- -

Porous Single-Crystal-Based Inorganic Semiconductor Photocatalysts for Energy Production and Environmental Remediation: Preparation, Modification, and Applications

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Porous Single-Crystal-Based Inorganic Semiconductor Photocatalysts for Energy Production and Environmental Remediation: Preparation, Modification, and Applications

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Niu, Jinan es_ES
dc.contributor.author Albero-Sancho, Josep es_ES
dc.contributor.author Atienzar Corvillo, Pedro Enrique es_ES
dc.contributor.author García Gómez, Hermenegildo es_ES
dc.date.accessioned 2021-04-17T03:33:32Z
dc.date.available 2021-04-17T03:33:32Z
dc.date.issued 2020-04 es_ES
dc.identifier.issn 1616-301X es_ES
dc.identifier.uri http://hdl.handle.net/10251/165302
dc.description This is the peer reviewed version of the following article: Niu, J., Albero, J., Atienzar, P., García, H., Porous Single-Crystal-Based Inorganic Semiconductor Photocatalysts for Energy Production and Environmental Remediation: Preparation, Modification, and Applications. Adv. Funct. Mater. 2020, 30, 1908984, which has been published in final form at https://doi.org/10.1002/adfm.201908984. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. es_ES
dc.description.abstract [EN] Semiconductor photocatalytic and photovoltaic performance depends on crystallinity and surface area to a large extent. One strategy that has recently emergyed to improve semiconductor photoresponse efficiency is their synthesis as porous single crystals (PSCs), therefore providing simultaneously high crystallinity, minimization of grain boundaries, and large specific surface area. Other factors, such as high density of active sites, and enhanced light absorption, also contribute to increased PSC photoresponse with respect to analogous bulk or amorphous materials. This review initially presents the concept and main properties of PSCs. Then, the synthetic routes and the applications as photocatalysts and as photovoltaic devices, mainly in sunlight applications, are summarized. The synthetic procedures have been classified according to the mechanism of pore generation. Applications cover photocatalysis for environmental remediation, solar fuels production, selective photooxidation of organic compounds, and photovoltaic devices. Finally, a summary and views on future developments are provided. The purpose of this review is to show how the use of PSCs is a powerful general methodology applicable beyond metal oxides and can ultimately lead to sufficient photoresponse efficiency, bringing these processes close to commercial application. es_ES
dc.description.sponsorship Financial support by the Spanish Ministry of Economy and Competitiveness (Severo Ochoa SEV2016-0683 and RTI2018-89023-CO2-R1) and by the Generalitat Valenciana (Prometeo 2017-083) is gratefully acknowledged. J.N. also gratefully acknowledges financial support from the Fundamental Research Funds for the Central Universities (2019XKQYMS76). es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Advanced Functional Materials es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Environmental remediation es_ES
dc.subject Photocatalysis es_ES
dc.subject Photovoltaics es_ES
dc.subject Single crystals es_ES
dc.subject Solar fuels es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Porous Single-Crystal-Based Inorganic Semiconductor Photocatalysts for Energy Production and Environmental Remediation: Preparation, Modification, and Applications es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/adfm.201908984 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Fundamental Research Funds for the Central Universities//2019XKQYMS76/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F083/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-098237-B-C21/ES/HETEROUNIONES DE GRAFENO CON CONFIGURACION CONTROLADA. SINTESIS Y APLICACIONES COMO SOPORTE EN CATALISIS Y EN ELECTRODOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Niu, J.; Albero-Sancho, J.; Atienzar Corvillo, PE.; García Gómez, H. (2020). Porous Single-Crystal-Based Inorganic Semiconductor Photocatalysts for Energy Production and Environmental Remediation: Preparation, Modification, and Applications. Advanced Functional Materials. 30(15):1-51. https://doi.org/10.1002/adfm.201908984 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/adfm.201908984 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 51 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 30 es_ES
dc.description.issue 15 es_ES
dc.relation.pasarela S\432043 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Fundamental Research Funds for the Central Universities es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Lee, B., Yamashita, T., Lu, D., Kondo, J. N., & Domen, K. (2002). Single-Crystal Particles of Mesoporous Niobium−Tantalum Mixed Oxide. Chemistry of Materials, 14(2), 867-875. doi:10.1021/cm010775m es_ES
dc.description.references Crossland, E. J. W., Noel, N., Sivaram, V., Leijtens, T., Alexander-Webber, J. A., & Snaith, H. J. (2013). Mesoporous TiO2 single crystals delivering enhanced mobility and optoelectronic device performance. Nature, 495(7440), 215-219. doi:10.1038/nature11936 es_ES
dc.description.references Liu, G., Yang, H. G., Pan, J., Yang, Y. Q., Lu, G. Q. (Max), & Cheng, H.-M. (2014). Titanium Dioxide Crystals with Tailored Facets. Chemical Reviews, 114(19), 9559-9612. doi:10.1021/cr400621z es_ES
dc.description.references Zheng, X., Lv, Y., Kuang, Q., Zhu, Z., Long, X., & Yang, S. (2014). Close-Packed Colloidal SiO2 as a Nanoreactor: Generalized Synthesis of Metal Oxide Mesoporous Single Crystals and Mesocrystals. Chemistry of Materials, 26(19), 5700-5709. doi:10.1021/cm5025475 es_ES
dc.description.references Jiao, W., Xie, Y., Chen, R., Zhen, C., Liu, G., Ma, X., & Cheng, H.-M. (2013). Synthesis of mesoporous single crystal rutile TiO2 with improved photocatalytic and photoelectrochemical activities. Chemical Communications, 49(100), 11770. doi:10.1039/c3cc46527f es_ES
dc.description.references Fang, W. Q., Huo, Z., Liu, P., Wang, X. L., Zhang, M., Jia, Y., … Yao, X. (2014). Fluorine-Doped Porous Single-Crystal Rutile TiO2Nanorods for Enhancing Photoelectrochemical Water Splitting. Chemistry - A European Journal, 20(36), 11439-11444. doi:10.1002/chem.201402914 es_ES
dc.description.references Bian, Z., Zhu, J., Wen, J., Cao, F., Huo, Y., Qian, X., … Lu, Y. (2010). Single-Crystal-like Titania Mesocages. Angewandte Chemie International Edition, 50(5), 1105-1108. doi:10.1002/anie.201004972 es_ES
dc.description.references Cho, S., Kim, S., Jung, D.-W., & Lee, K.-H. (2011). Formation of quasi-single crystalline porous ZnO nanostructures with a single large cavity. Nanoscale, 3(9), 3841. doi:10.1039/c1nr10609k es_ES
dc.description.references Xu, G., Deng, S., Zhang, Y., Wei, X., Yang, X., Liu, Y., … Han, G. (2014). Mesoporous-structure-tailored hydrothermal synthesis and mechanism of the SrTiO3 mesoporous spheres by controlling the silicate semipermeable membranes with the KOH concentrations. CrystEngComm, 16(10), 2025. doi:10.1039/c3ce41809j es_ES
dc.description.references Wei, L., Yang, Z., Ren, H., & Chen, X. (2010). Phase Transitional Behavior and Electrical Properties of Sr2K0.1Na0.9Nb5−xTaxO15 Ceramics. Journal of the American Ceramic Society, 93(12), 3986-3989. doi:10.1111/j.1551-2916.2010.04177.x es_ES
dc.description.references Hong, Z., Zhou, K., Huang, Z., & Wei, M. (2015). Iso-Oriented Anatase TiO2 Mesocages as a High Performance Anode Material for Sodium-Ion Storage. Scientific Reports, 5(1). doi:10.1038/srep11960 es_ES
dc.description.references Song, R.-Q., & Cölfen, H. (2009). Mesocrystals-Ordered Nanoparticle Superstructures. Advanced Materials, 22(12), 1301-1330. doi:10.1002/adma.200901365 es_ES
dc.description.references Weckhuysen, B. M., & Yu, J. (2015). Recent advances in zeolite chemistry and catalysis. Chemical Society Reviews, 44(20), 7022-7024. doi:10.1039/c5cs90100f es_ES
dc.description.references Rangnekar, N., Mittal, N., Elyassi, B., Caro, J., & Tsapatsis, M. (2015). Zeolite membranes – a review and comparison with MOFs. Chemical Society Reviews, 44(20), 7128-7154. doi:10.1039/c5cs00292c es_ES
dc.description.references Wang, C. W., Yang, S., Fang, W. Q., Liu, P., Zhao, H., & Yang, H. G. (2015). Engineered Hematite Mesoporous Single Crystals Drive Drastic Enhancement in Solar Water Splitting. Nano Letters, 16(1), 427-433. doi:10.1021/acs.nanolett.5b04059 es_ES
dc.description.references Wu, Q., Bao, S., Tian, B., Xiao, Y., & Zhang, J. (2016). Double-diffusion-based synthesis of BiVO4 mesoporous single crystals with enhanced photocatalytic activity for oxygen evolution. Chemical Communications, 52(47), 7478-7481. doi:10.1039/c6cc02737g es_ES
dc.description.references Niu, J., Shen, S., Zhou, L., Liu, Z., Feng, P., Ou, X., & Qiang, Y. (2016). Synthesis and hydrogenation of anatase TiO2 microspheres composed of porous single crystals for significantly improved photocatalytic activity. RSC Advances, 6(67), 62907-62910. doi:10.1039/c6ra12053a es_ES
dc.description.references Lu, D., Ouyang, S., Xu, H., Li, D., Zhang, X., Li, Y., & Ye, J. (2016). Designing Au Surface-Modified Nanoporous-Single-Crystalline SrTiO3 to Optimize Diffusion of Surface Plasmon Resonance-Induce Photoelectron toward Enhanced Visible-Light Photoactivity. ACS Applied Materials & Interfaces, 8(14), 9506-9513. doi:10.1021/acsami.6b00889 es_ES
dc.description.references Jiang, S., Zhang, J., Qi, X., He, M., & Li, J. (2013). Large-area synthesis of diameter-controllable porous single crystal gallium nitride micro/nanotube arrays. CrystEngComm, 15(46), 9837. doi:10.1039/c3ce41803k es_ES
dc.description.references Liu, H., Chen, X., Yan, S., Li, Z., & Zou, Z. (2014). Basic Molten Salt Route to Prepare Porous SrTiO3Nanocrystals for Efficient Photocatalytic Hydrogen Production. European Journal of Inorganic Chemistry, 2014(23), 3731-3735. doi:10.1002/ejic.201402280 es_ES
dc.description.references Li, C., Chen, G., Sun, J., Rao, J., Han, Z., Hu, Y., & Zhou, Y. (2015). A Novel Mesoporous Single-Crystal-Like Bi2WO6 with Enhanced Photocatalytic Activity for Pollutants Degradation and Oxygen Production. ACS Applied Materials & Interfaces, 7(46), 25716-25724. doi:10.1021/acsami.5b06995 es_ES
dc.description.references Choi, J., Song, S., Hörantner, M. T., Snaith, H. J., & Park, T. (2016). Well-Defined Nanostructured, Single-Crystalline TiO2 Electron Transport Layer for Efficient Planar Perovskite Solar Cells. ACS Nano, 10(6), 6029-6036. doi:10.1021/acsnano.6b01575 es_ES
dc.description.references Yu, Y., Zhang, J., Wu, X., Zhao, W., & Zhang, B. (2011). Nanoporous Single-Crystal-Like CdxZn1−xS Nanosheets Fabricated by the Cation-Exchange Reaction of Inorganic-Organic Hybrid ZnS-Amine with Cadmium Ions. Angewandte Chemie International Edition, 51(4), 897-900. doi:10.1002/anie.201105786 es_ES
dc.description.references Zhao, W., Liu, C., Cao, L., Yin, X., Xu, H., & Zhang, B. (2013). Porous single-crystalline CdS nanosheets as efficient visible light catalysts for aerobic oxidative coupling of amines to imines. RSC Advances, 3(45), 22944. doi:10.1039/c3ra43929a es_ES
dc.description.references Liu, J., Hu, Z.-Y., Peng, Y., Huang, H.-W., Li, Y., Wu, M., … Su, B.-L. (2016). 2D ZnO mesoporous single-crystal nanosheets with exposed {0001} polar facets for the depollution of cationic dye molecules by highly selective adsorption and photocatalytic decomposition. Applied Catalysis B: Environmental, 181, 138-145. doi:10.1016/j.apcatb.2015.07.054 es_ES
dc.description.references Niu, J., Shen, S., He, S., Liu, Z., Feng, P., Zhang, S., … Zhu, Z. (2015). Synthesis and photoactivity of anatase porous single crystals with different pore sizes. Ceramics International, 41(9), 11936-11944. doi:10.1016/j.ceramint.2015.06.005 es_ES
dc.description.references Sivaram, V., Crossland, E. J. W., Leijtens, T., Noel, N. K., Alexander-Webber, J., Docampo, P., & Snaith, H. J. (2014). Observation of Annealing-Induced Doping in TiO2 Mesoporous Single Crystals for Use in Solid State Dye Sensitized Solar Cells. The Journal of Physical Chemistry C, 118(4), 1821-1827. doi:10.1021/jp410495k es_ES
dc.description.references Kondo, J. N., Takahara, Y., Lee, B., Lu, D., & Domen, K. (2002). Topics in Catalysis, 19(2), 171-177. doi:10.1023/a:1015255906229 es_ES
dc.description.references Jiang, H., Meng, X., Dai, H., Deng, J., Liu, Y., Zhang, L., … Zhang, R. (2012). High-performance porous spherical or octapod-like single-crystalline BiVO4 photocatalysts for the removal of phenol and methylene blue under visible-light illumination. Journal of Hazardous Materials, 217-218, 92-99. doi:10.1016/j.jhazmat.2012.02.073 es_ES
dc.description.references Liu, Y., Luo, Y., Elzatahry, A. A., Luo, W., Che, R., Fan, J., … Zhao, D. (2015). Mesoporous TiO2 Mesocrystals: Remarkable Defects-Induced Crystallite-Interface Reactivity and Their in Situ Conversion to Single Crystals. ACS Central Science, 1(7), 400-408. doi:10.1021/acscentsci.5b00256 es_ES
dc.description.references Xiong, Y., Liu, Y., Lan, K., Mei, A., Sheng, Y., Zhao, D., & Han, H. (2018). Fully printable hole-conductor-free mesoscopic perovskite solar cells based on mesoporous anatase single crystals. New Journal of Chemistry, 42(4), 2669-2674. doi:10.1039/c7nj04448h es_ES
dc.description.references Girija, K., Thirumalairajan, S., Patra, A. K., Mangalaraj, D., Ponpandian, N., & Viswanathan, C. (2013). Organic additives assisted synthesis of mesoporous β-Ga2O3 nanostructures for photocatalytic dye degradation. Semiconductor Science and Technology, 28(3), 035015. doi:10.1088/0268-1242/28/3/035015 es_ES
dc.description.references Liu, H., Luo, M., Hu, J., Zhou, T., Chen, R., & Li, J. (2013). β-Bi2O3 and Er3+ doped β-Bi2O3 single crystalline nanosheets with exposed reactive {001} facets and enhanced photocatalytic performance. Applied Catalysis B: Environmental, 140-141, 141-150. doi:10.1016/j.apcatb.2013.04.009 es_ES
dc.description.references Qiu, Y., Xu, G.-L., Kuang, Q., Sun, S.-G., & Yang, S. (2012). Hierarchical WO3 flowers comprising porous single-crystalline nanoplates show enhanced lithium storage and photocatalysis. Nano Research, 5(11), 826-832. doi:10.1007/s12274-012-0266-6 es_ES
dc.description.references Cha, H. G., Kim, S. J., Lee, K. J., Jung, M. H., & Kang, Y. S. (2011). Single-Crystalline Porous Hematite Nanorods: Photocatalytic and Magnetic Properties. The Journal of Physical Chemistry C, 115(39), 19129-19135. doi:10.1021/jp206958g es_ES
dc.description.references Bharathi, S., Nataraj, D., Mangalaraj, D., Masuda, Y., Senthil, K., & Yong, K. (2009). Highly mesoporous α-Fe2O3nanostructures: preparation, characterization and improved photocatalytic performance towards Rhodamine B (RhB). Journal of Physics D: Applied Physics, 43(1), 015501. doi:10.1088/0022-3727/43/1/015501 es_ES
dc.description.references Liao, A., He, H., Tang, L., Li, Y., Zhang, J., Chen, J., … Zou, Z. (2018). Quasi-Topotactic Transformation of FeOOH Nanorods to Robust Fe2O3 Porous Nanopillars Triggered with a Facile Rapid Dehydration Strategy for Efficient Photoelectrochemical Water Splitting. ACS Applied Materials & Interfaces, 10(12), 10141-10146. doi:10.1021/acsami.8b00367 es_ES
dc.description.references Li, L., Yu, Y., Meng, F., Tan, Y., Hamers, R. J., & Jin, S. (2012). Facile Solution Synthesis of α-FeF3·3H2O Nanowires and Their Conversion to α-Fe2O3 Nanowires for Photoelectrochemical Application. Nano Letters, 12(2), 724-731. doi:10.1021/nl2036854 es_ES
dc.description.references Xu, T., Zheng, H., Zhang, P., Lin, W., & Sekiguchi, Y. (2015). Hydrothermal preparation of nanoporous TiO2 films with exposed {001} facets and superior photocatalytic activity. Journal of Materials Chemistry A, 3(37), 19115-19122. doi:10.1039/c5ta02640g es_ES
dc.description.references Xu, T., Zheng, H., Zhang, P., & Lin, W. (2016). Photocatalytic degradation of a low concentration pharmaceutical pollutant by nanoporous TiO2film with exposed {001} facets. RSC Advances, 6(98), 95818-95824. doi:10.1039/c6ra22011h es_ES
dc.description.references Liu, Y., Shen, S., Ren, F., Chen, J., Fu, Y., Zheng, X., … Jiang, C. (2016). Fabrication of porous TiO2nanorod array photoelectrodes with enhanced photoelectrochemical water splitting by helium ion implantation. Nanoscale, 8(20), 10642-10648. doi:10.1039/c5nr05594f es_ES
dc.description.references Stein, A., Li, F., & Denny, N. R. (2007). Morphological Control in Colloidal Crystal Templating of Inverse Opals, Hierarchical Structures, and Shaped Particles. Chemistry of Materials, 20(3), 649-666. doi:10.1021/cm702107n es_ES
dc.description.references Yamamoto, E., & Kuroda, K. (2016). Colloidal Mesoporous Silica Nanoparticles. Bulletin of the Chemical Society of Japan, 89(5), 501-539. doi:10.1246/bcsj.20150420 es_ES
dc.description.references Li, J., Chang, H., Ma, L., Hao, J., & Yang, R. T. (2011). Low-temperature selective catalytic reduction of NOx with NH3 over metal oxide and zeolite catalysts—A review. Catalysis Today, 175(1), 147-156. doi:10.1016/j.cattod.2011.03.034 es_ES
dc.description.references Ilić, B., & Wettstein, S. G. (2017). A review of adsorbate and temperature-induced zeolite framework flexibility. Microporous and Mesoporous Materials, 239, 221-234. doi:10.1016/j.micromeso.2016.10.005 es_ES
dc.description.references Zheng, X., Kuang, Q., Yan, K., Qiu, Y., Qiu, J., & Yang, S. (2013). Mesoporous TiO2 Single Crystals: Facile Shape-, Size-, and Phase-Controlled Growth and Efficient Photocatalytic Performance. ACS Applied Materials & Interfaces, 5(21), 11249-11257. doi:10.1021/am403482g es_ES
dc.description.references Zhou, Y., Yi, Q., Xing, M., Shang, L., Zhang, T., & Zhang, J. (2016). Graphene modified mesoporous titania single crystals with controlled and selective photoredox surfaces. Chemical Communications, 52(8), 1689-1692. doi:10.1039/c5cc07567j es_ES
dc.description.references Dong, C., Song, H., Zhou, Y., Dong, C., Shen, B., Yang, H., … Zhang, J. (2016). Sulfur nanoparticles in situ growth on TiO2 mesoporous single crystals with enhanced solar light photocatalytic performance. RSC Advances, 6(81), 77863-77869. doi:10.1039/c6ra17884g es_ES
dc.description.references Xing, M., Zhou, Y., Dong, C., Cai, L., Zeng, L., Shen, B., … Yin, Y. (2018). Modulation of the Reduction Potential of TiO2–x by Fluorination for Efficient and Selective CH4 Generation from CO2 Photoreduction. Nano Letters, 18(6), 3384-3390. doi:10.1021/acs.nanolett.8b00197 es_ES
dc.description.references Zhu, Z., Zheng, X., Bai, Y., Zhang, T., Wang, Z., Xiao, S., & Yang, S. (2015). Mesoporous SnO2 single crystals as an effective electron collector for perovskite solar cells. Physical Chemistry Chemical Physics, 17(28), 18265-18268. doi:10.1039/c5cp01534k es_ES
dc.description.references Wang, Y., Deng, Y., Fan, L., Zhao, Y., Shen, B., Wu, D., … Zhang, J. (2017). In situ strategy to prepare PDPB/SnO2 p–n heterojunction with a high photocatalytic activity. RSC Advances, 7(39), 24064-24069. doi:10.1039/c7ra02608k es_ES
dc.description.references Liu, G., Yu, J. C., Lu, G. Q. (Max), & Cheng, H.-M. (2011). Crystal facet engineering of semiconductor photocatalysts: motivations, advances and unique properties. Chemical Communications, 47(24), 6763. doi:10.1039/c1cc10665a es_ES
dc.description.references Chen, X., & Mao, S. S. (2007). Titanium Dioxide Nanomaterials:  Synthesis, Properties, Modifications, and Applications. Chemical Reviews, 107(7), 2891-2959. doi:10.1021/cr0500535 es_ES
dc.description.references Ong, W.-J., Tan, L.-L., Chai, S.-P., Yong, S.-T., & Mohamed, A. R. (2014). Highly reactive {001} facets of TiO2-based composites: synthesis, formation mechanism and characterization. Nanoscale, 6(4), 1946. doi:10.1039/c3nr04655a es_ES
dc.description.references Yang, H. G., Sun, C. H., Qiao, S. Z., Zou, J., Liu, G., Smith, S. C., … Lu, G. Q. (2008). Anatase TiO2 single crystals with a large percentage of reactive facets. Nature, 453(7195), 638-641. doi:10.1038/nature06964 es_ES
dc.description.references Wu, T., Kang, X., Kadi, M. W., Ismail, I., Liu, G., & Cheng, H.-M. (2015). Enhanced photocatalytic hydrogen generation of mesoporous rutile TiO2 single crystal with wholly exposed {111} facets. Chinese Journal of Catalysis, 36(12), 2103-2108. doi:10.1016/s1872-2067(15)60996-2 es_ES
dc.description.references Yu, H., Wang, L., & Dargusch, M. (2016). Low-temperature templated synthesis of porous TiO2 single-crystals for solar cell applications. Solar Energy, 123, 17-22. doi:10.1016/j.solener.2015.10.044 es_ES
dc.description.references Zhen, C., Wu, T., Kadi, M. W., Ismail, I., Liu, G., & Cheng, H.-M. (2015). Design and construction of a film of mesoporous single-crystal rutile TiO2 rod arrays for photoelectrochemical water oxidation. Chinese Journal of Catalysis, 36(12), 2171-2177. doi:10.1016/s1872-2067(15)60981-0 es_ES
dc.description.references Wang, J., Bian, Z., Zhu, J., & Li, H. (2013). Ordered mesoporous TiO2with exposed (001) facets and enhanced activity in photocatalytic selective oxidation of alcohols. J. Mater. Chem. A, 1(4), 1296-1302. doi:10.1039/c2ta00035k es_ES
dc.description.references Yue, W., Randorn, C., Attidekou, P. S., Su, Z., Irvine, J. T. S., & Zhou, W. (2009). Syntheses, Li Insertion, and Photoactivity of Mesoporous Crystalline TiO2. Advanced Functional Materials, 19(17), 2826-2833. doi:10.1002/adfm.200900658 es_ES
dc.description.references Malgras, V., Ji, Q., Kamachi, Y., Mori, T., Shieh, F.-K., Wu, K. C.-W., … Yamauchi, Y. (2015). Templated Synthesis for Nanoarchitectured Porous Materials. Bulletin of the Chemical Society of Japan, 88(9), 1171-1200. doi:10.1246/bcsj.20150143 es_ES
dc.description.references Liu, Y., Lan, K., Li, S., Liu, Y., Kong, B., Wang, G., … Zhao, D. (2016). Constructing Three-Dimensional Mesoporous Bouquet-Posy-like TiO2 Superstructures with Radially Oriented Mesochannels and Single-Crystal Walls. Journal of the American Chemical Society, 139(1), 517-526. doi:10.1021/jacs.6b11641 es_ES
dc.description.references Lin, J., Zhao, L., Heo, Y.-U., Wang, L., Bijarbooneh, F. H., Mozer, A. J., … Kim, J. H. (2015). Mesoporous anatase single crystals for efficient Co(2+/3+)-based dye-sensitized solar cells. Nano Energy, 11, 557-567. doi:10.1016/j.nanoen.2014.11.017 es_ES
dc.description.references Shi, W., Zhang, X., Brillet, J., Huang, D., Li, M., Wang, M., & Shen, Y. (2016). Significant enhancement of the photoelectrochemical activity of WO3 nanoflakes by carbon quantum dots decoration. Carbon, 105, 387-393. doi:10.1016/j.carbon.2016.04.051 es_ES
dc.description.references Wang, Q., Yuan, L., Dun, M., Yang, X., Chen, H., Li, J., & Hu, J. (2016). Synthesis and characterization of visible light responsive Bi3NbO7 porous nanosheets photocatalyst. Applied Catalysis B: Environmental, 196, 127-134. doi:10.1016/j.apcatb.2016.05.026 es_ES
dc.description.references Tan, B., Zhang, X., Li, Y., Chen, H., Ye, X., Wang, Y., & Ye, J. (2017). Anatase TiO 2 Mesocrystals: Green Synthesis, In Situ Conversion to Porous Single Crystals, and Self‐Doping Ti 3+ for Enhanced Visible Light Driven Photocatalytic Removal of NO. Chemistry – A European Journal, 23(23), 5478-5487. doi:10.1002/chem.201605294 es_ES
dc.description.references Chetia, T. R., Ansari, M. S., & Qureshi, M. (2015). Ethyl Cellulose and Cetrimonium Bromide Assisted Synthesis of Mesoporous, Hexagon Shaped ZnO Nanodisks with Exposed ±{0001} Polar Facets for Enhanced Photovoltaic Performance in Quantum Dot Sensitized Solar Cells. ACS Applied Materials & Interfaces, 7(24), 13266-13279. doi:10.1021/acsami.5b01039 es_ES
dc.description.references Zhao, Y., Zhang, Y., Liu, H., Ji, H., Ma, W., Chen, C., … Zhao, J. (2013). Control of Exposed Facet and Morphology of Anatase Crystals through TiOxFy Precursor Synthesis and Impact of the Facet on Crystal Phase Transition. Chemistry of Materials, 26(2), 1014-1018. doi:10.1021/cm403054w es_ES
dc.description.references Jin, Z., Zhang, Y.-X., Meng, F.-L., Jia, Y., Luo, T., Yu, X.-Y., … Huang, X.-J. (2014). Facile synthesis of porous single crystalline ZnO nanoplates and their application in photocatalytic reduction of Cr(VI) in the presence of phenol. Journal of Hazardous Materials, 276, 400-407. doi:10.1016/j.jhazmat.2014.05.059 es_ES
dc.description.references Li, Z., Zhou, Y., Xue, G., Yu, T., Liu, J., & Zou, Z. (2012). Fabrication of hierarchically assembled microspheres consisting of nanoporous ZnO nanosheets for high-efficiency dye-sensitized solar cells. Journal of Materials Chemistry, 22(29), 14341. doi:10.1039/c2jm32823b es_ES
dc.description.references Qiu, Y., Chen, W., & Yang, S. (2010). Facile hydrothermal preparation of hierarchically assembled, porous single-crystalline ZnO nanoplates and their application in dye-sensitized solar cells. J. Mater. Chem., 20(5), 1001-1006. doi:10.1039/b917305f es_ES
dc.description.references Hosono, E., Tokunaga, T., Ueno, S., Oaki, Y., Imai, H., Zhou, H., & Fujihara, S. (2012). Crystal-Growth Process of Single-Crystal-like Mesoporous ZnO through a Competitive Reaction in Solution. Crystal Growth & Design, 12(6), 2923-2931. doi:10.1021/cg300116h es_ES
dc.description.references Dong, J.-Y., Lin, C.-H., Hsu, Y.-J., Lu, S.-Y., & Wong, D. S.-H. (2012). Single-crystalline mesoporous ZnO nanosheets prepared with a green antisolvent method exhibiting excellent photocatalytic efficiencies. CrystEngComm, 14(14), 4732. doi:10.1039/c2ce06739k es_ES
dc.description.references Luo, Q.-P., Wang, B., & Cao, Y. (2017). Single-crystalline porous ZnO nanosheet frameworks for efficient fully flexible dye-sensitized solar cells. Journal of Alloys and Compounds, 695, 3324-3330. doi:10.1016/j.jallcom.2016.10.130 es_ES
dc.description.references Xu, Y., Wen, W., & Wu, J.-M. (2018). Titania nanowires functionalized polyester fabrics with enhanced photocatalytic and antibacterial performances. Journal of Hazardous Materials, 343, 285-297. doi:10.1016/j.jhazmat.2017.09.044 es_ES
dc.description.references Dong, Q., Yin, S., Guo, C., Wu, X., Kumada, N., Takei, T., … Sato, T. (2014). Single-crystalline porous NiO nanosheets prepared from β-Ni(OH)2 nanosheets: Magnetic property and photocatalytic activity. Applied Catalysis B: Environmental, 147, 741-747. doi:10.1016/j.apcatb.2013.10.007 es_ES
dc.description.references Ghosh, S., Roy, M., & Naskar, M. K. (2014). Template-free synthesis of mesoporous single-crystal CuO particles with dumbbell-shaped morphology. Materials Letters, 132, 98-101. doi:10.1016/j.matlet.2014.06.045 es_ES
dc.description.references Tu, H., Xu, L., Mou, F., & Guan, J. (2016). Highly active Ta2O5 microcubic single crystals: facet energy calculation, facile fabrication and enhanced photocatalytic activity of hydrogen production. Journal of Materials Chemistry A, 4(42), 16562-16568. doi:10.1039/c6ta06648h es_ES
dc.description.references Wang, W., Dahl, M., & Yin, Y. (2012). Hollow Nanocrystals through the Nanoscale Kirkendall Effect. Chemistry of Materials, 25(8), 1179-1189. doi:10.1021/cm3030928 es_ES
dc.description.references Yin, Y., Rioux, R. M., Erdonmez, C. K., Hughes, S., Somorjai, G. A., & Alivisatos, A. P. (2004). Formation of Hollow Nanocrystals Through the Nanoscale Kirkendall Effect. Science, 304(5671), 711-714. doi:10.1126/science.1096566 es_ES
dc.description.references Zhao, J., Zou, Y., Zou, X., Bai, T., Liu, Y., Gao, R., … Li, G.-D. (2014). Self-template construction of hollow Co3O4 microspheres from porous ultrathin nanosheets and efficient noble metal-free water oxidation catalysts. Nanoscale, 6(13), 7255. doi:10.1039/c4nr00002a es_ES
dc.description.references Tu, H., Xu, L., Mou, F., & Guan, J. (2015). Single crystalline tantalum oxychloride microcubes: controllable synthesis, formation mechanism and enhanced photocatalytic hydrogen production activity. Chemical Communications, 51(62), 12455-12458. doi:10.1039/c5cc03455h es_ES
dc.description.references Xu, L., Bu, F.-X., Hu, M., Jin, C.-Y., Jiang, D.-M., Zhao, Z.-J., … Jiang, J.-S. (2014). Monocrystalline mesoporous metal oxide with perovskite structure: a facile solid-state transformation of a coordination polymer. Chem. Commun., 50(89), 13849-13852. doi:10.1039/c4cc06101b es_ES
dc.description.references Thrall, M., Freer, R., Martin, C., Azough, F., Patterson, B., & Cernik, R. J. (2008). An in situ study of the formation of multiferroic bismuth ferrite using high resolution synchrotron X-ray powder diffraction. Journal of the European Ceramic Society, 28(13), 2567-2572. doi:10.1016/j.jeurceramsoc.2008.03.029 es_ES
dc.description.references Kuang, Q., & Yang, S. (2013). Template Synthesis of Single-Crystal-Like Porous SrTiO3 Nanocube Assemblies and Their Enhanced Photocatalytic Hydrogen Evolution. ACS Applied Materials & Interfaces, 5(9), 3683-3690. doi:10.1021/am400254n es_ES
dc.description.references Cheng, C., Shi, Y., Zhu, C., Li, W., Wang, L., Fung, K. K., & Wang, N. (2011). ZnO hierarchical structures for efficient quasi-solid dye-sensitized solar cells. Physical Chemistry Chemical Physics, 13(22), 10631. doi:10.1039/c1cp21068h es_ES
dc.description.references Li, K., Liu, J., Sheng, X., Chen, L., Xu, T., Zhu, K., & Feng, X. (2017). 100-Fold Enhancement of Charge Transport in Uniaxially Oriented Mesoporous Anatase TiO2 Films. Chemistry - A European Journal, 24(1), 89-92. doi:10.1002/chem.201704944 es_ES
dc.description.references Yu, H., Yan, S., Zhou, P., & Zou, Z. (2018). CO2 photoreduction on hydroxyl-group-rich mesoporous single crystal TiO2. Applied Surface Science, 427, 603-607. doi:10.1016/j.apsusc.2017.08.073 es_ES
dc.description.references Xu, M., Ruan, P., Xie, H., Yu, A., & Zhou, X. (2014). Mesoporous TiO2 Single-Crystal Polyhedron-Constructed Core–Shell Microspheres: Anisotropic Etching and Photovoltaic Property. ACS Sustainable Chemistry & Engineering, 2(4), 621-628. doi:10.1021/sc4005586 es_ES
dc.description.references Dong, Y., Fei, X., & Zhou, Y. (2017). Synthesis and photocatalytic activity of mesoporous – (001) facets TiO2 single crystals. Applied Surface Science, 403, 662-669. doi:10.1016/j.apsusc.2017.01.210 es_ES
dc.description.references Xu, H., Wang, W., & Zhu, W. (2006). A facile strategy to porous materials: Coordination-assisted heterogeneous dissolution route to the spherical Cu2O single crystallites with hierarchical pores. Microporous and Mesoporous Materials, 95(1-3), 321-328. doi:10.1016/j.micromeso.2006.06.007 es_ES
dc.description.references Wang, Z., Wang, Z., Wu, H., & Lou, X. W. (2013). Mesoporous Single-crystal CoSn(OH)6 Hollow Structures with Multilevel Interiors. Scientific Reports, 3(1). doi:10.1038/srep01391 es_ES
dc.description.references Son, D. H., Hughes, S. M., Yin, Y., & Paul Alivisatos, A. (2004). Cation Exchange Reactions in Ionic Nanocrystals. Science, 306(5698), 1009-1012. doi:10.1126/science.1103755 es_ES
dc.description.references Bothe, C., Kornowski, A., Tornatzky, H., Schmidtke, C., Lange, H., Maultzsch, J., & Weller, H. (2015). Solid-State Chemistry on the Nanoscale: Ion Transport through Interstitial Sites or Vacancies? Angewandte Chemie International Edition, 54(47), 14183-14186. doi:10.1002/anie.201507263 es_ES
dc.description.references Zhang, B., Jung, Y., Chung, H.-S., Vugt, L. V., & Agarwal, R. (2009). Nanowire Transformation by Size-Dependent Cation Exchange Reactions. Nano Letters, 10(1), 149-155. doi:10.1021/nl903059c es_ES
dc.description.references Lee, J. Y., Kim, D. S., & Park, J. (2007). Chemical Conversion Reaction between CdS Nanobelts and ZnS Nanobelts by Vapor Transport. Chemistry of Materials, 19(19), 4663-4669. doi:10.1021/cm070814f es_ES
dc.description.references Guo, Z., Su, Y., Li, Y.-X., Li, G., & Huang, X.-J. (2018). Porous Single-Crystalline CdSe Nanobelts: Cation-Exchange Synthesis and Highly Selective Photoelectric Sensing toward Cu2+. Chemistry - A European Journal, 24(39), 9877-9883. doi:10.1002/chem.201801215 es_ES
dc.description.references Butburee, T., Bai, Y., Wang, H., Chen, H., Wang, Z., Liu, G., … Wang, L. (2018). 2D Porous TiO 2 Single‐Crystalline Nanostructure Demonstrating High Photo‐Electrochemical Water Splitting Performance. Advanced Materials, 30(21), 1705666. doi:10.1002/adma.201705666 es_ES
dc.description.references Zhang, F., Yamakata, A., Maeda, K., Moriya, Y., Takata, T., Kubota, J., … Domen, K. (2012). Cobalt-Modified Porous Single-Crystalline LaTiO2N for Highly Efficient Water Oxidation under Visible Light. Journal of the American Chemical Society, 134(20), 8348-8351. doi:10.1021/ja301726c es_ES
dc.description.references Wagata, H., Zettsu, N., Yamaguchi, A., Nishikiori, H., Yubuta, K., Oishi, S., & Teshima, K. (2014). Chloride Flux Growth of La2Ti2O7 Crystals and Subsequent Nitridation To Form LaTiO2N Crystals. Crystal Growth & Design, 15(1), 124-128. doi:10.1021/cg5010006 es_ES
dc.description.references Pokrant, S., Dilger, S., & Landsmann, S. (2016). Morphology and mesopores in photoelectrochemically active LaTiO2N single crystals. Journal of Materials Research, 31(11), 1574-1579. doi:10.1557/jmr.2016.9 es_ES
dc.description.references Chen, L., Dai, H., Zhou, Y., Hu, Y., Yu, T., Liu, J., & Zou, Z. (2014). Porous, single crystalline titanium nitride nanoplates grown on carbon fibers: excellent counter electrodes for low-cost, high performance, fiber-shaped dye-sensitized solar cells. Chem. Commun., 50(92), 14321-14324. doi:10.1039/c4cc03882g es_ES
dc.description.references Han, Q., Zhou, Y., Tang, L., Li, P., Tu, W., Li, L., … Zou, Z. (2016). Synthesis of single-crystalline, porous TaON microspheres toward visible-light photocatalytic conversion of CO2 into liquid hydrocarbon fuels. RSC Advances, 6(93), 90792-90796. doi:10.1039/c6ra19368d es_ES
dc.description.references Nasi, L., Calestani, D., Fabbri, F., Ferro, P., Besagni, T., Fedeli, P., … Mosca, R. (2013). Mesoporous single-crystal ZnO nanobelts: supported preparation and patterning. Nanoscale, 5(3), 1060-1066. doi:10.1039/c2nr33123c es_ES
dc.description.references De Marco, L., Calestani, D., Qualtieri, A., Giannuzzi, R., Manca, M., Ferro, P., … Mosca, R. (2017). Single crystal mesoporous ZnO platelets as efficient photoanodes for sensitized solar cells. Solar Energy Materials and Solar Cells, 168, 227-233. doi:10.1016/j.solmat.2017.04.001 es_ES
dc.description.references Jin, X.-B., Li, Y.-X., Su, Y., Guo, Z., Gu, C.-P., Huang, J.-R., … Liu, J.-H. (2016). Porous and single-crystalline ZnO nanobelts: fabrication with annealing precursor nanobelts, and gas-sensing and optoelectronic performance. Nanotechnology, 27(35), 355702. doi:10.1088/0957-4484/27/35/355702 es_ES
dc.description.references Sun, J., Tian, S., Cai, X., Xiong, D., Verma, S. K., Zhang, Q., … Zhao, X. (2016). Low-temperature solution synthesis of a ZnO nanorod array with a mesoporous surface mediated by cadmium ions. CrystEngComm, 18(42), 8277-8283. doi:10.1039/c6ce01989g es_ES
dc.description.references Elliman, R. G., & Williams, J. S. (2015). Advances in ion beam modification of semiconductors. Current Opinion in Solid State and Materials Science, 19(1), 49-67. doi:10.1016/j.cossms.2014.11.007 es_ES
dc.description.references Asahi, R., Morikawa, T., Irie, H., & Ohwaki, T. (2014). Nitrogen-Doped Titanium Dioxide as Visible-Light-Sensitive Photocatalyst: Designs, Developments, and Prospects. Chemical Reviews, 114(19), 9824-9852. doi:10.1021/cr5000738 es_ES
dc.description.references Md Saad, S. K., Umar, A. A., Nguyen, H. Q., Dee, C. F., Salleh, M. M., & Oyama, M. (2014). Porous (001)-faceted Zn-doped anatase TiO2 nanowalls and their heterogeneous photocatalytic characterization. RSC Adv., 4(100), 57054-57063. doi:10.1039/c4ra08991j es_ES
dc.description.references Kitahara, M., Shimasaki, Y., Matsuno, T., Kuroda, Y., Shimojima, A., Wada, H., & Kuroda, K. (2015). The Critical Effect of Niobium Doping on the Formation of Mesostructured TiO2: Single-Crystalline Ordered Mesoporous Nb-TiO2and Plate-like Nb-TiO2with Ordered Mesoscale Dimples. Chemistry - A European Journal, 21(37), 13073-13079. doi:10.1002/chem.201501509 es_ES
dc.description.references Shen, S., Niu, J., Shen, S., Zhou, L., Chen, H., Zhang, S., … Qiang, Y. (2017). A method for adjusting nitrogen doping amount in anatase TiO 2 single crystals with well-faceted shape and micron size. Journal of Physics and Chemistry of Solids, 107, 75-82. doi:10.1016/j.jpcs.2017.01.031 es_ES
dc.description.references Yang, S., Xu, Y., Cao, Y., Zhang, G., Sun, Y., & Gao, D. (2013). Zn(ii)-doped γ-Fe2O3 single-crystalline nanoplates with high phase-transition temperature, superparamagnetic property and good photocatalytic property. RSC Advances, 3(44), 21994. doi:10.1039/c3ra43695k es_ES
dc.description.references Bai, S., Jiang, J., Zhang, Q., & Xiong, Y. (2015). Steering charge kinetics in photocatalysis: intersection of materials syntheses, characterization techniques and theoretical simulations. Chemical Society Reviews, 44(10), 2893-2939. doi:10.1039/c5cs00064e es_ES
dc.description.references Linic, S., Christopher, P., & Ingram, D. B. (2011). Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nature Materials, 10(12), 911-921. doi:10.1038/nmat3151 es_ES
dc.description.references Linsebigler, A. L., Lu, G., & Yates, J. T. (1995). Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. Chemical Reviews, 95(3), 735-758. doi:10.1021/cr00035a013 es_ES
dc.description.references Mou, H., Song, C., Zhou, Y., Zhang, B., & Wang, D. (2018). Design and synthesis of porous Ag/ZnO nanosheets assemblies as super photocatalysts for enhanced visible-light degradation of 4-nitrophenol and hydrogen evolution. Applied Catalysis B: Environmental, 221, 565-573. doi:10.1016/j.apcatb.2017.09.061 es_ES
dc.description.references Chen, D., Huang, Z., Quan, H., Chen, S., Lin, J., Luo, X., & Guo, L. (2016). Mesoporous Single Crystal Rutile TiO<SUB>2</SUB> Rods Modified with Ag Nanoparticles as a Photocatalyst for Degradation of Pollutants. Science of Advanced Materials, 8(4), 760-766. doi:10.1166/sam.2016.2675 es_ES
dc.description.references Hou, J., Wang, Z., Yang, C., Zhou, W., Jiao, S., & Zhu, H. (2013). Hierarchically Plasmonic Z-Scheme Photocatalyst of Ag/AgCl Nanocrystals Decorated Mesoporous Single-Crystalline Metastable Bi20TiO32 Nanosheets. The Journal of Physical Chemistry C, 117(10), 5132-5141. doi:10.1021/jp311996r es_ES
dc.description.references Park, C. H., Lee, C. M., Choi, J. W., Park, G. C., & Joo, J. (2018). Enhanced photocatalytic activity of porous single crystal TiO2/CNT composites by annealing process. Ceramics International, 44(2), 1641-1645. doi:10.1016/j.ceramint.2017.10.086 es_ES
dc.description.references Zhang, J., Zhao, W., Xu, Y., Xu, H., & Zhang, B. (2014). In-situ photo-reducing graphene oxide to create Zn0.5Cd0.5S porous nanosheets/RGO composites as highly stable and efficient photoelectrocatalysts for visible-light-driven water splitting. International Journal of Hydrogen Energy, 39(2), 702-710. doi:10.1016/j.ijhydene.2013.10.118 es_ES
dc.description.references Schrauben, J. N., Hayoun, R., Valdez, C. N., Braten, M., Fridley, L., & Mayer, J. M. (2012). Titanium and Zinc Oxide Nanoparticles Are Proton-Coupled Electron Transfer Agents. Science, 336(6086), 1298-1301. doi:10.1126/science.1220234 es_ES
dc.description.references Wang, Z., Yang, C., Lin, T., Yin, H., Chen, P., Wan, D., … Jiang, M. (2013). H-Doped Black Titania with Very High Solar Absorption and Excellent Photocatalysis Enhanced by Localized Surface Plasmon Resonance. Advanced Functional Materials, 23(43), 5444-5450. doi:10.1002/adfm.201300486 es_ES
dc.description.references Chen, X., Liu, L., & Huang, F. (2015). Black titanium dioxide (TiO2) nanomaterials. Chemical Society Reviews, 44(7), 1861-1885. doi:10.1039/c4cs00330f es_ES
dc.description.references Zhao, Z., Tan, H., Zhao, H., Lv, Y., Zhou, L.-J., Song, Y., & Sun, Z. (2014). Reduced TiO2rutile nanorods with well-defined facets and their visible-light photocatalytic activity. Chem. Commun., 50(21), 2755-2757. doi:10.1039/c3cc49182j es_ES
dc.description.references Sinhamahapatra, A., Jeon, J.-P., & Yu, J.-S. (2015). A new approach to prepare highly active and stable black titania for visible light-assisted hydrogen production. Energy & Environmental Science, 8(12), 3539-3544. doi:10.1039/c5ee02443a es_ES
dc.description.references Li, H., Chen, Z., Tsang, C. K., Li, Z., Ran, X., Lee, C., … Li, Y. Y. (2014). Electrochemical doping of anatase TiO2in organic electrolytes for high-performance supercapacitors and photocatalysts. J. Mater. Chem. A, 2(1), 229-236. doi:10.1039/c3ta13963h es_ES
dc.description.references FUJISHIMA, A., & HONDA, K. (1972). Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 238(5358), 37-38. doi:10.1038/238037a0 es_ES
dc.description.references Lai, J., Shafi, K. V. P. M., Loos, K., Ulman, A., Lee, Y., Vogt, T., & Estournès, C. (2003). Doping γ-Fe2O3 Nanoparticles with Mn(III) Suppresses the Transition to the α-Fe2O3 Structure. Journal of the American Chemical Society, 125(38), 11470-11471. doi:10.1021/ja035409d es_ES
dc.description.references Yang, J., Wang, D., Han, H., & Li, C. (2013). Roles of Cocatalysts in Photocatalysis and Photoelectrocatalysis. Accounts of Chemical Research, 46(8), 1900-1909. doi:10.1021/ar300227e es_ES
dc.description.references Katsumata, K., Sakai, K., Ikeda, K., Carja, G., Matsushita, N., & Okada, K. (2013). Preparation and photocatalytic reduction of CO2 on noble metal (Pt, Pd, Au) loaded Zn–Cr layered double hydroxides. Materials Letters, 107, 138-140. doi:10.1016/j.matlet.2013.05.132 es_ES
dc.description.references Liu, L., Ji, Z., Zou, W., Gu, X., Deng, Y., Gao, F., … Dong, L. (2013). In Situ Loading Transition Metal Oxide Clusters on TiO2 Nanosheets As Co-catalysts for Exceptional High Photoactivity. ACS Catalysis, 3(9), 2052-2061. doi:10.1021/cs4002755 es_ES
dc.description.references Maciá-Agulló, J. A., Corma, A., & Garcia, H. (2015). Photobiocatalysis: The Power of Combining Photocatalysis and Enzymes. Chemistry - A European Journal, 21(31), 10940-10959. doi:10.1002/chem.201406437 es_ES
dc.description.references Liu, L., Ouyang, S., & Ye, J. (2013). Gold-Nanorod-Photosensitized Titanium Dioxide with Wide-Range Visible-Light Harvesting Based on Localized Surface Plasmon Resonance. Angewandte Chemie International Edition, 52(26), 6689-6693. doi:10.1002/anie.201300239 es_ES
dc.description.references Ran, J., Zhang, J., Yu, J., Jaroniec, M., & Qiao, S. Z. (2014). Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem. Soc. Rev., 43(22), 7787-7812. doi:10.1039/c3cs60425j es_ES
dc.description.references Li, W., Bai, Y., Zhuang, W., Chan, K.-Y., Liu, C., Yang, Z., … Lu, X. (2014). Highly Crystalline Mesoporous TiO2(B) Nanofibers. The Journal of Physical Chemistry C, 118(6), 3049-3055. doi:10.1021/jp408112z es_ES
dc.description.references Noda, Y., Lee, B., Domen, K., & Kondo, J. N. (2008). Synthesis of Crystallized Mesoporous Tantalum Oxide and Its Photocatalytic Activity for Overall Water Splitting under Ultraviolet Light Irradiation. Chemistry of Materials, 20(16), 5361-5367. doi:10.1021/cm703202n es_ES
dc.description.references Kondo, J. N., & Domen, K. (2007). Crystallization of Mesoporous Metal Oxides. Chemistry of Materials, 20(3), 835-847. doi:10.1021/cm702176m es_ES
dc.description.references Kato, H., Asakura, K., & Kudo, A. (2003). Highly Efficient Water Splitting into H2 and O2 over Lanthanum-Doped NaTaO3 Photocatalysts with High Crystallinity and Surface Nanostructure. Journal of the American Chemical Society, 125(10), 3082-3089. doi:10.1021/ja027751g es_ES
dc.description.references Yang, J., Yan, H., Wang, X., Wen, F., Wang, Z., Fan, D., … Li, C. (2012). Roles of cocatalysts in Pt–PdS/CdS with exceptionally high quantum efficiency for photocatalytic hydrogen production. Journal of Catalysis, 290, 151-157. doi:10.1016/j.jcat.2012.03.008 es_ES
dc.description.references Sakata, Y., Hayashi, T., Yasunaga, R., Yanaga, N., & Imamura, H. (2015). Remarkably high apparent quantum yield of the overall photocatalytic H2O splitting achieved by utilizing Zn ion added Ga2O3 prepared using dilute CaCl2 solution. Chemical Communications, 51(65), 12935-12938. doi:10.1039/c5cc03483c es_ES
dc.description.references Goto, Y., Hisatomi, T., Wang, Q., Higashi, T., Ishikiriyama, K., Maeda, T., … Domen, K. (2018). A Particulate Photocatalyst Water-Splitting Panel for Large-Scale Solar Hydrogen Generation. Joule, 2(3), 509-520. doi:10.1016/j.joule.2017.12.009 es_ES
dc.description.references Hojamberdiev, M., Wagata, H., Yubuta, K., Kawashima, K., Vequizo, J. J. M., Yamakata, A., … Teshima, K. (2016). KCl flux-induced growth of isometric crystals of cadmium-containing early transition-metal (Ti 4+ , Nb 5+ , and Ta 5+ ) oxides and nitridability to form their (oxy)nitride derivatives under an NH 3 atmosphere for water splitting application. Applied Catalysis B: Environmental, 182, 626-635. doi:10.1016/j.apcatb.2015.10.002 es_ES
dc.description.references Qureshi, M., & Takanabe, K. (2016). Insights on Measuring and Reporting Heterogeneous Photocatalysis: Efficiency Definitions and Setup Examples. Chemistry of Materials, 29(1), 158-167. doi:10.1021/acs.chemmater.6b02907 es_ES
dc.description.references Ulmer, U., Dingle, T., Duchesne, P. N., Morris, R. H., Tavasoli, A., Wood, T., & Ozin, G. A. (2019). Fundamentals and applications of photocatalytic CO2 methanation. Nature Communications, 10(1). doi:10.1038/s41467-019-10996-2 es_ES
dc.description.references Shehzad, N., Tahir, M., Johari, K., Murugesan, T., & Hussain, M. (2018). A critical review on TiO2 based photocatalytic CO2 reduction system: Strategies to improve efficiency. Journal of CO2 Utilization, 26, 98-122. doi:10.1016/j.jcou.2018.04.026 es_ES
dc.description.references Zeng, S., Kar, P., Thakur, U. K., & Shankar, K. (2018). A review on photocatalytic CO2reduction using perovskite oxide nanomaterials. Nanotechnology, 29(5), 052001. doi:10.1088/1361-6528/aa9fb1 es_ES
dc.description.references Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N., & Snaith, H. J. (2012). Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science, 338(6107), 643-647. doi:10.1126/science.1228604 es_ES
dc.description.references Jiang, Q., Zhao, Y., Zhang, X., Yang, X., Chen, Y., Chu, Z., … You, J. (2019). Surface passivation of perovskite film for efficient solar cells. Nature Photonics, 13(7), 460-466. doi:10.1038/s41566-019-0398-2 es_ES
dc.description.references Atienzar, P., Ishwara, T., Illy, B. N., Ryan, M. P., O’Regan, B. C., Durrant, J. R., & Nelson, J. (2010). Control of Photocurrent Generation in Polymer/ZnO Nanorod Solar Cells by Using a Solution-Processed TiO2 Overlayer. The Journal of Physical Chemistry Letters, 1(4), 708-713. doi:10.1021/jz900356u es_ES
dc.description.references Roy, P., Kim, D., Lee, K., Spiecker, E., & Schmuki, P. (2010). TiO2 nanotubes and their application in dye-sensitized solar cells. Nanoscale, 2(1), 45-59. doi:10.1039/b9nr00131j es_ES
dc.description.references Knez, M., Nielsch, K., & Niinistö, L. (2007). Synthesis and Surface Engineering of Complex Nanostructures by Atomic Layer Deposition. Advanced Materials, 19(21), 3425-3438. doi:10.1002/adma.200700079 es_ES
dc.description.references Halaoui, L. I., Abrams, N. M., & Mallouk, T. E. (2005). Increasing the Conversion Efficiency of Dye-Sensitized TiO2 Photoelectrochemical Cells by Coupling to Photonic Crystals. The Journal of Physical Chemistry B, 109(13), 6334-6342. doi:10.1021/jp044228a es_ES
dc.description.references Ramiro-Manzano, F., Atienzar, P., Rodriguez, I., Meseguer, F., Garcia, H., & Corma, A. (2007). Apollony photonic sponge based photoelectrochemical solar cells. Chem. Commun., (3), 242-244. doi:10.1039/b613422j es_ES
dc.description.references Zhu, K., Neale, N. R., Miedaner, A., & Frank, A. J. (2006). Enhanced Charge-Collection Efficiencies and Light Scattering in Dye-Sensitized Solar Cells Using Oriented TiO2 Nanotubes Arrays. Nano Letters, 7(1), 69-74. doi:10.1021/nl062000o es_ES
dc.description.references O’Regan, B., & Grätzel, M. (1991). A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 353(6346), 737-740. doi:10.1038/353737a0 es_ES
dc.description.references Bach, U., Lupo, D., Comte, P., Moser, J. E., Weissörtel, F., Salbeck, J., … Grätzel, M. (1998). Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature, 395(6702), 583-585. doi:10.1038/26936 es_ES
dc.description.references Pitchaiya, S., Natarajan, M., Santhanam, A., Asokan, V., Yuvapragasam, A., Madurai Ramakrishnan, V., … Velauthapillai, D. (2020). A review on the classification of organic/inorganic/carbonaceous hole transporting materials for perovskite solar cell application. Arabian Journal of Chemistry, 13(1), 2526-2557. doi:10.1016/j.arabjc.2018.06.006 es_ES
dc.description.references Kojima, A., Teshima, K., Shirai, Y., & Miyasaka, T. (2009). Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society, 131(17), 6050-6051. doi:10.1021/ja809598r es_ES
dc.description.references Snaith, H. J. (2013). Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells. The Journal of Physical Chemistry Letters, 4(21), 3623-3630. doi:10.1021/jz4020162 es_ES
dc.description.references Kim, H.-S., Lee, C.-R., Im, J.-H., Lee, K.-B., Moehl, T., Marchioro, A., … Park, N.-G. (2012). Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Scientific Reports, 2(1). doi:10.1038/srep00591 es_ES
dc.description.references Jiang, C. Y., Koh, W. L., Leung, M. Y., Chiam, S. Y., Wu, J. S., & Zhang, J. (2012). Low temperature processing solid-state dye sensitized solar cells. Applied Physics Letters, 100(11), 113901. doi:10.1063/1.3693399 es_ES
dc.description.references Lu, G., Linsebigler, A., & Yates, J. T. (1994). Ti3+ Defect Sites on TiO2(110): Production and Chemical Detection of Active Sites. The Journal of Physical Chemistry, 98(45), 11733-11738. doi:10.1021/j100096a017 es_ES
dc.description.references Yang, S., Zheng, Y. C., Hou, Y., Yang, X. H., & Yang, H. G. (2014). Anatase TiO2 with nanopores for dye-sensitized solar cells. Phys. Chem. Chem. Phys., 16(42), 23038-23043. doi:10.1039/c4cp02522a es_ES
dc.description.references Cölfen, H., & Antonietti, M. (2005). Mesocrystals: Inorganic Superstructures Made by Highly Parallel Crystallization and Controlled Alignment. Angewandte Chemie International Edition, 44(35), 5576-5591. doi:10.1002/anie.200500496 es_ES
dc.description.references Feng, X., Zhu, K., Frank, A. J., Grimes, C. A., & Mallouk, T. E. (2012). Rapid Charge Transport in Dye-Sensitized Solar Cells Made from Vertically Aligned Single-Crystal Rutile TiO2 Nanowires. Angewandte Chemie International Edition, 51(11), 2727-2730. doi:10.1002/anie.201108076 es_ES
dc.description.references Ito, S., Liska, P., Comte, P., Charvet, R., Péchy, P., Bach, U., … Grätzel, M. (2005). Control of dark current in photoelectrochemical (TiO2/I––I3–) and dye-sensitized solar cells. Chemical Communications, (34), 4351. doi:10.1039/b505718c es_ES
dc.description.references Zhang, Q., Dandeneau, C. S., Zhou, X., & Cao, G. (2009). ZnO Nanostructures for Dye-Sensitized Solar Cells. Advanced Materials, 21(41), 4087-4108. doi:10.1002/adma.200803827 es_ES
dc.description.references Look, D. C., Reynolds, D. C., Sizelove, J. R., Jones, R. L., Litton, C. W., Cantwell, G., & Harsch, W. C. (1998). Electrical properties of bulk ZnO. Solid State Communications, 105(6), 399-401. doi:10.1016/s0038-1098(97)10145-4 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem