Naushad, M., Khan, M. R., ALOthman, Z. A., AlSohaimi, I., Rodriguez-Reinoso, F., Turki, T. M., & Ali, R. (2015). Removal of BrO3 − from drinking water samples using newly developed agricultural waste-based activated carbon and its determination by ultra-performance liquid chromatography-mass spectrometry. Environmental Science and Pollution Research, 22(20), 15853-15865. doi:10.1007/s11356-015-4786-y
BUTLER, R., GODLEY, A., LYTTON, L., & CARTMELL, E. (2005). Bromate Environmental Contamination: Review of Impact and Possible Treatment. Critical Reviews in Environmental Science and Technology, 35(3), 193-217. doi:10.1080/10643380590917888
Weinberg, H. S., Delcomyn, C. A., & Unnam, V. (2003). Bromate in Chlorinated Drinking Waters: Occurrence and Implications for Future Regulation. Environmental Science & Technology, 37(14), 3104-3110. doi:10.1021/es026400z
[+]
Naushad, M., Khan, M. R., ALOthman, Z. A., AlSohaimi, I., Rodriguez-Reinoso, F., Turki, T. M., & Ali, R. (2015). Removal of BrO3 − from drinking water samples using newly developed agricultural waste-based activated carbon and its determination by ultra-performance liquid chromatography-mass spectrometry. Environmental Science and Pollution Research, 22(20), 15853-15865. doi:10.1007/s11356-015-4786-y
BUTLER, R., GODLEY, A., LYTTON, L., & CARTMELL, E. (2005). Bromate Environmental Contamination: Review of Impact and Possible Treatment. Critical Reviews in Environmental Science and Technology, 35(3), 193-217. doi:10.1080/10643380590917888
Weinberg, H. S., Delcomyn, C. A., & Unnam, V. (2003). Bromate in Chlorinated Drinking Waters: Occurrence and Implications for Future Regulation. Environmental Science & Technology, 37(14), 3104-3110. doi:10.1021/es026400z
OMS , Bromate in Drinking-water - Guidelines for Drinking-water Quality , WHO , 2005
Jabłońska, M., Król, A., Kukulska-Zając, E., Tarach, K., Girman, V., Chmielarz, L., & Góra-Marek, K. (2015). Zeolites Y modified with palladium as effective catalysts for low-temperature methanol incineration. Applied Catalysis B: Environmental, 166-167, 353-365. doi:10.1016/j.apcatb.2014.11.047
Pergher, S. B. ., Dallago, R. M., Veses, R. C., Gigola, C. E., & Baibich, I. M. (2004). Pd/NaY-zeolite and Pd-W/NaY-zeolite catalysts: preparation, characterization and NO decomposition activity. Journal of Molecular Catalysis A: Chemical, 209(1-2), 107-115. doi:10.1016/j.molcata.2003.08.005
Chaplin, B. P., Reinhard, M., Schneider, W. F., Schüth, C., Shapley, J. R., Strathmann, T. J., & Werth, C. J. (2012). Critical Review of Pd-Based Catalytic Treatment of Priority Contaminants in Water. Environmental Science & Technology, 46(7), 3655-3670. doi:10.1021/es204087q
Höller, V., Rådevik, K., Yuranov, I., Kiwi-Minsker, L., & Renken, A. (2001). Reduction of nitrite-ions in water over Pd-supported on structured fibrous materials. Applied Catalysis B: Environmental, 32(3), 143-150. doi:10.1016/s0926-3373(01)00139-4
Shen, W.-J., Ichihashi, Y., Ando, H., Okumura, M., Haruta, M., & Matsumura, Y. (2001). Influence of palladium precursors on methanol synthesis from CO hydrogenation over Pd/CeO2 catalysts prepared by deposition–precipitation method. Applied Catalysis A: General, 217(1-2), 165-172. doi:10.1016/s0926-860x(01)00606-8
Hirayama, J., & Kamiya, Y. (2018). Tin-palladium supported on alumina as a highly active and selective catalyst for hydrogenation of nitrate in actual groundwater polluted with nitrate. Catalysis Science & Technology, 8(19), 4985-4993. doi:10.1039/c8cy00730f
Palomares, A. E., Franch, C., Yuranova, T., Kiwi-Minsker, L., García-Bordeje, E., & Derrouiche, S. (2014). The use of Pd catalysts on carbon-based structured materials for the catalytic hydrogenation of bromates in different types of water. Applied Catalysis B: Environmental, 146, 186-191. doi:10.1016/j.apcatb.2013.02.056
Chen, H., Xu, Z., Wan, H., Zheng, J., Yin, D., & Zheng, S. (2010). Aqueous bromate reduction by catalytic hydrogenation over Pd/Al2O3 catalysts. Applied Catalysis B: Environmental, 96(3-4), 307-313. doi:10.1016/j.apcatb.2010.02.021
Soares, O. S. G. P., Freitas, C. M. A. S., Fonseca, A. M., Órfão, J. J. M., Pereira, M. F. R., & Neves, I. C. (2016). Bromate reduction in water promoted by metal catalysts prepared over faujasite zeolite. Chemical Engineering Journal, 291, 199-205. doi:10.1016/j.cej.2016.01.093
Freitas, C. M. A. S., Soares, O. S. G. P., Órfão, J. J. M., Fonseca, A. M., Pereira, M. F. R., & Neves, I. C. (2015). Highly efficient reduction of bromate to bromide over mono and bimetallic ZSM5 catalysts. Green Chemistry, 17(8), 4247-4254. doi:10.1039/c5gc00777a
Restivo, J., Soares, O. S. G. P., Órfão, J. J. M., & Pereira, M. F. R. (2015). Bimetallic activated carbon supported catalysts for the hydrogen reduction of bromate in water. Catalysis Today, 249, 213-219. doi:10.1016/j.cattod.2014.10.048
Restivo, J., Soares, O. S. G. P., Órfão, J. J. M., & Pereira, M. F. R. (2017). Catalytic reduction of bromate over monometallic catalysts on different powder and structured supports. Chemical Engineering Journal, 309, 197-205. doi:10.1016/j.cej.2016.10.025
Soares, O. S. G. P., Ramalho, P. S. F., Fernandes, A., Órfão, J. J. M., & Pereira, M. F. R. (2019). Catalytic bromate reduction in water: Influence of carbon support. Journal of Environmental Chemical Engineering, 7(3), 103015. doi:10.1016/j.jece.2019.103015
Perez-Coronado, A. M., Soares, O. S. G. P., Calvo, L., Rodriguez, J. J., Gilarranz, M. A., & Pereira, M. F. R. (2018). Catalytic reduction of bromate over catalysts based on Pd nanoparticles synthesized via water-in-oil microemulsion. Applied Catalysis B: Environmental, 237, 206-213. doi:10.1016/j.apcatb.2018.05.077
Li, M., Zhou, X., Sun, J., Fu, H., Qu, X., Xu, Z., & Zheng, S. (2019). Highly effective bromate reduction by liquid phase catalytic hydrogenation over Pd catalysts supported on core-shell structured magnetites: Impact of shell properties. Science of The Total Environment, 663, 673-685. doi:10.1016/j.scitotenv.2019.01.392
Chen, X., Huo, X., Liu, J., Wang, Y., Werth, C. J., & Strathmann, T. J. (2017). Exploring beyond palladium: Catalytic reduction of aqueous oxyanion pollutants with alternative platinum group metals and new mechanistic implications. Chemical Engineering Journal, 313, 745-752. doi:10.1016/j.cej.2016.12.058
Gao, Y., Sun, W., Yang, W., & Li, Q. (2017). Creation of Pd/Al2O3 Catalyst by a Spray Process for Fixed Bed Reactors and Its Effective Removal of Aqueous Bromate. Scientific Reports, 7(1). doi:10.1038/srep41797
Li, M., Hu, Y., Fu, H., Qu, X., Xu, Z., & Zheng, S. (2019). Pt embedded in carbon rods of N-doped CMK-3 as a highly active and stable catalyst for catalytic hydrogenation reduction of bromate. Chemical Communications, 55(78), 11786-11789. doi:10.1039/c9cc05274g
Marco, Y., García-Bordejé, E., Franch, C., Palomares, A. E., Yuranova, T., & Kiwi-Minsker, L. (2013). Bromate catalytic reduction in continuous mode using metal catalysts supported on monoliths coated with carbon nanofibers. Chemical Engineering Journal, 230, 605-611. doi:10.1016/j.cej.2013.06.040
Yuranova, T., Kiwi-Minsker, L., Franch, C., Palomares, A. E., Armenise, S., & García-Bordejé, E. (2013). Nanostructured Catalysts for the Continuous Reduction of Nitrates and Bromates in Water. Industrial & Engineering Chemistry Research, 52(39), 13930-13937. doi:10.1021/ie302977h
Palomares, A. E., Franch, C., & Corma, A. (2011). A study of different supports for the catalytic reduction of nitrates from natural water with a continuous reactor. Catalysis Today, 172(1), 90-94. doi:10.1016/j.cattod.2011.05.015
Yuranova, T., Franch, C., Palomares, A. E., Garcia-Bordejé, E., & Kiwi-Minsker, L. (2012). Structured fibrous carbon-based catalysts for continuous nitrate removal from natural water. Applied Catalysis B: Environmental, 123-124, 221-228. doi:10.1016/j.apcatb.2012.04.007
Lan, H., Mao, R., Tong, Y., Liu, Y., Liu, H., An, X., & Liu, R. (2016). Enhanced Electroreductive Removal of Bromate by a Supported Pd–In Bimetallic Catalyst: Kinetics and Mechanism Investigation. Environmental Science & Technology, 50(21), 11872-11878. doi:10.1021/acs.est.6b02822
Yao, F., Yang, Q., Yan, M., Li, X., Chen, F., Zhong, Y., … Li, X. (2020). Synergistic adsorption and electrocatalytic reduction of bromate by Pd/N-doped loofah sponge-derived biochar electrode. Journal of Hazardous Materials, 386, 121651. doi:10.1016/j.jhazmat.2019.121651
Morais, D. F. S., Boaventura, R. A. R., Moreira, F. C., & Vilar, V. J. P. (2019). Advances in bromate reduction by heterogeneous photocatalysis: The use of a static mixer as photocatalyst support. Applied Catalysis B: Environmental, 249, 322-332. doi:10.1016/j.apcatb.2019.02.070
Cunha, G. S., Santos, S. G. S., Souza-Chaves, B. M., Silva, T. F. C. V., Bassin, J. P., Dezotti, M. W. C., … Vilar, V. J. P. (2019). Removal of bromate from drinking water using a heterogeneous photocatalytic mili-reactor: impact of the reactor material and water matrix. Environmental Science and Pollution Research, 26(32), 33281-33293. doi:10.1007/s11356-019-06266-9
Matatov-Meytal, Y., & Sheintuch, M. (2002). Catalytic fibers and cloths. Applied Catalysis A: General, 231(1-2), 1-16. doi:10.1016/s0926-860x(01)00963-2
Joannet, E., Horny, C., Kiwi-Minsker, L., & Renken, A. (2002). Palladium supported on filamentous active carbon as effective catalyst for liquid-phase hydrogenation of 2-butyne-1,4-diol to 2-butene-1,4-diol. Chemical Engineering Science, 57(16), 3453-3460. doi:10.1016/s0009-2509(02)00215-4
Crespo-Quesada, M., Dykeman, R. R., Laurenczy, G., Dyson, P. J., & Kiwi-Minsker, L. (2011). Supported nitrogen-modified Pd nanoparticles for the selective hydrogenation of 1-hexyne. Journal of Catalysis, 279(1), 66-74. doi:10.1016/j.jcat.2011.01.003
Fang, W., Yang, S., Wang, X.-L., Yuan, T.-Q., & Sun, R.-C. (2017). Manufacture and application of lignin-based carbon fibers (LCFs) and lignin-based carbon nanofibers (LCNFs). Green Chemistry, 19(8), 1794-1827. doi:10.1039/c6gc03206k
Yaseneva, P., Marti, C. F., Palomares, E., Fan, X., Morgan, T., Perez, P. S., … Lapkin, A. A. (2014). Efficient reduction of bromates using carbon nanofibre supported catalysts: Experimental and a comparative life cycle assessment study. Chemical Engineering Journal, 248, 230-241. doi:10.1016/j.cej.2014.03.034
Shim, J.-W., Park, S.-J., & Ryu, S.-K. (2001). Effect of modification with HNO3 and NaOH on metal adsorption by pitch-based activated carbon fibers. Carbon, 39(11), 1635-1642. doi:10.1016/s0008-6223(00)00290-6
Rouquerol, J., Llewellyn, P., & Rouquerol, F. (2007). Is the bet equation applicable to microporous adsorbents? Characterization of Porous Solids VII - Proceedings of the 7th International Symposium on the Characterization of Porous Solids (COPS-VII), Aix-en-Provence, France, 26-28 May 2005, 49-56. doi:10.1016/s0167-2991(07)80008-5
J. R. Anderson , Structure of metallic catalysts , Academic Press , London-New York , 1918
Martínez, A., Arribas, M. A., Derewinski, M., & Burkat-Dulak, A. (2010). Enhanced sulfur resistance of bifunctional Pd/HZSM-5 catalyst comprising hierarchical carbon-templated zeolite. Applied Catalysis A: General, 379(1-2), 188-197. doi:10.1016/j.apcata.2010.03.023
Ravel, B., & Newville, M. (2005). ATHENA,ARTEMIS,HEPHAESTUS: data analysis for X-ray absorption spectroscopy usingIFEFFIT. Journal of Synchrotron Radiation, 12(4), 537-541. doi:10.1107/s0909049505012719
Groppo, E., Agostini, G., Borfecchia, E., Wei, L., Giannici, F., Portale, G., … Lamberti, C. (2014). Formation and Growth of Pd Nanoparticles Inside a Highly Cross-Linked Polystyrene Support: Role of the Reducing Agent. The Journal of Physical Chemistry C, 118(16), 8406-8415. doi:10.1021/jp5003897
Groppo, E., Liu, W., Zavorotynska, O., Agostini, G., Spoto, G., Bordiga, S., … Zecchina, A. (2010). Subnanometric Pd Particles Stabilized Inside Highly Cross-Linked Polymeric Supports. Chemistry of Materials, 22(7), 2297-2308. doi:10.1021/cm903176d
Bugaev, A. L., Guda, A. A., Lazzarini, A., Lomachenko, K. A., Groppo, E., Pellegrini, R., … Lamberti, C. (2017). In situ formation of hydrides and carbides in palladium catalyst: When XANES is better than EXAFS and XRD. Catalysis Today, 283, 119-126. doi:10.1016/j.cattod.2016.02.065
Fernández-García, M. (2002). XANES analysis of catalytic systems under reaction conditions. Catalysis Reviews, 44(1), 59-121. doi:10.1081/cr-120001459
Lopes, C. W., Cerrillo, J. L., Palomares, A. E., Rey, F., & Agostini, G. (2018). An in situ XAS study of the activation of precursor-dependent Pd nanoparticles. Physical Chemistry Chemical Physics, 20(18), 12700-12709. doi:10.1039/c8cp00517f
Wang, J., Wang, Q., Jiang, X., Liu, Z., Yang, W., & Frenkel, A. I. (2014). Determination of Nanoparticle Size by Measuring the Metal–Metal Bond Length: The Case of Palladium Hydride. The Journal of Physical Chemistry C, 119(1), 854-861. doi:10.1021/jp510730a
Srabionyan, V. V., Bugaev, A. L., Pryadchenko, V. V., Avakyan, L. A., van Bokhoven, J. A., & Bugaev, L. A. (2014). EXAFS study of size dependence of atomic structure in palladium nanoparticles. Journal of Physics and Chemistry of Solids, 75(4), 470-476. doi:10.1016/j.jpcs.2013.12.012
Franch, C., Rodríguez-Castellón, E., Reyes-Carmona, Á., & Palomares, A. E. (2012). Characterization of (Sn and Cu)/Pd catalysts for the nitrate reduction in natural water. Applied Catalysis A: General, 425-426, 145-152. doi:10.1016/j.apcata.2012.03.015
Dong, Z., Dong, W., Sun, F., Zhu, R., & Ouyang, F. (2012). Effects of preparation conditions on catalytic activity of Ru/AC catalyst to reduce bromate ion in water. Reaction Kinetics, Mechanisms and Catalysis, 107(1), 231-244. doi:10.1007/s11144-012-0473-x
Restivo, J., Soares, O. S. G. P., Órfão, J. J. M., & Pereira, M. F. R. (2015). Metal assessment for the catalytic reduction of bromate in water under hydrogen. Chemical Engineering Journal, 263, 119-126. doi:10.1016/j.cej.2014.11.052
Siddiqui, M., Zhai, W., Amy, G., & Mysore, C. (1996). Bromate ion removal by activated carbon. Water Research, 30(7), 1651-1660. doi:10.1016/0043-1354(96)00070-x
Sun, J., Zhang, J., Fu, H., Wan, H., Wan, Y., Qu, X., … Zheng, S. (2018). Enhanced catalytic hydrogenation reduction of bromate on Pd catalyst supported on CeO2 modified SBA-15 prepared by strong electrostatic adsorption. Applied Catalysis B: Environmental, 229, 32-40. doi:10.1016/j.apcatb.2018.02.009
Sun, W., Li, Q., Gao, S., & Shang, J. K. (2013). Highly efficient catalytic reduction of bromate in water over a quasi-monodisperse, superparamagnetic Pd/Fe3O4 catalyst. Journal of Materials Chemistry A, 1(32), 9215. doi:10.1039/c3ta11455d
[-]