016). Mesoporous Single Crystal Rutile TiO<SUB>2</SUB> Rods Modified with Ag Nanoparticles as a Photocatalyst for Degradation of Pollutants. Science of Advanced Materials, 8(4), 760-766. doi:10.1166/sam.2016.2675

Hou, J., Wang, Z., Yang, C., Zhou, W., Jiao, S., & Zhu, H. (2013). Hierarchically Plasmonic Z-Scheme Photocatalyst of Ag/AgCl Nanocrystals Decorated Mesoporous Single-Crystalline Metastable Bi20TiO32 Nanosheets. The Journal of Physical Chemistry C, 117(10), 5132-5141. doi:10.1021/jp311996r

Park, C. H., Lee, C. M., Choi, J. W., Park, G. C., & Joo, J. (2018). Enhanced photocatalytic activity of porous single crystal TiO2/CNT composites by annealing process. Ceramics International, 44(2), 1641-1645. doi:10.1016/j.ceramint.2017.10.086

Zhang, J., Zhao, W., Xu, Y., Xu, H., & Zhang, B. (2014). In-situ photo-reducing graphene oxide to create Zn0.5Cd0.5S porous nanosheets/RGO composites as highly stable and efficient photoelectrocatalysts for visible-light-driven water splitting. International Journal of Hydrogen Energy, 39(2), 702-710. doi:10.1016/j.ijhydene.2013.10.118

Schrauben, J. N., Hayoun, R., Valdez, C. N., Braten, M., Fridley, L., & Mayer, J. M. (2012). Titanium and Zinc Oxide Nanoparticles Are Proton-Coupled Electron Transfer Agents. Science, 336(6086), 1298-1301. doi:10.1126/science.1220234

Wang, Z., Yang, C., Lin, T., Yin, H., Chen, P., Wan, D., … Jiang, M. (2013). H-Doped Black Titania with Very High Solar Absorption and Excellent Photocatalysis Enhanced by Localized Surface Plasmon Resonance. Advanced Functional Materials, 23(43), 5444-5450. doi:10.1002/adfm.201300486

Chen, X., Liu, L., & Huang, F. (2015). Black titanium dioxide (TiO2) nanomaterials. Chemical Society Reviews, 44(7), 1861-1885. doi:10.1039/c4cs00330f

Zhao, Z., Tan, H., Zhao, H., Lv, Y., Zhou, L.-J., Song, Y., & Sun, Z. (2014). Reduced TiO2rutile nanorods with well-defined facets and their visible-light photocatalytic activity. Chem. Commun., 50(21), 2755-2757. doi:10.1039/c3cc49182j

Sinhamahapatra, A., Jeon, J.-P., & Yu, J.-S. (2015). A new approach to prepare highly active and stable black titania for visible light-assisted hydrogen production. Energy & Environmental Science, 8(12), 3539-3544. doi:10.1039/c5ee02443a

Li, H., Chen, Z., Tsang, C. K., Li, Z., Ran, X., Lee, C., … Li, Y. Y. (2014). Electrochemical doping of anatase TiO2in organic electrolytes for high-performance supercapacitors and photocatalysts. J. Mater. Chem. A, 2(1), 229-236. doi:10.1039/c3ta13963h

FUJISHIMA, A., & HONDA, K. (1972). Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 238(5358), 37-38. doi:10.1038/238037a0

Lai, J., Shafi, K. V. P. M., Loos, K., Ulman, A., Lee, Y., Vogt, T., & Estournès, C. (2003). Doping γ-Fe2O3 Nanoparticles with Mn(III) Suppresses the Transition to the α-Fe2O3 Structure. Journal of the American Chemical Society, 125(38), 11470-11471. doi:10.1021/ja035409d

Yang, J., Wang, D., Han, H., & Li, C. (2013). Roles of Cocatalysts in Photocatalysis and Photoelectrocatalysis. Accounts of Chemical Research, 46(8), 1900-1909. doi:10.1021/ar300227e

Katsumata, K., Sakai, K., Ikeda, K., Carja, G., Matsushita, N., & Okada, K. (2013). Preparation and photocatalytic reduction of CO2 on noble metal (Pt, Pd, Au) loaded Zn–Cr layered double hydroxides. Materials Letters, 107, 138-140. doi:10.1016/j.matlet.2013.05.132

Liu, L., Ji, Z., Zou, W., Gu, X., Deng, Y., Gao, F., … Dong, L. (2013). In Situ Loading Transition Metal Oxide Clusters on TiO2 Nanosheets As Co-catalysts for Exceptional High Photoactivity. ACS Catalysis, 3(9), 2052-2061. doi:10.1021/cs4002755

Maciá-Agulló, J. A., Corma, A., & Garcia, H. (2015). Photobiocatalysis: The Power of Combining Photocatalysis and Enzymes. Chemistry - A European Journal, 21(31), 10940-10959. doi:10.1002/chem.201406437

Liu, L., Ouyang, S., & Ye, J. (2013). Gold-Nanorod-Photosensitized Titanium Dioxide with Wide-Range Visible-Light Harvesting Based on Localized Surface Plasmon Resonance. Angewandte Chemie International Edition, 52(26), 6689-6693. doi:10.1002/anie.201300239

Ran, J., Zhang, J., Yu, J., Jaroniec, M., & Qiao, S. Z. (2014). Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem. Soc. Rev., 43(22), 7787-7812. doi:10.1039/c3cs60425j

Li, W., Bai, Y., Zhuang, W., Chan, K.-Y., Liu, C., Yang, Z., … Lu, X. (2014). Highly Crystalline Mesoporous TiO2(B) Nanofibers. The Journal of Physical Chemistry C, 118(6), 3049-3055. doi:10.1021/jp408112z

Noda, Y., Lee, B., Domen, K., & Kondo, J. N. (2008). Synthesis of Crystallized Mesoporous Tantalum Oxide and Its Photocatalytic Activity for Overall Water Splitting under Ultraviolet Light Irradiation. Chemistry of Materials, 20(16), 5361-5367. doi:10.1021/cm703202n

Kondo, J. N., & Domen, K. (2007). Crystallization of Mesoporous Metal Oxides. Chemistry of Materials, 20(3), 835-847. doi:10.1021/cm702176m

Kato, H., Asakura, K., & Kudo, A. (2003). Highly Efficient Water Splitting into H2 and O2 over Lanthanum-Doped NaTaO3 Photocatalysts with High Crystallinity and Surface Nanostructure. Journal of the American Chemical Society, 125(10), 3082-3089. doi:10.1021/ja027751g

Yang, J., Yan, H., Wang, X., Wen, F., Wang, Z., Fan, D., … Li, C. (2012). Roles of cocatalysts in Pt–PdS/CdS with exceptionally high quantum efficiency for photocatalytic hydrogen production. Journal of Catalysis, 290, 151-157. doi:10.1016/j.jcat.2012.03.008

Sakata, Y., Hayashi, T., Yasunaga, R., Yanaga, N., & Imamura, H. (2015). Remarkably high apparent quantum yield of the overall photocatalytic H2O splitting achieved by utilizing Zn ion added Ga2O3 prepared using dilute CaCl2 solution. Chemical Communications, 51(65), 12935-12938. doi:10.1039/c5cc03483c

Goto, Y., Hisatomi, T., Wang, Q., Higashi, T., Ishikiriyama, K., Maeda, T., … Domen, K. (2018). A Particulate Photocatalyst Water-Splitting Panel for Large-Scale Solar Hydrogen Generation. Joule, 2(3), 509-520. doi:10.1016/j.joule.2017.12.009

Hojamberdiev, M., Wagata, H., Yubuta, K., Kawashima, K., Vequizo, J. J. M., Yamakata, A., … Teshima, K. (2016). KCl flux-induced growth of isometric crystals of cadmium-containing early transition-metal (Ti 4+ , Nb 5+ , and Ta 5+ ) oxides and nitridability to form their (oxy)nitride derivatives under an NH 3 atmosphere for water splitting application. Applied Catalysis B: Environmental, 182, 626-635. doi:10.1016/j.apcatb.2015.10.002

Qureshi, M., & Takanabe, K. (2016). Insights on Measuring and Reporting Heterogeneous Photocatalysis: Efficiency Definitions and Setup Examples. Chemistry of Materials, 29(1), 158-167. doi:10.1021/acs.chemmater.6b02907

Ulmer, U., Dingle, T., Duchesne, P. N., Morris, R. H., Tavasoli, A., Wood, T., & Ozin, G. A. (2019). Fundamentals and applications of photocatalytic CO2 methanation. Nature Communications, 10(1). doi:10.1038/s41467-019-10996-2

Shehzad, N., Tahir, M., Johari, K., Murugesan, T., & Hussain, M. (2018). A critical review on TiO2 based photocatalytic CO2 reduction system: Strategies to improve efficiency. Journal of CO2 Utilization, 26, 98-122. doi:10.1016/j.jcou.2018.04.026

Zeng, S., Kar, P., Thakur, U. K., & Shankar, K. (2018). A review on photocatalytic CO2reduction using perovskite oxide nanomaterials. Nanotechnology, 29(5), 052001. doi:10.1088/1361-6528/aa9fb1

Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N., & Snaith, H. J. (2012). Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science, 338(6107), 643-647. doi:10.1126/science.1228604

Jiang, Q., Zhao, Y., Zhang, X., Yang, X., Chen, Y., Chu, Z., … You, J. (2019). Surface passivation of perovskite film for efficient solar cells. Nature Photonics, 13(7), 460-466. doi:10.1038/s41566-019-0398-2

Atienzar, P., Ishwara, T., Illy, B. N., Ryan, M. P., O’Regan, B. C., Durrant, J. R., & Nelson, J. (2010). Control of Photocurrent Generation in Polymer/ZnO Nanorod Solar Cells by Using a Solution-Processed TiO2 Overlayer. The Journal of Physical Chemistry Letters, 1(4), 708-713. doi:10.1021/jz900356u

Roy, P., Kim, D., Lee, K., Spiecker, E., & Schmuki, P. (2010). TiO2 nanotubes and their application in dye-sensitized solar cells. Nanoscale, 2(1), 45-59. doi:10.1039/b9nr00131j

Knez, M., Nielsch, K., & Niinistö, L. (2007). Synthesis and Surface Engineering of Complex Nanostructures by Atomic Layer Deposition. Advanced Materials, 19(21), 3425-3438. doi:10.1002/adma.200700079

Halaoui, L. I., Abrams, N. M., & Mallouk, T. E. (2005). Increasing the Conversion Efficiency of Dye-Sensitized TiO2 Photoelectrochemical Cells by Coupling to Photonic Crystals. The Journal of Physical Chemistry B, 109(13), 6334-6342. doi:10.1021/jp044228a

Ramiro-Manzano, F., Atienzar, P., Rodriguez, I., Meseguer, F., Garcia, H., & Corma, A. (2007). Apollony photonic sponge based photoelectrochemical solar cells. Chem. Commun., (3), 242-244. doi:10.1039/b613422j

Zhu, K., Neale, N. R., Miedaner, A., & Frank, A. J. (2006). Enhanced Charge-Collection Efficiencies and Light Scattering in Dye-Sensitized Solar Cells Using Oriented TiO2 Nanotubes Arrays. Nano Letters, 7(1), 69-74. doi:10.1021/nl062000o

O’Regan, B., & Grätzel, M. (1991). A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 353(6346), 737-740. doi:10.1038/353737a0

Bach, U., Lupo, D., Comte, P., Moser, J. E., Weissörtel, F., Salbeck, J., … Grätzel, M. (1998). Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature, 395(6702), 583-585. doi:10.1038/26936

Pitchaiya, S., Natarajan, M., Santhanam, A., Asokan, V., Yuvapragasam, A., Madurai Ramakrishnan, V., … Velauthapillai, D. (2020). A review on the classification of organic/inorganic/carbonaceous hole transporting materials for perovskite solar cell application. Arabian Journal of Chemistry, 13(1), 2526-2557. doi:10.1016/j.arabjc.2018.06.006

Kojima, A., Teshima, K., Shirai, Y., & Miyasaka, T. (2009). Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society, 131(17), 6050-6051. doi:10.1021/ja809598r

Snaith, H. J. (2013). Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells. The Journal of Physical Chemistry Letters, 4(21), 3623-3630. doi:10.1021/jz4020162

Kim, H.-S., Lee, C.-R., Im, J.-H., Lee, K.-B., Moehl, T., Marchioro, A., … Park, N.-G. (2012). Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Scientific Reports, 2(1). doi:10.1038/srep00591

Jiang, C. Y., Koh, W. L., Leung, M. Y., Chiam, S. Y., Wu, J. S., & Zhang, J. (2012). Low temperature processing solid-state dye sensitized solar cells. Applied Physics Letters, 100(11), 113901. doi:10.1063/1.3693399

Lu, G., Linsebigler, A., & Yates, J. T. (1994). Ti3+ Defect Sites on TiO2(110): Production and Chemical Detection of Active Sites. The Journal of Physical Chemistry, 98(45), 11733-11738. doi:10.1021/j100096a017

Yang, S., Zheng, Y. C., Hou, Y., Yang, X. H., & Yang, H. G. (2014). Anatase TiO2 with nanopores for dye-sensitized solar cells. Phys. Chem. Chem. Phys., 16(42), 23038-23043. doi:10.1039/c4cp02522a

Cölfen, H., & Antonietti, M. (2005). Mesocrystals: Inorganic Superstructures Made by Highly Parallel Crystallization and Controlled Alignment. Angewandte Chemie International Edition, 44(35), 5576-5591. doi:10.1002/anie.200500496

Feng, X., Zhu, K., Frank, A. J., Grimes, C. A., & Mallouk, T. E. (2012). Rapid Charge Transport in Dye-Sensitized Solar Cells Made from Vertically Aligned Single-Crystal Rutile TiO2 Nanowires. Angewandte Chemie International Edition, 51(11), 2727-2730. doi:10.1002/anie.201108076

Ito, S., Liska, P., Comte, P., Charvet, R., Péchy, P., Bach, U., … Grätzel, M. (2005). Control of dark current in photoelectrochemical (TiO2/I––I3–) and dye-sensitized solar cells. Chemical Communications, (34), 4351. doi:10.1039/b505718c

Zhang, Q., Dandeneau, C. S., Zhou, X., & Cao, G. (2009). ZnO Nanostructures for Dye-Sensitized Solar Cells. Advanced Materials, 21(41), 4087-4108. doi:10.1002/adma.200803827

Look, D. C., Reynolds, D. C., Sizelove, J. R., Jones, R. L., Litton, C. W., Cantwell, G., & Harsch, W. C. (1998). Electrical properties of bulk ZnO. Solid State Communications, 105(6), 399-401. doi:10.1016/s0038-1098(97)10145-4

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem