- -

Oenological characteristics of Vitis vinifera L. Cabernet Sauvignon grapes from vineyards treated with ozonated water

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Oenological characteristics of Vitis vinifera L. Cabernet Sauvignon grapes from vineyards treated with ozonated water

Show full item record

García-Martínez, M.; Campayo, A.; Carot Sierra, JM.; Serrano De La Hoz, K.; Salinas, M.; Alonso, G. (2020). Oenological characteristics of Vitis vinifera L. Cabernet Sauvignon grapes from vineyards treated with ozonated water. Australian Journal of Grape and Wine Research. 26(4):388-398. https://doi.org/10.1111/ajgw.12454

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/165304

Files in this item

Item Metadata

Title: Oenological characteristics of Vitis vinifera L. Cabernet Sauvignon grapes from vineyards treated with ozonated water
Author: García-Martínez, M.M. Campayo, A. Carot Sierra, José Miguel Serrano de la Hoz, K. Salinas, M.R. Alonso, G.L.
UPV Unit: Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat
Issued date:
Abstract:
[EN] Background and Aims Ozonated water has been used in vineyards to reduce the use of pesticides because of its presumed efficacy in the control of fungal diseases and the absence of residues. The aim of this study was ...[+]
Subjects: Colour , Endotherapy , Irrigation , Phenolic substances , Spraying , Volatile
Copyrigths: Cerrado
Source:
Australian Journal of Grape and Wine Research. (issn: 1322-7130 )
DOI: 10.1111/ajgw.12454
Publisher:
Blackwell Publishing
Publisher version: https://doi.org/10.1111/ajgw.12454
Project ID:
info:eu-repo/grantAgreement/CDTI//00093497%2FITC20151026/
Description: This is the peer reviewed version of the following article: [FULL CITE], which has been published in final form at [Link to final article using the DOI]. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.
Thanks:
The authors acknowledge the support of Project INNTER ECOSANVID 2015 (FEDER-CDTI, EXP: 00093497/ITC20151026), financed by the Spanish companies DCOOPBACO, FINCA ANTIGUA, VIALCON and NUTRICONTROL of Spain.
Type: Artículo

References

Alem, H., Rigou, P., Schneider, R., Ojeda, H., & Torregrosa, L. (2018). Impact of agronomic practices on grape aroma composition: a review. Journal of the Science of Food and Agriculture, 99(3), 975-985. doi:10.1002/jsfa.9327

Asproudi, A., Ferrandino, A., Bonello, F., Vaudano, E., Pollon, M., & Petrozziello, M. (2018). Key norisoprenoid compounds in wines from early-harvested grapes in view of climate change. Food Chemistry, 268, 143-152. doi:10.1016/j.foodchem.2018.06.069

Bellincontro, A., Catelli, C., Cotarella, R., & Mencarelli, F. (2017). Postharvest ozone fumigation of Petit Verdot grapes to prevent the use of sulfites and to increase anthocyanin in wine. Australian Journal of Grape and Wine Research, 23(2), 200-206. doi:10.1111/ajgw.12257 [+]
Alem, H., Rigou, P., Schneider, R., Ojeda, H., & Torregrosa, L. (2018). Impact of agronomic practices on grape aroma composition: a review. Journal of the Science of Food and Agriculture, 99(3), 975-985. doi:10.1002/jsfa.9327

Asproudi, A., Ferrandino, A., Bonello, F., Vaudano, E., Pollon, M., & Petrozziello, M. (2018). Key norisoprenoid compounds in wines from early-harvested grapes in view of climate change. Food Chemistry, 268, 143-152. doi:10.1016/j.foodchem.2018.06.069

Bellincontro, A., Catelli, C., Cotarella, R., & Mencarelli, F. (2017). Postharvest ozone fumigation of Petit Verdot grapes to prevent the use of sulfites and to increase anthocyanin in wine. Australian Journal of Grape and Wine Research, 23(2), 200-206. doi:10.1111/ajgw.12257

Bernardo, S., Dinis, L.-T., Machado, N., & Moutinho-Pereira, J. (2018). Grapevine abiotic stress assessment and search for sustainable adaptation strategies in Mediterranean-like climates. A review. Agronomy for Sustainable Development, 38(6). doi:10.1007/s13593-018-0544-0

Cabrita, M. J., Freitas, A. M. C., Laureano, O., & Stefano, R. D. (2006). Glycosidic aroma compounds of some Portuguese grape cultivars. Journal of the Science of Food and Agriculture, 86(6), 922-931. doi:10.1002/jsfa.2439

Campayo, A., Serrano de la Hoz, K., García-Martínez, M. M., Sánchez-Martínez, J. F., Salinas, M. R., & Alonso, G. L. (2019). Spraying ozonated water on Bobal grapevines: Effect on grape quality. Food Research International, 125, 108540. doi:10.1016/j.foodres.2019.108540

Carbone, K., & Mencarelli, F. (2015). Influence of Short-Term Postharvest Ozone Treatments in Nitrogen or Air Atmosphere on the Metabolic Response of White Wine Grapes. Food and Bioprocess Technology, 8(8), 1739-1749. doi:10.1007/s11947-015-1515-y

Culleré, L., Escudero, A., Campo, E., Cacho, J., & Ferreira, V. (2009). Multidimensional gas chromatography–mass spectrometry determination of 3-alkyl-2-methoxypyrazines in wine and must. A comparison of solid-phase extraction and headspace solid-phase extraction methods. Journal of Chromatography A, 1216(18), 4040-4045. doi:10.1016/j.chroma.2009.02.072

Czekalski, N., Imminger, S., Salhi, E., Veljkovic, M., Kleffel, K., Drissner, D., … von Gunten, U. (2016). Inactivation of Antibiotic Resistant Bacteria and Resistance Genes by Ozone: From Laboratory Experiments to Full-Scale Wastewater Treatment. Environmental Science & Technology, 50(21), 11862-11871. doi:10.1021/acs.est.6b02640

DeSanctis, F., Ceccantoni, B., Bellincontro, A., Botondi, R., Mencarelli, F., D’Onofrio, C., … Catelli, C. (2015). OZONE FUMIGATION POSTHARVEST TREATMENT FOR THE QUALITY OF WINE GRAPE. Acta Horticulturae, (1071), 795-800. doi:10.17660/actahortic.2015.1071.105

Garde-Cerdán, T., Martínez-Gil, A. M., Lorenzo, C., Lara, J. F., Pardo, F., & Salinas, M. R. (2011). Implications of nitrogen compounds during alcoholic fermentation from some grape varieties at different maturation stages and cultivation systems. Food Chemistry, 124(1), 106-116. doi:10.1016/j.foodchem.2010.05.112

Gómez-Míguez, M., González-Manzano, S., Escribano-Bailón, M. T., Heredia, F. J., & Santos-Buelga, C. (2006). Influence of Different Phenolic Copigments on the Color of Malvidin 3-Glucoside. Journal of Agricultural and Food Chemistry, 54(15), 5422-5429. doi:10.1021/jf0604586

Hjelmeland, A. K., & Ebeler, S. E. (2014). Glycosidically Bound Volatile Aroma Compounds in Grapes and Wine: A Review. American Journal of Enology and Viticulture, 66(1), 1-11. doi:10.5344/ajev.2014.14104

KALUA, C. M., & BOSS, P. K. (2010). Comparison of major volatile compounds from Riesling and Cabernet Sauvignon grapes (Vitis vinifera L.) from fruitset to harvest. Australian Journal of Grape and Wine Research, 16(2), 337-348. doi:10.1111/j.1755-0238.2010.00096.x

Khadre, M. A., Yousef, A. E., & Kim, J.-G. (2001). Microbiological Aspects of Ozone Applications in Food: A Review. Journal of Food Science, 66(9), 1242-1252. doi:10.1111/j.1365-2621.2001.tb15196.x

Koch, A., Ebeler, S. E., Williams, L. E., & Matthews, M. A. (2012). Fruit ripening in Vitis vinifera: light intensity before and not during ripening determines the concentration of 2-methoxy-3-isobutylpyrazine in Cabernet Sauvignon berries. Physiologia Plantarum, 145(2), 275-285. doi:10.1111/j.1399-3054.2012.01572.x

Martínez-Gil, A. M., Garde-Cerdán, T., Martínez, L., Alonso, G. L., & Salinas, M. R. (2011). Effect of Oak Extract Application to Verdejo Grapevines on Grape and Wine Aroma. Journal of Agricultural and Food Chemistry, 59(7), 3253-3263. doi:10.1021/jf104178c

Matsui, K. (2006). Green leaf volatiles: hydroperoxide lyase pathway of oxylipin metabolism. Current Opinion in Plant Biology, 9(3), 274-280. doi:10.1016/j.pbi.2006.03.002

Mazza, G., & Francis, F. J. (1995). Anthocyanins in grapes and grape products. Critical Reviews in Food Science and Nutrition, 35(4), 341-371. doi:10.1080/10408399509527704

Mehlhorn, H., Tabner, B. J., & Wellburn, A. R. (1990). Electron spin resonance evidence for the formation of free radicals in plants exposed to ozone. Physiologia Plantarum, 79(2), 377-383. doi:10.1111/j.1399-3054.1990.tb06756.x

Mencarelli, F., & Bellincontro, A. (2018). Recent advances in postharvest technology of the wine grape to improve the wine aroma. Journal of the Science of Food and Agriculture, 100(14), 5046-5055. doi:10.1002/jsfa.8910

Modesti, M., Baccelloni, S., Brizzolara, S., Aleandri, M. P., Bellincontro, A., Mencarelli, F., & Tonutti, P. (2019). Effects of treatments with ozonated water in the vineyard (cv Vermentino) on microbial population and fruit quality parameters. BIO Web of Conferences, 13, 04011. doi:10.1051/bioconf/20191304011

Mira de Orduña, R. (2010). Climate change associated effects on grape and wine quality and production. Food Research International, 43(7), 1844-1855. doi:10.1016/j.foodres.2010.05.001

Orta de Velásquez, M. T., Rojas-Valencia, M. N., & Ayala, A. (2008). Wastewater Disinfection Using Ozone to Remove Free-Living, Highly Pathogenic Bacteria and Amoebae. Ozone: Science & Engineering, 30(5), 367-375. doi:10.1080/01919510802333738

Paissoni, M. A., Río Segade, S., Giacosa, S., Torchio, F., Cravero, F., Englezos, V., … Rolle, L. (2017). Impact of post-harvest ozone treatments on the skin phenolic extractability of red winegrapes cv Barbera and Nebbiolo ( Vitis vinifera L.). Food Research International, 98, 68-78. doi:10.1016/j.foodres.2016.11.013

Pardo-García, A. I., Martínez-Gil, A. M., Cadahía, E., Pardo, F., Alonso, G. L., & Salinas, M. R. (2014). Oak extract application to grapevines as a plant biostimulant to increase wine polyphenols. Food Research International, 55, 150-160. doi:10.1016/j.foodres.2013.11.004

Pell, E. J., & Dann, M. S. (1991). Multiple Stress-Induced Foliar Senescence and Implications for Whole-Plant Longevity. Response of Plants to Multiple Stresses, 189-204. doi:10.1016/b978-0-08-092483-0.50014-1

Petriccione, M., Pagano, L., Forniti, R., Zampella, L., Mastrobuoni, F., Scortichini, M., & Mencarelli, F. (2018). Postharvest treatment with chitosan affects the antioxidant metabolism and quality of wine grape during partial dehydration. Postharvest Biology and Technology, 137, 38-45. doi:10.1016/j.postharvbio.2017.11.010

Pierron, R. J. G., Pages, M., Couderc, C., Compant, S., Jacques, A., & Violleau, F. (2015). In vitro and in planta fungicide properties of ozonated water against the esca-associated fungus Phaeoacremonium aleophilum. Scientia Horticulturae, 189, 184-191. doi:10.1016/j.scienta.2015.03.038

Remondino, M., & Valdenassi, L. (2018). Different Uses of Ozone: Environmental and Corporate Sustainability. Literature Review and Case Study. Sustainability, 10(12), 4783. doi:10.3390/su10124783

Río Segade, S., Paissoni, M. A., Giacosa, S., Bautista-Ortín, A. B., Gómez-Plaza, E., Gerbi, V., & Rolle, L. (2019). Winegrapes dehydration under ozone-enriched atmosphere: Influence on berry skin phenols release, cell wall composition and mechanical properties. Food Chemistry, 271, 673-684. doi:10.1016/j.foodchem.2018.07.218

Rosillo, L., Salinas, M. R., Garijo, J., & Alonso, G. L. (1999). Study of volatiles in grapes by dynamic headspace analysis. Journal of Chromatography A, 847(1-2), 155-159. doi:10.1016/s0021-9673(99)00036-9

Ryan, J.-M., & Revilla, E. (2003). Anthocyanin Composition of Cabernet Sauvignon and Tempranillo Grapes at Different Stages of Ripening. Journal of Agricultural and Food Chemistry, 51(11), 3372-3378. doi:10.1021/jf020849u

Sala, C., Busto, O., Guasch, J., & Zamora, F. (2004). Influence of Vine Training and Sunlight Exposure on the 3-Alkyl-2-methoxypyrazines Content in Musts and Wines from the Vitis vinifera Variety Cabernet Sauvignon. Journal of Agricultural and Food Chemistry, 52(11), 3492-3497. doi:10.1021/jf049927z

Salinas, M. R., de la Hoz, K. S., Zalacain, A., Lara, J. F., & Garde-Cerdán, T. (2012). Analysis of red grape glycosidic aroma precursors by glycosyl glucose quantification. Talanta, 89, 396-400. doi:10.1016/j.talanta.2011.12.050

Xie, S., Lei, Y., Wang, Y., Wang, X., Ren, R., & Zhang, Z. (2018). Influence of continental climates on the volatile profile of Cabernet Sauvignon grapes from five Chinese viticulture regions. Plant Growth Regulation, 87(1), 83-92. doi:10.1007/s10725-018-0455-8

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record