Mostrar el registro sencillo del ítem
dc.contributor.author | Niu, Jinan | es_ES |
dc.contributor.author | Albero-Sancho, Josep | es_ES |
dc.contributor.author | Atienzar Corvillo, Pedro Enrique | es_ES |
dc.contributor.author | García Gómez, Hermenegildo | es_ES |
dc.date.accessioned | 2021-04-17T03:33:32Z | |
dc.date.available | 2021-04-17T03:33:32Z | |
dc.date.issued | 2020-04 | es_ES |
dc.identifier.issn | 1616-301X | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/165302 | |
dc.description | This is the peer reviewed version of the following article: Niu, J., Albero, J., Atienzar, P., García, H., Porous Single-Crystal-Based Inorganic Semiconductor Photocatalysts for Energy Production and Environmental Remediation: Preparation, Modification, and Applications. Adv. Funct. Mater. 2020, 30, 1908984, which has been published in final form at https://doi.org/10.1002/adfm.201908984. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. | es_ES |
dc.description.abstract | [EN] Semiconductor photocatalytic and photovoltaic performance depends on crystallinity and surface area to a large extent. One strategy that has recently emergyed to improve semiconductor photoresponse efficiency is their synthesis as porous single crystals (PSCs), therefore providing simultaneously high crystallinity, minimization of grain boundaries, and large specific surface area. Other factors, such as high density of active sites, and enhanced light absorption, also contribute to increased PSC photoresponse with respect to analogous bulk or amorphous materials. This review initially presents the concept and main properties of PSCs. Then, the synthetic routes and the applications as photocatalysts and as photovoltaic devices, mainly in sunlight applications, are summarized. The synthetic procedures have been classified according to the mechanism of pore generation. Applications cover photocatalysis for environmental remediation, solar fuels production, selective photooxidation of organic compounds, and photovoltaic devices. Finally, a summary and views on future developments are provided. The purpose of this review is to show how the use of PSCs is a powerful general methodology applicable beyond metal oxides and can ultimately lead to sufficient photoresponse efficiency, bringing these processes close to commercial application. | es_ES |
dc.description.sponsorship | Financial support by the Spanish Ministry of Economy and Competitiveness (Severo Ochoa SEV2016-0683 and RTI2018-89023-CO2-R1) and by the Generalitat Valenciana (Prometeo 2017-083) is gratefully acknowledged. J.N. also gratefully acknowledges financial support from the Fundamental Research Funds for the Central Universities (2019XKQYMS76). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | Advanced Functional Materials | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Environmental remediation | es_ES |
dc.subject | Photocatalysis | es_ES |
dc.subject | Photovoltaics | es_ES |
dc.subject | Single crystals | es_ES |
dc.subject | Solar fuels | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Porous Single-Crystal-Based Inorganic Semiconductor Photocatalysts for Energy Production and Environmental Remediation: Preparation, Modification, and Applications | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/adfm.201908984 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Fundamental Research Funds for the Central Universities//2019XKQYMS76/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F083/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-098237-B-C21/ES/HETEROUNIONES DE GRAFENO CON CONFIGURACION CONTROLADA. SINTESIS Y APLICACIONES COMO SOPORTE EN CATALISIS Y EN ELECTRODOS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.description.bibliographicCitation | Niu, J.; Albero-Sancho, J.; Atienzar Corvillo, PE.; García Gómez, H. (2020). Porous Single-Crystal-Based Inorganic Semiconductor Photocatalysts for Energy Production and Environmental Remediation: Preparation, Modification, and Applications. Advanced Functional Materials. 30(15):1-51. https://doi.org/10.1002/adfm.201908984 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/adfm.201908984 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 51 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 30 | es_ES |
dc.description.issue | 15 | es_ES |
dc.relation.pasarela | S\432043 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Fundamental Research Funds for the Central Universities | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Lee, B., Yamashita, T., Lu, D., Kondo, J. N., & Domen, K. (2002). Single-Crystal Particles of Mesoporous Niobium−Tantalum Mixed Oxide. Chemistry of Materials, 14(2), 867-875. doi:10.1021/cm010775m | es_ES |
dc.description.references | Crossland, E. J. W., Noel, N., Sivaram, V., Leijtens, T., Alexander-Webber, J. A., & Snaith, H. J. (2013). Mesoporous TiO2 single crystals delivering enhanced mobility and optoelectronic device performance. Nature, 495(7440), 215-219. doi:10.1038/nature11936 | es_ES |
dc.description.references | Liu, G., Yang, H. G., Pan, J., Yang, Y. Q., Lu, G. Q. (Max), & Cheng, H.-M. (2014). Titanium Dioxide Crystals with Tailored Facets. Chemical Reviews, 114(19), 9559-9612. doi:10.1021/cr400621z | es_ES |
dc.description.references | Zheng, X., Lv, Y., Kuang, Q., Zhu, Z., Long, X., & Yang, S. (2014). Close-Packed Colloidal SiO2 as a Nanoreactor: Generalized Synthesis of Metal Oxide Mesoporous Single Crystals and Mesocrystals. Chemistry of Materials, 26(19), 5700-5709. doi:10.1021/cm5025475 | es_ES |
dc.description.references | Jiao, W., Xie, Y., Chen, R., Zhen, C., Liu, G., Ma, X., & Cheng, H.-M. (2013). Synthesis of mesoporous single crystal rutile TiO2 with improved photocatalytic and photoelectrochemical activities. Chemical Communications, 49(100), 11770. doi:10.1039/c3cc46527f | es_ES |
dc.description.references | Fang, W. Q., Huo, Z., Liu, P., Wang, X. L., Zhang, M., Jia, Y., … Yao, X. (2014). Fluorine-Doped Porous Single-Crystal Rutile TiO2Nanorods for Enhancing Photoelectrochemical Water Splitting. Chemistry - A European Journal, 20(36), 11439-11444. doi:10.1002/chem.201402914 | es_ES |
dc.description.references | Bian, Z., Zhu, J., Wen, J., Cao, F., Huo, Y., Qian, X., … Lu, Y. (2010). Single-Crystal-like Titania Mesocages. Angewandte Chemie International Edition, 50(5), 1105-1108. doi:10.1002/anie.201004972 | es_ES |
dc.description.references | Cho, S., Kim, S., Jung, D.-W., & Lee, K.-H. (2011). Formation of quasi-single crystalline porous ZnO nanostructures with a single large cavity. Nanoscale, 3(9), 3841. doi:10.1039/c1nr10609k | es_ES |
dc.description.references | Xu, G., Deng, S., Zhang, Y., Wei, X., Yang, X., Liu, Y., … Han, G. (2014). Mesoporous-structure-tailored hydrothermal synthesis and mechanism of the SrTiO3 mesoporous spheres by controlling the silicate semipermeable membranes with the KOH concentrations. CrystEngComm, 16(10), 2025. doi:10.1039/c3ce41809j | es_ES |
dc.description.references | Wei, L., Yang, Z., Ren, H., & Chen, X. (2010). Phase Transitional Behavior and Electrical Properties of Sr2K0.1Na0.9Nb5−xTaxO15 Ceramics. Journal of the American Ceramic Society, 93(12), 3986-3989. doi:10.1111/j.1551-2916.2010.04177.x | es_ES |
dc.description.references | Hong, Z., Zhou, K., Huang, Z., & Wei, M. (2015). Iso-Oriented Anatase TiO2 Mesocages as a High Performance Anode Material for Sodium-Ion Storage. Scientific Reports, 5(1). doi:10.1038/srep11960 | es_ES |
dc.description.references | Song, R.-Q., & Cölfen, H. (2009). Mesocrystals-Ordered Nanoparticle Superstructures. Advanced Materials, 22(12), 1301-1330. doi:10.1002/adma.200901365 | es_ES |
dc.description.references | Weckhuysen, B. M., & Yu, J. (2015). Recent advances in zeolite chemistry and catalysis. Chemical Society Reviews, 44(20), 7022-7024. doi:10.1039/c5cs90100f | es_ES |
dc.description.references | Rangnekar, N., Mittal, N., Elyassi, B., Caro, J., & Tsapatsis, M. (2015). Zeolite membranes – a review and comparison with MOFs. Chemical Society Reviews, 44(20), 7128-7154. doi:10.1039/c5cs00292c | es_ES |
dc.description.references | Wang, C. W., Yang, S., Fang, W. Q., Liu, P., Zhao, H., & Yang, H. G. (2015). Engineered Hematite Mesoporous Single Crystals Drive Drastic Enhancement in Solar Water Splitting. Nano Letters, 16(1), 427-433. doi:10.1021/acs.nanolett.5b04059 | es_ES |
dc.description.references | Wu, Q., Bao, S., Tian, B., Xiao, Y., & Zhang, J. (2016). Double-diffusion-based synthesis of BiVO4 mesoporous single crystals with enhanced photocatalytic activity for oxygen evolution. Chemical Communications, 52(47), 7478-7481. doi:10.1039/c6cc02737g | es_ES |
dc.description.references | Niu, J., Shen, S., Zhou, L., Liu, Z., Feng, P., Ou, X., & Qiang, Y. (2016). Synthesis and hydrogenation of anatase TiO2 microspheres composed of porous single crystals for significantly improved photocatalytic activity. RSC Advances, 6(67), 62907-62910. doi:10.1039/c6ra12053a | es_ES |
dc.description.references | Lu, D., Ouyang, S., Xu, H., Li, D., Zhang, X., Li, Y., & Ye, J. (2016). Designing Au Surface-Modified Nanoporous-Single-Crystalline SrTiO3 to Optimize Diffusion of Surface Plasmon Resonance-Induce Photoelectron toward Enhanced Visible-Light Photoactivity. ACS Applied Materials & Interfaces, 8(14), 9506-9513. doi:10.1021/acsami.6b00889 | es_ES |
dc.description.references | Jiang, S., Zhang, J., Qi, X., He, M., & Li, J. (2013). Large-area synthesis of diameter-controllable porous single crystal gallium nitride micro/nanotube arrays. CrystEngComm, 15(46), 9837. doi:10.1039/c3ce41803k | es_ES |
dc.description.references | Liu, H., Chen, X., Yan, S., Li, Z., & Zou, Z. (2014). Basic Molten Salt Route to Prepare Porous SrTiO3Nanocrystals for Efficient Photocatalytic Hydrogen Production. European Journal of Inorganic Chemistry, 2014(23), 3731-3735. doi:10.1002/ejic.201402280 | es_ES |
dc.description.references | Li, C., Chen, G., Sun, J., Rao, J., Han, Z., Hu, Y., & Zhou, Y. (2015). A Novel Mesoporous Single-Crystal-Like Bi2WO6 with Enhanced Photocatalytic Activity for Pollutants Degradation and Oxygen Production. ACS Applied Materials & Interfaces, 7(46), 25716-25724. doi:10.1021/acsami.5b06995 | es_ES |
dc.description.references | Choi, J., Song, S., Hörantner, M. T., Snaith, H. J., & Park, T. (2016). Well-Defined Nanostructured, Single-Crystalline TiO2 Electron Transport Layer for Efficient Planar Perovskite Solar Cells. ACS Nano, 10(6), 6029-6036. doi:10.1021/acsnano.6b01575 | es_ES |
dc.description.references | Yu, Y., Zhang, J., Wu, X., Zhao, W., & Zhang, B. (2011). Nanoporous Single-Crystal-Like CdxZn1−xS Nanosheets Fabricated by the Cation-Exchange Reaction of Inorganic-Organic Hybrid ZnS-Amine with Cadmium Ions. Angewandte Chemie International Edition, 51(4), 897-900. doi:10.1002/anie.201105786 | es_ES |
dc.description.references | Zhao, W., Liu, C., Cao, L., Yin, X., Xu, H., & Zhang, B. (2013). Porous single-crystalline CdS nanosheets as efficient visible light catalysts for aerobic oxidative coupling of amines to imines. RSC Advances, 3(45), 22944. doi:10.1039/c3ra43929a | es_ES |
dc.description.references | Liu, J., Hu, Z.-Y., Peng, Y., Huang, H.-W., Li, Y., Wu, M., … Su, B.-L. (2016). 2D ZnO mesoporous single-crystal nanosheets with exposed {0001} polar facets for the depollution of cationic dye molecules by highly selective adsorption and photocatalytic decomposition. Applied Catalysis B: Environmental, 181, 138-145. doi:10.1016/j.apcatb.2015.07.054 | es_ES |
dc.description.references | Niu, J., Shen, S., He, S., Liu, Z., Feng, P., Zhang, S., … Zhu, Z. (2015). Synthesis and photoactivity of anatase porous single crystals with different pore sizes. Ceramics International, 41(9), 11936-11944. doi:10.1016/j.ceramint.2015.06.005 | es_ES |
dc.description.references | Sivaram, V., Crossland, E. J. W., Leijtens, T., Noel, N. K., Alexander-Webber, J., Docampo, P., & Snaith, H. J. (2014). Observation of Annealing-Induced Doping in TiO2 Mesoporous Single Crystals for Use in Solid State Dye Sensitized Solar Cells. The Journal of Physical Chemistry C, 118(4), 1821-1827. doi:10.1021/jp410495k | es_ES |
dc.description.references | Kondo, J. N., Takahara, Y., Lee, B., Lu, D., & Domen, K. (2002). Topics in Catalysis, 19(2), 171-177. doi:10.1023/a:1015255906229 | es_ES |
dc.description.references | Jiang, H., Meng, X., Dai, H., Deng, J., Liu, Y., Zhang, L., … Zhang, R. (2012). High-performance porous spherical or octapod-like single-crystalline BiVO4 photocatalysts for the removal of phenol and methylene blue under visible-light illumination. Journal of Hazardous Materials, 217-218, 92-99. doi:10.1016/j.jhazmat.2012.02.073 | es_ES |
dc.description.references | Liu, Y., Luo, Y., Elzatahry, A. A., Luo, W., Che, R., Fan, J., … Zhao, D. (2015). Mesoporous TiO2 Mesocrystals: Remarkable Defects-Induced Crystallite-Interface Reactivity and Their in Situ Conversion to Single Crystals. ACS Central Science, 1(7), 400-408. doi:10.1021/acscentsci.5b00256 | es_ES |
dc.description.references | Xiong, Y., Liu, Y., Lan, K., Mei, A., Sheng, Y., Zhao, D., & Han, H. (2018). Fully printable hole-conductor-free mesoscopic perovskite solar cells based on mesoporous anatase single crystals. New Journal of Chemistry, 42(4), 2669-2674. doi:10.1039/c7nj04448h | es_ES |
dc.description.references | Girija, K., Thirumalairajan, S., Patra, A. K., Mangalaraj, D., Ponpandian, N., & Viswanathan, C. (2013). Organic additives assisted synthesis of mesoporous β-Ga2O3 nanostructures for photocatalytic dye degradation. Semiconductor Science and Technology, 28(3), 035015. doi:10.1088/0268-1242/28/3/035015 | es_ES |
dc.description.references | Liu, H., Luo, M., Hu, J., Zhou, T., Chen, R., & Li, J. (2013). β-Bi2O3 and Er3+ doped β-Bi2O3 single crystalline nanosheets with exposed reactive {001} facets and enhanced photocatalytic performance. Applied Catalysis B: Environmental, 140-141, 141-150. doi:10.1016/j.apcatb.2013.04.009 | es_ES |
dc.description.references | Qiu, Y., Xu, G.-L., Kuang, Q., Sun, S.-G., & Yang, S. (2012). Hierarchical WO3 flowers comprising porous single-crystalline nanoplates show enhanced lithium storage and photocatalysis. Nano Research, 5(11), 826-832. doi:10.1007/s12274-012-0266-6 | es_ES |
dc.description.references | Cha, H. G., Kim, S. J., Lee, K. J., Jung, M. H., & Kang, Y. S. (2011). Single-Crystalline Porous Hematite Nanorods: Photocatalytic and Magnetic Properties. The Journal of Physical Chemistry C, 115(39), 19129-19135. doi:10.1021/jp206958g | es_ES |
dc.description.references | Bharathi, S., Nataraj, D., Mangalaraj, D., Masuda, Y., Senthil, K., & Yong, K. (2009). Highly mesoporous α-Fe2O3nanostructures: preparation, characterization and improved photocatalytic performance towards Rhodamine B (RhB). Journal of Physics D: Applied Physics, 43(1), 015501. doi:10.1088/0022-3727/43/1/015501 | es_ES |
dc.description.references | Liao, A., He, H., Tang, L., Li, Y., Zhang, J., Chen, J., … Zou, Z. (2018). Quasi-Topotactic Transformation of FeOOH Nanorods to Robust Fe2O3 Porous Nanopillars Triggered with a Facile Rapid Dehydration Strategy for Efficient Photoelectrochemical Water Splitting. ACS Applied Materials & Interfaces, 10(12), 10141-10146. doi:10.1021/acsami.8b00367 | es_ES |
dc.description.references | Li, L., Yu, Y., Meng, F., Tan, Y., Hamers, R. J., & Jin, S. (2012). Facile Solution Synthesis of α-FeF3·3H2O Nanowires and Their Conversion to α-Fe2O3 Nanowires for Photoelectrochemical Application. Nano Letters, 12(2), 724-731. doi:10.1021/nl2036854 | es_ES |
dc.description.references | Xu, T., Zheng, H., Zhang, P., Lin, W., & Sekiguchi, Y. (2015). Hydrothermal preparation of nanoporous TiO2 films with exposed {001} facets and superior photocatalytic activity. Journal of Materials Chemistry A, 3(37), 19115-19122. doi:10.1039/c5ta02640g | es_ES |
dc.description.references | Xu, T., Zheng, H., Zhang, P., & Lin, W. (2016). Photocatalytic degradation of a low concentration pharmaceutical pollutant by nanoporous TiO2film with exposed {001} facets. RSC Advances, 6(98), 95818-95824. doi:10.1039/c6ra22011h | es_ES |
dc.description.references | Liu, Y., Shen, S., Ren, F., Chen, J., Fu, Y., Zheng, X., … Jiang, C. (2016). Fabrication of porous TiO2nanorod array photoelectrodes with enhanced photoelectrochemical water splitting by helium ion implantation. Nanoscale, 8(20), 10642-10648. doi:10.1039/c5nr05594f | es_ES |
dc.description.references | Stein, A., Li, F., & Denny, N. R. (2007). Morphological Control in Colloidal Crystal Templating of Inverse Opals, Hierarchical Structures, and Shaped Particles. Chemistry of Materials, 20(3), 649-666. doi:10.1021/cm702107n | es_ES |
dc.description.references | Yamamoto, E., & Kuroda, K. (2016). Colloidal Mesoporous Silica Nanoparticles. Bulletin of the Chemical Society of Japan, 89(5), 501-539. doi:10.1246/bcsj.20150420 | es_ES |
dc.description.references | Li, J., Chang, H., Ma, L., Hao, J., & Yang, R. T. (2011). Low-temperature selective catalytic reduction of NOx with NH3 over metal oxide and zeolite catalysts—A review. Catalysis Today, 175(1), 147-156. doi:10.1016/j.cattod.2011.03.034 | es_ES |
dc.description.references | Ilić, B., & Wettstein, S. G. (2017). A review of adsorbate and temperature-induced zeolite framework flexibility. Microporous and Mesoporous Materials, 239, 221-234. doi:10.1016/j.micromeso.2016.10.005 | es_ES |
dc.description.references | Zheng, X., Kuang, Q., Yan, K., Qiu, Y., Qiu, J., & Yang, S. (2013). Mesoporous TiO2 Single Crystals: Facile Shape-, Size-, and Phase-Controlled Growth and Efficient Photocatalytic Performance. ACS Applied Materials & Interfaces, 5(21), 11249-11257. doi:10.1021/am403482g | es_ES |
dc.description.references | Zhou, Y., Yi, Q., Xing, M., Shang, L., Zhang, T., & Zhang, J. (2016). Graphene modified mesoporous titania single crystals with controlled and selective photoredox surfaces. Chemical Communications, 52(8), 1689-1692. doi:10.1039/c5cc07567j | es_ES |
dc.description.references | Dong, C., Song, H., Zhou, Y., Dong, C., Shen, B., Yang, H., … Zhang, J. (2016). Sulfur nanoparticles in situ growth on TiO2 mesoporous single crystals with enhanced solar light photocatalytic performance. RSC Advances, 6(81), 77863-77869. doi:10.1039/c6ra17884g | es_ES |
dc.description.references | Xing, M., Zhou, Y., Dong, C., Cai, L., Zeng, L., Shen, B., … Yin, Y. (2018). Modulation of the Reduction Potential of TiO2–x by Fluorination for Efficient and Selective CH4 Generation from CO2 Photoreduction. Nano Letters, 18(6), 3384-3390. doi:10.1021/acs.nanolett.8b00197 | es_ES |
dc.description.references | Zhu, Z., Zheng, X., Bai, Y., Zhang, T., Wang, Z., Xiao, S., & Yang, S. (2015). Mesoporous SnO2 single crystals as an effective electron collector for perovskite solar cells. Physical Chemistry Chemical Physics, 17(28), 18265-18268. doi:10.1039/c5cp01534k | es_ES |
dc.description.references | Wang, Y., Deng, Y., Fan, L., Zhao, Y., Shen, B., Wu, D., … Zhang, J. (2017). In situ strategy to prepare PDPB/SnO2 p–n heterojunction with a high photocatalytic activity. RSC Advances, 7(39), 24064-24069. doi:10.1039/c7ra02608k | es_ES |
dc.description.references | Liu, G., Yu, J. C., Lu, G. Q. (Max), & Cheng, H.-M. (2011). Crystal facet engineering of semiconductor photocatalysts: motivations, advances and unique properties. Chemical Communications, 47(24), 6763. doi:10.1039/c1cc10665a | es_ES |
dc.description.references | Chen, X., & Mao, S. S. (2007). Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications. Chemical Reviews, 107(7), 2891-2959. doi:10.1021/cr0500535 | es_ES |
dc.description.references | Ong, W.-J., Tan, L.-L., Chai, S.-P., Yong, S.-T., & Mohamed, A. R. (2014). Highly reactive {001} facets of TiO2-based composites: synthesis, formation mechanism and characterization. Nanoscale, 6(4), 1946. doi:10.1039/c3nr04655a | es_ES |
dc.description.references | Yang, H. G., Sun, C. H., Qiao, S. Z., Zou, J., Liu, G., Smith, S. C., … Lu, G. Q. (2008). Anatase TiO2 single crystals with a large percentage of reactive facets. Nature, 453(7195), 638-641. doi:10.1038/nature06964 | es_ES |
dc.description.references | Wu, T., Kang, X., Kadi, M. W., Ismail, I., Liu, G., & Cheng, H.-M. (2015). Enhanced photocatalytic hydrogen generation of mesoporous rutile TiO2 single crystal with wholly exposed {111} facets. Chinese Journal of Catalysis, 36(12), 2103-2108. doi:10.1016/s1872-2067(15)60996-2 | es_ES |
dc.description.references | Yu, H., Wang, L., & Dargusch, M. (2016). Low-temperature templated synthesis of porous TiO2 single-crystals for solar cell applications. Solar Energy, 123, 17-22. doi:10.1016/j.solener.2015.10.044 | es_ES |
dc.description.references | Zhen, C., Wu, T., Kadi, M. W., Ismail, I., Liu, G., & Cheng, H.-M. (2015). Design and construction of a film of mesoporous single-crystal rutile TiO2 rod arrays for photoelectrochemical water oxidation. Chinese Journal of Catalysis, 36(12), 2171-2177. doi:10.1016/s1872-2067(15)60981-0 | es_ES |
dc.description.references | Wang, J., Bian, Z., Zhu, J., & Li, H. (2013). Ordered mesoporous TiO2with exposed (001) facets and enhanced activity in photocatalytic selective oxidation of alcohols. J. Mater. Chem. A, 1(4), 1296-1302. doi:10.1039/c2ta00035k | es_ES |
dc.description.references | Yue, W., Randorn, C., Attidekou, P. S., Su, Z., Irvine, J. T. S., & Zhou, W. (2009). Syntheses, Li Insertion, and Photoactivity of Mesoporous Crystalline TiO2. Advanced Functional Materials, 19(17), 2826-2833. doi:10.1002/adfm.200900658 | es_ES |
dc.description.references | Malgras, V., Ji, Q., Kamachi, Y., Mori, T., Shieh, F.-K., Wu, K. C.-W., … Yamauchi, Y. (2015). Templated Synthesis for Nanoarchitectured Porous Materials. Bulletin of the Chemical Society of Japan, 88(9), 1171-1200. doi:10.1246/bcsj.20150143 | es_ES |
dc.description.references | Liu, Y., Lan, K., Li, S., Liu, Y., Kong, B., Wang, G., … Zhao, D. (2016). Constructing Three-Dimensional Mesoporous Bouquet-Posy-like TiO2 Superstructures with Radially Oriented Mesochannels and Single-Crystal Walls. Journal of the American Chemical Society, 139(1), 517-526. doi:10.1021/jacs.6b11641 | es_ES |
dc.description.references | Lin, J., Zhao, L., Heo, Y.-U., Wang, L., Bijarbooneh, F. H., Mozer, A. J., … Kim, J. H. (2015). Mesoporous anatase single crystals for efficient Co(2+/3+)-based dye-sensitized solar cells. Nano Energy, 11, 557-567. doi:10.1016/j.nanoen.2014.11.017 | es_ES |
dc.description.references | Shi, W., Zhang, X., Brillet, J., Huang, D., Li, M., Wang, M., & Shen, Y. (2016). Significant enhancement of the photoelectrochemical activity of WO3 nanoflakes by carbon quantum dots decoration. Carbon, 105, 387-393. doi:10.1016/j.carbon.2016.04.051 | es_ES |
dc.description.references | Wang, Q., Yuan, L., Dun, M., Yang, X., Chen, H., Li, J., & Hu, J. (2016). Synthesis and characterization of visible light responsive Bi3NbO7 porous nanosheets photocatalyst. Applied Catalysis B: Environmental, 196, 127-134. doi:10.1016/j.apcatb.2016.05.026 | es_ES |
dc.description.references | Tan, B., Zhang, X., Li, Y., Chen, H., Ye, X., Wang, Y., & Ye, J. (2017). Anatase TiO 2 Mesocrystals: Green Synthesis, In Situ Conversion to Porous Single Crystals, and Self‐Doping Ti 3+ for Enhanced Visible Light Driven Photocatalytic Removal of NO. Chemistry – A European Journal, 23(23), 5478-5487. doi:10.1002/chem.201605294 | es_ES |
dc.description.references | Chetia, T. R., Ansari, M. S., & Qureshi, M. (2015). Ethyl Cellulose and Cetrimonium Bromide Assisted Synthesis of Mesoporous, Hexagon Shaped ZnO Nanodisks with Exposed ±{0001} Polar Facets for Enhanced Photovoltaic Performance in Quantum Dot Sensitized Solar Cells. ACS Applied Materials & Interfaces, 7(24), 13266-13279. doi:10.1021/acsami.5b01039 | es_ES |
dc.description.references | Zhao, Y., Zhang, Y., Liu, H., Ji, H., Ma, W., Chen, C., … Zhao, J. (2013). Control of Exposed Facet and Morphology of Anatase Crystals through TiOxFy Precursor Synthesis and Impact of the Facet on Crystal Phase Transition. Chemistry of Materials, 26(2), 1014-1018. doi:10.1021/cm403054w | es_ES |
dc.description.references | Jin, Z., Zhang, Y.-X., Meng, F.-L., Jia, Y., Luo, T., Yu, X.-Y., … Huang, X.-J. (2014). Facile synthesis of porous single crystalline ZnO nanoplates and their application in photocatalytic reduction of Cr(VI) in the presence of phenol. Journal of Hazardous Materials, 276, 400-407. doi:10.1016/j.jhazmat.2014.05.059 | es_ES |
dc.description.references | Li, Z., Zhou, Y., Xue, G., Yu, T., Liu, J., & Zou, Z. (2012). Fabrication of hierarchically assembled microspheres consisting of nanoporous ZnO nanosheets for high-efficiency dye-sensitized solar cells. Journal of Materials Chemistry, 22(29), 14341. doi:10.1039/c2jm32823b | es_ES |
dc.description.references | Qiu, Y., Chen, W., & Yang, S. (2010). Facile hydrothermal preparation of hierarchically assembled, porous single-crystalline ZnO nanoplates and their application in dye-sensitized solar cells. J. Mater. Chem., 20(5), 1001-1006. doi:10.1039/b917305f | es_ES |
dc.description.references | Hosono, E., Tokunaga, T., Ueno, S., Oaki, Y., Imai, H., Zhou, H., & Fujihara, S. (2012). Crystal-Growth Process of Single-Crystal-like Mesoporous ZnO through a Competitive Reaction in Solution. Crystal Growth & Design, 12(6), 2923-2931. doi:10.1021/cg300116h | es_ES |
dc.description.references | Dong, J.-Y., Lin, C.-H., Hsu, Y.-J., Lu, S.-Y., & Wong, D. S.-H. (2012). Single-crystalline mesoporous ZnO nanosheets prepared with a green antisolvent method exhibiting excellent photocatalytic efficiencies. CrystEngComm, 14(14), 4732. doi:10.1039/c2ce06739k | es_ES |
dc.description.references | Luo, Q.-P., Wang, B., & Cao, Y. (2017). Single-crystalline porous ZnO nanosheet frameworks for efficient fully flexible dye-sensitized solar cells. Journal of Alloys and Compounds, 695, 3324-3330. doi:10.1016/j.jallcom.2016.10.130 | es_ES |
dc.description.references | Xu, Y., Wen, W., & Wu, J.-M. (2018). Titania nanowires functionalized polyester fabrics with enhanced photocatalytic and antibacterial performances. Journal of Hazardous Materials, 343, 285-297. doi:10.1016/j.jhazmat.2017.09.044 | es_ES |
dc.description.references | Dong, Q., Yin, S., Guo, C., Wu, X., Kumada, N., Takei, T., … Sato, T. (2014). Single-crystalline porous NiO nanosheets prepared from β-Ni(OH)2 nanosheets: Magnetic property and photocatalytic activity. Applied Catalysis B: Environmental, 147, 741-747. doi:10.1016/j.apcatb.2013.10.007 | es_ES |
dc.description.references | Ghosh, S., Roy, M., & Naskar, M. K. (2014). Template-free synthesis of mesoporous single-crystal CuO particles with dumbbell-shaped morphology. Materials Letters, 132, 98-101. doi:10.1016/j.matlet.2014.06.045 | es_ES |
dc.description.references | Tu, H., Xu, L., Mou, F., & Guan, J. (2016). Highly active Ta2O5 microcubic single crystals: facet energy calculation, facile fabrication and enhanced photocatalytic activity of hydrogen production. Journal of Materials Chemistry A, 4(42), 16562-16568. doi:10.1039/c6ta06648h | es_ES |
dc.description.references | Wang, W., Dahl, M., & Yin, Y. (2012). Hollow Nanocrystals through the Nanoscale Kirkendall Effect. Chemistry of Materials, 25(8), 1179-1189. doi:10.1021/cm3030928 | es_ES |
dc.description.references | Yin, Y., Rioux, R. M., Erdonmez, C. K., Hughes, S., Somorjai, G. A., & Alivisatos, A. P. (2004). Formation of Hollow Nanocrystals Through the Nanoscale Kirkendall Effect. Science, 304(5671), 711-714. doi:10.1126/science.1096566 | es_ES |
dc.description.references | Zhao, J., Zou, Y., Zou, X., Bai, T., Liu, Y., Gao, R., … Li, G.-D. (2014). Self-template construction of hollow Co3O4 microspheres from porous ultrathin nanosheets and efficient noble metal-free water oxidation catalysts. Nanoscale, 6(13), 7255. doi:10.1039/c4nr00002a | es_ES |
dc.description.references | Tu, H., Xu, L., Mou, F., & Guan, J. (2015). Single crystalline tantalum oxychloride microcubes: controllable synthesis, formation mechanism and enhanced photocatalytic hydrogen production activity. Chemical Communications, 51(62), 12455-12458. doi:10.1039/c5cc03455h | es_ES |
dc.description.references | Xu, L., Bu, F.-X., Hu, M., Jin, C.-Y., Jiang, D.-M., Zhao, Z.-J., … Jiang, J.-S. (2014). Monocrystalline mesoporous metal oxide with perovskite structure: a facile solid-state transformation of a coordination polymer. Chem. Commun., 50(89), 13849-13852. doi:10.1039/c4cc06101b | es_ES |
dc.description.references | Thrall, M., Freer, R., Martin, C., Azough, F., Patterson, B., & Cernik, R. J. (2008). An in situ study of the formation of multiferroic bismuth ferrite using high resolution synchrotron X-ray powder diffraction. Journal of the European Ceramic Society, 28(13), 2567-2572. doi:10.1016/j.jeurceramsoc.2008.03.029 | es_ES |
dc.description.references | Kuang, Q., & Yang, S. (2013). Template Synthesis of Single-Crystal-Like Porous SrTiO3 Nanocube Assemblies and Their Enhanced Photocatalytic Hydrogen Evolution. ACS Applied Materials & Interfaces, 5(9), 3683-3690. doi:10.1021/am400254n | es_ES |
dc.description.references | Cheng, C., Shi, Y., Zhu, C., Li, W., Wang, L., Fung, K. K., & Wang, N. (2011). ZnO hierarchical structures for efficient quasi-solid dye-sensitized solar cells. Physical Chemistry Chemical Physics, 13(22), 10631. doi:10.1039/c1cp21068h | es_ES |
dc.description.references | Li, K., Liu, J., Sheng, X., Chen, L., Xu, T., Zhu, K., & Feng, X. (2017). 100-Fold Enhancement of Charge Transport in Uniaxially Oriented Mesoporous Anatase TiO2 Films. Chemistry - A European Journal, 24(1), 89-92. doi:10.1002/chem.201704944 | es_ES |
dc.description.references | Yu, H., Yan, S., Zhou, P., & Zou, Z. (2018). CO2 photoreduction on hydroxyl-group-rich mesoporous single crystal TiO2. Applied Surface Science, 427, 603-607. doi:10.1016/j.apsusc.2017.08.073 | es_ES |
dc.description.references | Xu, M., Ruan, P., Xie, H., Yu, A., & Zhou, X. (2014). Mesoporous TiO2 Single-Crystal Polyhedron-Constructed Core–Shell Microspheres: Anisotropic Etching and Photovoltaic Property. ACS Sustainable Chemistry & Engineering, 2(4), 621-628. doi:10.1021/sc4005586 | es_ES |
dc.description.references | Dong, Y., Fei, X., & Zhou, Y. (2017). Synthesis and photocatalytic activity of mesoporous – (001) facets TiO2 single crystals. Applied Surface Science, 403, 662-669. doi:10.1016/j.apsusc.2017.01.210 | es_ES |
dc.description.references | Xu, H., Wang, W., & Zhu, W. (2006). A facile strategy to porous materials: Coordination-assisted heterogeneous dissolution route to the spherical Cu2O single crystallites with hierarchical pores. Microporous and Mesoporous Materials, 95(1-3), 321-328. doi:10.1016/j.micromeso.2006.06.007 | es_ES |
dc.description.references | Wang, Z., Wang, Z., Wu, H., & Lou, X. W. (2013). Mesoporous Single-crystal CoSn(OH)6 Hollow Structures with Multilevel Interiors. Scientific Reports, 3(1). doi:10.1038/srep01391 | es_ES |
dc.description.references | Son, D. H., Hughes, S. M., Yin, Y., & Paul Alivisatos, A. (2004). Cation Exchange Reactions in Ionic Nanocrystals. Science, 306(5698), 1009-1012. doi:10.1126/science.1103755 | es_ES |
dc.description.references | Bothe, C., Kornowski, A., Tornatzky, H., Schmidtke, C., Lange, H., Maultzsch, J., & Weller, H. (2015). Solid-State Chemistry on the Nanoscale: Ion Transport through Interstitial Sites or Vacancies? Angewandte Chemie International Edition, 54(47), 14183-14186. doi:10.1002/anie.201507263 | es_ES |
dc.description.references | Zhang, B., Jung, Y., Chung, H.-S., Vugt, L. V., & Agarwal, R. (2009). Nanowire Transformation by Size-Dependent Cation Exchange Reactions. Nano Letters, 10(1), 149-155. doi:10.1021/nl903059c | es_ES |
dc.description.references | Lee, J. Y., Kim, D. S., & Park, J. (2007). Chemical Conversion Reaction between CdS Nanobelts and ZnS Nanobelts by Vapor Transport. Chemistry of Materials, 19(19), 4663-4669. doi:10.1021/cm070814f | es_ES |
dc.description.references | Guo, Z., Su, Y., Li, Y.-X., Li, G., & Huang, X.-J. (2018). Porous Single-Crystalline CdSe Nanobelts: Cation-Exchange Synthesis and Highly Selective Photoelectric Sensing toward Cu2+. Chemistry - A European Journal, 24(39), 9877-9883. doi:10.1002/chem.201801215 | es_ES |
dc.description.references | Butburee, T., Bai, Y., Wang, H., Chen, H., Wang, Z., Liu, G., … Wang, L. (2018). 2D Porous TiO 2 Single‐Crystalline Nanostructure Demonstrating High Photo‐Electrochemical Water Splitting Performance. Advanced Materials, 30(21), 1705666. doi:10.1002/adma.201705666 | es_ES |
dc.description.references | Zhang, F., Yamakata, A., Maeda, K., Moriya, Y., Takata, T., Kubota, J., … Domen, K. (2012). Cobalt-Modified Porous Single-Crystalline LaTiO2N for Highly Efficient Water Oxidation under Visible Light. Journal of the American Chemical Society, 134(20), 8348-8351. doi:10.1021/ja301726c | es_ES |
dc.description.references | Wagata, H., Zettsu, N., Yamaguchi, A., Nishikiori, H., Yubuta, K., Oishi, S., & Teshima, K. (2014). Chloride Flux Growth of La2Ti2O7 Crystals and Subsequent Nitridation To Form LaTiO2N Crystals. Crystal Growth & Design, 15(1), 124-128. doi:10.1021/cg5010006 | es_ES |
dc.description.references | Pokrant, S., Dilger, S., & Landsmann, S. (2016). Morphology and mesopores in photoelectrochemically active LaTiO2N single crystals. Journal of Materials Research, 31(11), 1574-1579. doi:10.1557/jmr.2016.9 | es_ES |
dc.description.references | Chen, L., Dai, H., Zhou, Y., Hu, Y., Yu, T., Liu, J., & Zou, Z. (2014). Porous, single crystalline titanium nitride nanoplates grown on carbon fibers: excellent counter electrodes for low-cost, high performance, fiber-shaped dye-sensitized solar cells. Chem. Commun., 50(92), 14321-14324. doi:10.1039/c4cc03882g | es_ES |
dc.description.references | Han, Q., Zhou, Y., Tang, L., Li, P., Tu, W., Li, L., … Zou, Z. (2016). Synthesis of single-crystalline, porous TaON microspheres toward visible-light photocatalytic conversion of CO2 into liquid hydrocarbon fuels. RSC Advances, 6(93), 90792-90796. doi:10.1039/c6ra19368d | es_ES |
dc.description.references | Nasi, L., Calestani, D., Fabbri, F., Ferro, P., Besagni, T., Fedeli, P., … Mosca, R. (2013). Mesoporous single-crystal ZnO nanobelts: supported preparation and patterning. Nanoscale, 5(3), 1060-1066. doi:10.1039/c2nr33123c | es_ES |
dc.description.references | De Marco, L., Calestani, D., Qualtieri, A., Giannuzzi, R., Manca, M., Ferro, P., … Mosca, R. (2017). Single crystal mesoporous ZnO platelets as efficient photoanodes for sensitized solar cells. Solar Energy Materials and Solar Cells, 168, 227-233. doi:10.1016/j.solmat.2017.04.001 | es_ES |
dc.description.references | Jin, X.-B., Li, Y.-X., Su, Y., Guo, Z., Gu, C.-P., Huang, J.-R., … Liu, J.-H. (2016). Porous and single-crystalline ZnO nanobelts: fabrication with annealing precursor nanobelts, and gas-sensing and optoelectronic performance. Nanotechnology, 27(35), 355702. doi:10.1088/0957-4484/27/35/355702 | es_ES |
dc.description.references | Sun, J., Tian, S., Cai, X., Xiong, D., Verma, S. K., Zhang, Q., … Zhao, X. (2016). Low-temperature solution synthesis of a ZnO nanorod array with a mesoporous surface mediated by cadmium ions. CrystEngComm, 18(42), 8277-8283. doi:10.1039/c6ce01989g | es_ES |
dc.description.references | Elliman, R. G., & Williams, J. S. (2015). Advances in ion beam modification of semiconductors. Current Opinion in Solid State and Materials Science, 19(1), 49-67. doi:10.1016/j.cossms.2014.11.007 | es_ES |
dc.description.references | Asahi, R., Morikawa, T., Irie, H., & Ohwaki, T. (2014). Nitrogen-Doped Titanium Dioxide as Visible-Light-Sensitive Photocatalyst: Designs, Developments, and Prospects. Chemical Reviews, 114(19), 9824-9852. doi:10.1021/cr5000738 | es_ES |
dc.description.references | Md Saad, S. K., Umar, A. A., Nguyen, H. Q., Dee, C. F., Salleh, M. M., & Oyama, M. (2014). Porous (001)-faceted Zn-doped anatase TiO2 nanowalls and their heterogeneous photocatalytic characterization. RSC Adv., 4(100), 57054-57063. doi:10.1039/c4ra08991j | es_ES |
dc.description.references | Kitahara, M., Shimasaki, Y., Matsuno, T., Kuroda, Y., Shimojima, A., Wada, H., & Kuroda, K. (2015). The Critical Effect of Niobium Doping on the Formation of Mesostructured TiO2: Single-Crystalline Ordered Mesoporous Nb-TiO2and Plate-like Nb-TiO2with Ordered Mesoscale Dimples. Chemistry - A European Journal, 21(37), 13073-13079. doi:10.1002/chem.201501509 | es_ES |
dc.description.references | Shen, S., Niu, J., Shen, S., Zhou, L., Chen, H., Zhang, S., … Qiang, Y. (2017). A method for adjusting nitrogen doping amount in anatase TiO 2 single crystals with well-faceted shape and micron size. Journal of Physics and Chemistry of Solids, 107, 75-82. doi:10.1016/j.jpcs.2017.01.031 | es_ES |
dc.description.references | Yang, S., Xu, Y., Cao, Y., Zhang, G., Sun, Y., & Gao, D. (2013). Zn(ii)-doped γ-Fe2O3 single-crystalline nanoplates with high phase-transition temperature, superparamagnetic property and good photocatalytic property. RSC Advances, 3(44), 21994. doi:10.1039/c3ra43695k | es_ES |
dc.description.references | Bai, S., Jiang, J., Zhang, Q., & Xiong, Y. (2015). Steering charge kinetics in photocatalysis: intersection of materials syntheses, characterization techniques and theoretical simulations. Chemical Society Reviews, 44(10), 2893-2939. doi:10.1039/c5cs00064e | es_ES |
dc.description.references | Linic, S., Christopher, P., & Ingram, D. B. (2011). Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nature Materials, 10(12), 911-921. doi:10.1038/nmat3151 | es_ES |
dc.description.references | Linsebigler, A. L., Lu, G., & Yates, J. T. (1995). Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. Chemical Reviews, 95(3), 735-758. doi:10.1021/cr00035a013 | es_ES |
dc.description.references | Mou, H., Song, C., Zhou, Y., Zhang, B., & Wang, D. (2018). Design and synthesis of porous Ag/ZnO nanosheets assemblies as super photocatalysts for enhanced visible-light degradation of 4-nitrophenol and hydrogen evolution. Applied Catalysis B: Environmental, 221, 565-573. doi:10.1016/j.apcatb.2017.09.061 | es_ES |
dc.description.references | Chen, D., Huang, Z., Quan, H., Chen, S., Lin, J., Luo, X., & Guo, L. (2016). Mesoporous Single Crystal Rutile TiO<SUB>2</SUB> Rods Modified with Ag Nanoparticles as a Photocatalyst for Degradation of Pollutants. Science of Advanced Materials, 8(4), 760-766. doi:10.1166/sam.2016.2675 | es_ES |
dc.description.references | Hou, J., Wang, Z., Yang, C., Zhou, W., Jiao, S., & Zhu, H. (2013). Hierarchically Plasmonic Z-Scheme Photocatalyst of Ag/AgCl Nanocrystals Decorated Mesoporous Single-Crystalline Metastable Bi20TiO32 Nanosheets. The Journal of Physical Chemistry C, 117(10), 5132-5141. doi:10.1021/jp311996r | es_ES |
dc.description.references | Park, C. H., Lee, C. M., Choi, J. W., Park, G. C., & Joo, J. (2018). Enhanced photocatalytic activity of porous single crystal TiO2/CNT composites by annealing process. Ceramics International, 44(2), 1641-1645. doi:10.1016/j.ceramint.2017.10.086 | es_ES |
dc.description.references | Zhang, J., Zhao, W., Xu, Y., Xu, H., & Zhang, B. (2014). In-situ photo-reducing graphene oxide to create Zn0.5Cd0.5S porous nanosheets/RGO composites as highly stable and efficient photoelectrocatalysts for visible-light-driven water splitting. International Journal of Hydrogen Energy, 39(2), 702-710. doi:10.1016/j.ijhydene.2013.10.118 | es_ES |
dc.description.references | Schrauben, J. N., Hayoun, R., Valdez, C. N., Braten, M., Fridley, L., & Mayer, J. M. (2012). Titanium and Zinc Oxide Nanoparticles Are Proton-Coupled Electron Transfer Agents. Science, 336(6086), 1298-1301. doi:10.1126/science.1220234 | es_ES |
dc.description.references | Wang, Z., Yang, C., Lin, T., Yin, H., Chen, P., Wan, D., … Jiang, M. (2013). H-Doped Black Titania with Very High Solar Absorption and Excellent Photocatalysis Enhanced by Localized Surface Plasmon Resonance. Advanced Functional Materials, 23(43), 5444-5450. doi:10.1002/adfm.201300486 | es_ES |
dc.description.references | Chen, X., Liu, L., & Huang, F. (2015). Black titanium dioxide (TiO2) nanomaterials. Chemical Society Reviews, 44(7), 1861-1885. doi:10.1039/c4cs00330f | es_ES |
dc.description.references | Zhao, Z., Tan, H., Zhao, H., Lv, Y., Zhou, L.-J., Song, Y., & Sun, Z. (2014). Reduced TiO2rutile nanorods with well-defined facets and their visible-light photocatalytic activity. Chem. Commun., 50(21), 2755-2757. doi:10.1039/c3cc49182j | es_ES |
dc.description.references | Sinhamahapatra, A., Jeon, J.-P., & Yu, J.-S. (2015). A new approach to prepare highly active and stable black titania for visible light-assisted hydrogen production. Energy & Environmental Science, 8(12), 3539-3544. doi:10.1039/c5ee02443a | es_ES |
dc.description.references | Li, H., Chen, Z., Tsang, C. K., Li, Z., Ran, X., Lee, C., … Li, Y. Y. (2014). Electrochemical doping of anatase TiO2in organic electrolytes for high-performance supercapacitors and photocatalysts. J. Mater. Chem. A, 2(1), 229-236. doi:10.1039/c3ta13963h | es_ES |
dc.description.references | FUJISHIMA, A., & HONDA, K. (1972). Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 238(5358), 37-38. doi:10.1038/238037a0 | es_ES |
dc.description.references | Lai, J., Shafi, K. V. P. M., Loos, K., Ulman, A., Lee, Y., Vogt, T., & Estournès, C. (2003). Doping γ-Fe2O3 Nanoparticles with Mn(III) Suppresses the Transition to the α-Fe2O3 Structure. Journal of the American Chemical Society, 125(38), 11470-11471. doi:10.1021/ja035409d | es_ES |
dc.description.references | Yang, J., Wang, D., Han, H., & Li, C. (2013). Roles of Cocatalysts in Photocatalysis and Photoelectrocatalysis. Accounts of Chemical Research, 46(8), 1900-1909. doi:10.1021/ar300227e | es_ES |
dc.description.references | Katsumata, K., Sakai, K., Ikeda, K., Carja, G., Matsushita, N., & Okada, K. (2013). Preparation and photocatalytic reduction of CO2 on noble metal (Pt, Pd, Au) loaded Zn–Cr layered double hydroxides. Materials Letters, 107, 138-140. doi:10.1016/j.matlet.2013.05.132 | es_ES |
dc.description.references | Liu, L., Ji, Z., Zou, W., Gu, X., Deng, Y., Gao, F., … Dong, L. (2013). In Situ Loading Transition Metal Oxide Clusters on TiO2 Nanosheets As Co-catalysts for Exceptional High Photoactivity. ACS Catalysis, 3(9), 2052-2061. doi:10.1021/cs4002755 | es_ES |
dc.description.references | Maciá-Agulló, J. A., Corma, A., & Garcia, H. (2015). Photobiocatalysis: The Power of Combining Photocatalysis and Enzymes. Chemistry - A European Journal, 21(31), 10940-10959. doi:10.1002/chem.201406437 | es_ES |
dc.description.references | Liu, L., Ouyang, S., & Ye, J. (2013). Gold-Nanorod-Photosensitized Titanium Dioxide with Wide-Range Visible-Light Harvesting Based on Localized Surface Plasmon Resonance. Angewandte Chemie International Edition, 52(26), 6689-6693. doi:10.1002/anie.201300239 | es_ES |
dc.description.references | Ran, J., Zhang, J., Yu, J., Jaroniec, M., & Qiao, S. Z. (2014). Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem. Soc. Rev., 43(22), 7787-7812. doi:10.1039/c3cs60425j | es_ES |
dc.description.references | Li, W., Bai, Y., Zhuang, W., Chan, K.-Y., Liu, C., Yang, Z., … Lu, X. (2014). Highly Crystalline Mesoporous TiO2(B) Nanofibers. The Journal of Physical Chemistry C, 118(6), 3049-3055. doi:10.1021/jp408112z | es_ES |
dc.description.references | Noda, Y., Lee, B., Domen, K., & Kondo, J. N. (2008). Synthesis of Crystallized Mesoporous Tantalum Oxide and Its Photocatalytic Activity for Overall Water Splitting under Ultraviolet Light Irradiation. Chemistry of Materials, 20(16), 5361-5367. doi:10.1021/cm703202n | es_ES |
dc.description.references | Kondo, J. N., & Domen, K. (2007). Crystallization of Mesoporous Metal Oxides. Chemistry of Materials, 20(3), 835-847. doi:10.1021/cm702176m | es_ES |
dc.description.references | Kato, H., Asakura, K., & Kudo, A. (2003). Highly Efficient Water Splitting into H2 and O2 over Lanthanum-Doped NaTaO3 Photocatalysts with High Crystallinity and Surface Nanostructure. Journal of the American Chemical Society, 125(10), 3082-3089. doi:10.1021/ja027751g | es_ES |
dc.description.references | Yang, J., Yan, H., Wang, X., Wen, F., Wang, Z., Fan, D., … Li, C. (2012). Roles of cocatalysts in Pt–PdS/CdS with exceptionally high quantum efficiency for photocatalytic hydrogen production. Journal of Catalysis, 290, 151-157. doi:10.1016/j.jcat.2012.03.008 | es_ES |
dc.description.references | Sakata, Y., Hayashi, T., Yasunaga, R., Yanaga, N., & Imamura, H. (2015). Remarkably high apparent quantum yield of the overall photocatalytic H2O splitting achieved by utilizing Zn ion added Ga2O3 prepared using dilute CaCl2 solution. Chemical Communications, 51(65), 12935-12938. doi:10.1039/c5cc03483c | es_ES |
dc.description.references | Goto, Y., Hisatomi, T., Wang, Q., Higashi, T., Ishikiriyama, K., Maeda, T., … Domen, K. (2018). A Particulate Photocatalyst Water-Splitting Panel for Large-Scale Solar Hydrogen Generation. Joule, 2(3), 509-520. doi:10.1016/j.joule.2017.12.009 | es_ES |
dc.description.references | Hojamberdiev, M., Wagata, H., Yubuta, K., Kawashima, K., Vequizo, J. J. M., Yamakata, A., … Teshima, K. (2016). KCl flux-induced growth of isometric crystals of cadmium-containing early transition-metal (Ti 4+ , Nb 5+ , and Ta 5+ ) oxides and nitridability to form their (oxy)nitride derivatives under an NH 3 atmosphere for water splitting application. Applied Catalysis B: Environmental, 182, 626-635. doi:10.1016/j.apcatb.2015.10.002 | es_ES |
dc.description.references | Qureshi, M., & Takanabe, K. (2016). Insights on Measuring and Reporting Heterogeneous Photocatalysis: Efficiency Definitions and Setup Examples. Chemistry of Materials, 29(1), 158-167. doi:10.1021/acs.chemmater.6b02907 | es_ES |
dc.description.references | Ulmer, U., Dingle, T., Duchesne, P. N., Morris, R. H., Tavasoli, A., Wood, T., & Ozin, G. A. (2019). Fundamentals and applications of photocatalytic CO2 methanation. Nature Communications, 10(1). doi:10.1038/s41467-019-10996-2 | es_ES |
dc.description.references | Shehzad, N., Tahir, M., Johari, K., Murugesan, T., & Hussain, M. (2018). A critical review on TiO2 based photocatalytic CO2 reduction system: Strategies to improve efficiency. Journal of CO2 Utilization, 26, 98-122. doi:10.1016/j.jcou.2018.04.026 | es_ES |
dc.description.references | Zeng, S., Kar, P., Thakur, U. K., & Shankar, K. (2018). A review on photocatalytic CO2reduction using perovskite oxide nanomaterials. Nanotechnology, 29(5), 052001. doi:10.1088/1361-6528/aa9fb1 | es_ES |
dc.description.references | Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N., & Snaith, H. J. (2012). Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science, 338(6107), 643-647. doi:10.1126/science.1228604 | es_ES |
dc.description.references | Jiang, Q., Zhao, Y., Zhang, X., Yang, X., Chen, Y., Chu, Z., … You, J. (2019). Surface passivation of perovskite film for efficient solar cells. Nature Photonics, 13(7), 460-466. doi:10.1038/s41566-019-0398-2 | es_ES |
dc.description.references | Atienzar, P., Ishwara, T., Illy, B. N., Ryan, M. P., O’Regan, B. C., Durrant, J. R., & Nelson, J. (2010). Control of Photocurrent Generation in Polymer/ZnO Nanorod Solar Cells by Using a Solution-Processed TiO2 Overlayer. The Journal of Physical Chemistry Letters, 1(4), 708-713. doi:10.1021/jz900356u | es_ES |
dc.description.references | Roy, P., Kim, D., Lee, K., Spiecker, E., & Schmuki, P. (2010). TiO2 nanotubes and their application in dye-sensitized solar cells. Nanoscale, 2(1), 45-59. doi:10.1039/b9nr00131j | es_ES |
dc.description.references | Knez, M., Nielsch, K., & Niinistö, L. (2007). Synthesis and Surface Engineering of Complex Nanostructures by Atomic Layer Deposition. Advanced Materials, 19(21), 3425-3438. doi:10.1002/adma.200700079 | es_ES |
dc.description.references | Halaoui, L. I., Abrams, N. M., & Mallouk, T. E. (2005). Increasing the Conversion Efficiency of Dye-Sensitized TiO2 Photoelectrochemical Cells by Coupling to Photonic Crystals. The Journal of Physical Chemistry B, 109(13), 6334-6342. doi:10.1021/jp044228a | es_ES |
dc.description.references | Ramiro-Manzano, F., Atienzar, P., Rodriguez, I., Meseguer, F., Garcia, H., & Corma, A. (2007). Apollony photonic sponge based photoelectrochemical solar cells. Chem. Commun., (3), 242-244. doi:10.1039/b613422j | es_ES |
dc.description.references | Zhu, K., Neale, N. R., Miedaner, A., & Frank, A. J. (2006). Enhanced Charge-Collection Efficiencies and Light Scattering in Dye-Sensitized Solar Cells Using Oriented TiO2 Nanotubes Arrays. Nano Letters, 7(1), 69-74. doi:10.1021/nl062000o | es_ES |
dc.description.references | O’Regan, B., & Grätzel, M. (1991). A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 353(6346), 737-740. doi:10.1038/353737a0 | es_ES |
dc.description.references | Bach, U., Lupo, D., Comte, P., Moser, J. E., Weissörtel, F., Salbeck, J., … Grätzel, M. (1998). Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature, 395(6702), 583-585. doi:10.1038/26936 | es_ES |
dc.description.references | Pitchaiya, S., Natarajan, M., Santhanam, A., Asokan, V., Yuvapragasam, A., Madurai Ramakrishnan, V., … Velauthapillai, D. (2020). A review on the classification of organic/inorganic/carbonaceous hole transporting materials for perovskite solar cell application. Arabian Journal of Chemistry, 13(1), 2526-2557. doi:10.1016/j.arabjc.2018.06.006 | es_ES |
dc.description.references | Kojima, A., Teshima, K., Shirai, Y., & Miyasaka, T. (2009). Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society, 131(17), 6050-6051. doi:10.1021/ja809598r | es_ES |
dc.description.references | Snaith, H. J. (2013). Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells. The Journal of Physical Chemistry Letters, 4(21), 3623-3630. doi:10.1021/jz4020162 | es_ES |
dc.description.references | Kim, H.-S., Lee, C.-R., Im, J.-H., Lee, K.-B., Moehl, T., Marchioro, A., … Park, N.-G. (2012). Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Scientific Reports, 2(1). doi:10.1038/srep00591 | es_ES |
dc.description.references | Jiang, C. Y., Koh, W. L., Leung, M. Y., Chiam, S. Y., Wu, J. S., & Zhang, J. (2012). Low temperature processing solid-state dye sensitized solar cells. Applied Physics Letters, 100(11), 113901. doi:10.1063/1.3693399 | es_ES |
dc.description.references | Lu, G., Linsebigler, A., & Yates, J. T. (1994). Ti3+ Defect Sites on TiO2(110): Production and Chemical Detection of Active Sites. The Journal of Physical Chemistry, 98(45), 11733-11738. doi:10.1021/j100096a017 | es_ES |
dc.description.references | Yang, S., Zheng, Y. C., Hou, Y., Yang, X. H., & Yang, H. G. (2014). Anatase TiO2 with nanopores for dye-sensitized solar cells. Phys. Chem. Chem. Phys., 16(42), 23038-23043. doi:10.1039/c4cp02522a | es_ES |
dc.description.references | Cölfen, H., & Antonietti, M. (2005). Mesocrystals: Inorganic Superstructures Made by Highly Parallel Crystallization and Controlled Alignment. Angewandte Chemie International Edition, 44(35), 5576-5591. doi:10.1002/anie.200500496 | es_ES |
dc.description.references | Feng, X., Zhu, K., Frank, A. J., Grimes, C. A., & Mallouk, T. E. (2012). Rapid Charge Transport in Dye-Sensitized Solar Cells Made from Vertically Aligned Single-Crystal Rutile TiO2 Nanowires. Angewandte Chemie International Edition, 51(11), 2727-2730. doi:10.1002/anie.201108076 | es_ES |
dc.description.references | Ito, S., Liska, P., Comte, P., Charvet, R., Péchy, P., Bach, U., … Grätzel, M. (2005). Control of dark current in photoelectrochemical (TiO2/I––I3–) and dye-sensitized solar cells. Chemical Communications, (34), 4351. doi:10.1039/b505718c | es_ES |
dc.description.references | Zhang, Q., Dandeneau, C. S., Zhou, X., & Cao, G. (2009). ZnO Nanostructures for Dye-Sensitized Solar Cells. Advanced Materials, 21(41), 4087-4108. doi:10.1002/adma.200803827 | es_ES |
dc.description.references | Look, D. C., Reynolds, D. C., Sizelove, J. R., Jones, R. L., Litton, C. W., Cantwell, G., & Harsch, W. C. (1998). Electrical properties of bulk ZnO. Solid State Communications, 105(6), 399-401. doi:10.1016/s0038-1098(97)10145-4 | es_ES |