Mostrar el registro sencillo del ítem
dc.contributor.author | Cerrillo, Jose L. | es_ES |
dc.contributor.author | Lopes, Christian W. | es_ES |
dc.contributor.author | Rey Garcia, Fernando | es_ES |
dc.contributor.author | Agostini, Giovanni | es_ES |
dc.contributor.author | Kiwi-Minsker, Lioubov | es_ES |
dc.contributor.author | Palomares Gimeno, Antonio Eduardo | es_ES |
dc.date.accessioned | 2021-04-17T03:33:41Z | |
dc.date.available | 2021-04-17T03:33:41Z | |
dc.date.issued | 2020-06-07 | es_ES |
dc.identifier.issn | 2044-4753 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/165305 | |
dc.description.abstract | [EN] Catalytic hydrogenation of bromate using Pd catalysts supported on activated carbon fibers is a smart solution to treat bromate polluted water. These catalysts have been analyzed by different techniques for an in-deep characterization of the active sites. The in situ X-ray absorption spectroscopy and the CO chemisorption studies showed that Pd-0 nanoparticles with different crystal sizes were generated on the support during hydrogen activation at 200 degrees C and that the PdHx-phase was formed during the cooling to room temperature. As PdHx species formed on Pd-0 nanoparticles are responsible for bromate reduction, the most active catalysts are those having Pd-0 nanoparticles with large crystal sizes, where PdHx species are easily formed. The catalysts are fully stable in succesive reaction runs. It has been also shown that bromate reduction rate depends on the bromate concentration and on the hydrogen partial pressure, with a pseudo-first reaction order towards both reactants. | es_ES |
dc.description.sponsorship | Authors thank the Spanish Ministry of Economy and Competitiveness through RTI2018-101784-B-I00 (MINECO/FEDER) and SEV-2016-0683 projects for the financial support. We gratefully acknowledge ALBA synchrotron for allocating beamtime (proposal 2015091414) and CLAESS beamline staff for their technical support during our experiment. C. W. Lopes (Science without Frontiers -Process no. 13191/13-6) thanks CAPES for a predoctoral fellowship. J. L. Cerrillo is grateful to MINECO for the Severo Ochoa contract for PhD formation (SVP-2014-068600). L. Kiwi-Minsker acknowledges financial support provided by Russian Science Foundation (project 15-19-20023). Authors also thank Kynol Europa GmbH for the supply of the activated carbon fibers. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | The Royal Society of Chemistry | es_ES |
dc.relation.ispartof | Catalysis Science & Technology | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject.classification | INGENIERIA QUIMICA | es_ES |
dc.title | Nature and evolution of Pd catalysts supported on activated carbon fibers during the catalytic reduction of bromate in water | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1039/d0cy00606h | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CAPES//13191%2F13-6/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SVP-2014-068600/ES/SVP-2014-068600/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-101784-B-I00/ES/NUEVOS MATERIALES ZEOLITICOS PARA PROCESOS DE SEPARACION SELECTIVA DE GASES, APLICACIONES MEDIOAMBIENTALES Y CONSERVACION DE ALIMENTOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/RFBR//5-19-20023/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear | es_ES |
dc.description.bibliographicCitation | Cerrillo, JL.; Lopes, CW.; Rey Garcia, F.; Agostini, G.; Kiwi-Minsker, L.; Palomares Gimeno, AE. (2020). Nature and evolution of Pd catalysts supported on activated carbon fibers during the catalytic reduction of bromate in water. Catalysis Science & Technology. 10(11):3646-3653. https://doi.org/10.1039/d0cy00606h | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1039/d0cy00606h | es_ES |
dc.description.upvformatpinicio | 3646 | es_ES |
dc.description.upvformatpfin | 3653 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 10 | es_ES |
dc.description.issue | 11 | es_ES |
dc.relation.pasarela | S\420369 | es_ES |
dc.contributor.funder | Russian Science Foundation | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Coordenaçao de Aperfeiçoamento de Pessoal de Nível Superior, Brasil | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Naushad, M., Khan, M. R., ALOthman, Z. A., AlSohaimi, I., Rodriguez-Reinoso, F., Turki, T. M., & Ali, R. (2015). Removal of BrO3 − from drinking water samples using newly developed agricultural waste-based activated carbon and its determination by ultra-performance liquid chromatography-mass spectrometry. Environmental Science and Pollution Research, 22(20), 15853-15865. doi:10.1007/s11356-015-4786-y | es_ES |
dc.description.references | BUTLER, R., GODLEY, A., LYTTON, L., & CARTMELL, E. (2005). Bromate Environmental Contamination: Review of Impact and Possible Treatment. Critical Reviews in Environmental Science and Technology, 35(3), 193-217. doi:10.1080/10643380590917888 | es_ES |
dc.description.references | Weinberg, H. S., Delcomyn, C. A., & Unnam, V. (2003). Bromate in Chlorinated Drinking Waters: Occurrence and Implications for Future Regulation. Environmental Science & Technology, 37(14), 3104-3110. doi:10.1021/es026400z | es_ES |
dc.description.references | OMS , Bromate in Drinking-water - Guidelines for Drinking-water Quality , WHO , 2005 | es_ES |
dc.description.references | Jabłońska, M., Król, A., Kukulska-Zając, E., Tarach, K., Girman, V., Chmielarz, L., & Góra-Marek, K. (2015). Zeolites Y modified with palladium as effective catalysts for low-temperature methanol incineration. Applied Catalysis B: Environmental, 166-167, 353-365. doi:10.1016/j.apcatb.2014.11.047 | es_ES |
dc.description.references | Pergher, S. B. ., Dallago, R. M., Veses, R. C., Gigola, C. E., & Baibich, I. M. (2004). Pd/NaY-zeolite and Pd-W/NaY-zeolite catalysts: preparation, characterization and NO decomposition activity. Journal of Molecular Catalysis A: Chemical, 209(1-2), 107-115. doi:10.1016/j.molcata.2003.08.005 | es_ES |
dc.description.references | Chaplin, B. P., Reinhard, M., Schneider, W. F., Schüth, C., Shapley, J. R., Strathmann, T. J., & Werth, C. J. (2012). Critical Review of Pd-Based Catalytic Treatment of Priority Contaminants in Water. Environmental Science & Technology, 46(7), 3655-3670. doi:10.1021/es204087q | es_ES |
dc.description.references | Höller, V., Rådevik, K., Yuranov, I., Kiwi-Minsker, L., & Renken, A. (2001). Reduction of nitrite-ions in water over Pd-supported on structured fibrous materials. Applied Catalysis B: Environmental, 32(3), 143-150. doi:10.1016/s0926-3373(01)00139-4 | es_ES |
dc.description.references | Shen, W.-J., Ichihashi, Y., Ando, H., Okumura, M., Haruta, M., & Matsumura, Y. (2001). Influence of palladium precursors on methanol synthesis from CO hydrogenation over Pd/CeO2 catalysts prepared by deposition–precipitation method. Applied Catalysis A: General, 217(1-2), 165-172. doi:10.1016/s0926-860x(01)00606-8 | es_ES |
dc.description.references | Hirayama, J., & Kamiya, Y. (2018). Tin-palladium supported on alumina as a highly active and selective catalyst for hydrogenation of nitrate in actual groundwater polluted with nitrate. Catalysis Science & Technology, 8(19), 4985-4993. doi:10.1039/c8cy00730f | es_ES |
dc.description.references | Palomares, A. E., Franch, C., Yuranova, T., Kiwi-Minsker, L., García-Bordeje, E., & Derrouiche, S. (2014). The use of Pd catalysts on carbon-based structured materials for the catalytic hydrogenation of bromates in different types of water. Applied Catalysis B: Environmental, 146, 186-191. doi:10.1016/j.apcatb.2013.02.056 | es_ES |
dc.description.references | Chen, H., Xu, Z., Wan, H., Zheng, J., Yin, D., & Zheng, S. (2010). Aqueous bromate reduction by catalytic hydrogenation over Pd/Al2O3 catalysts. Applied Catalysis B: Environmental, 96(3-4), 307-313. doi:10.1016/j.apcatb.2010.02.021 | es_ES |
dc.description.references | Soares, O. S. G. P., Freitas, C. M. A. S., Fonseca, A. M., Órfão, J. J. M., Pereira, M. F. R., & Neves, I. C. (2016). Bromate reduction in water promoted by metal catalysts prepared over faujasite zeolite. Chemical Engineering Journal, 291, 199-205. doi:10.1016/j.cej.2016.01.093 | es_ES |
dc.description.references | Freitas, C. M. A. S., Soares, O. S. G. P., Órfão, J. J. M., Fonseca, A. M., Pereira, M. F. R., & Neves, I. C. (2015). Highly efficient reduction of bromate to bromide over mono and bimetallic ZSM5 catalysts. Green Chemistry, 17(8), 4247-4254. doi:10.1039/c5gc00777a | es_ES |
dc.description.references | Restivo, J., Soares, O. S. G. P., Órfão, J. J. M., & Pereira, M. F. R. (2015). Bimetallic activated carbon supported catalysts for the hydrogen reduction of bromate in water. Catalysis Today, 249, 213-219. doi:10.1016/j.cattod.2014.10.048 | es_ES |
dc.description.references | Restivo, J., Soares, O. S. G. P., Órfão, J. J. M., & Pereira, M. F. R. (2017). Catalytic reduction of bromate over monometallic catalysts on different powder and structured supports. Chemical Engineering Journal, 309, 197-205. doi:10.1016/j.cej.2016.10.025 | es_ES |
dc.description.references | Soares, O. S. G. P., Ramalho, P. S. F., Fernandes, A., Órfão, J. J. M., & Pereira, M. F. R. (2019). Catalytic bromate reduction in water: Influence of carbon support. Journal of Environmental Chemical Engineering, 7(3), 103015. doi:10.1016/j.jece.2019.103015 | es_ES |
dc.description.references | Perez-Coronado, A. M., Soares, O. S. G. P., Calvo, L., Rodriguez, J. J., Gilarranz, M. A., & Pereira, M. F. R. (2018). Catalytic reduction of bromate over catalysts based on Pd nanoparticles synthesized via water-in-oil microemulsion. Applied Catalysis B: Environmental, 237, 206-213. doi:10.1016/j.apcatb.2018.05.077 | es_ES |
dc.description.references | Li, M., Zhou, X., Sun, J., Fu, H., Qu, X., Xu, Z., & Zheng, S. (2019). Highly effective bromate reduction by liquid phase catalytic hydrogenation over Pd catalysts supported on core-shell structured magnetites: Impact of shell properties. Science of The Total Environment, 663, 673-685. doi:10.1016/j.scitotenv.2019.01.392 | es_ES |
dc.description.references | Chen, X., Huo, X., Liu, J., Wang, Y., Werth, C. J., & Strathmann, T. J. (2017). Exploring beyond palladium: Catalytic reduction of aqueous oxyanion pollutants with alternative platinum group metals and new mechanistic implications. Chemical Engineering Journal, 313, 745-752. doi:10.1016/j.cej.2016.12.058 | es_ES |
dc.description.references | Gao, Y., Sun, W., Yang, W., & Li, Q. (2017). Creation of Pd/Al2O3 Catalyst by a Spray Process for Fixed Bed Reactors and Its Effective Removal of Aqueous Bromate. Scientific Reports, 7(1). doi:10.1038/srep41797 | es_ES |
dc.description.references | Li, M., Hu, Y., Fu, H., Qu, X., Xu, Z., & Zheng, S. (2019). Pt embedded in carbon rods of N-doped CMK-3 as a highly active and stable catalyst for catalytic hydrogenation reduction of bromate. Chemical Communications, 55(78), 11786-11789. doi:10.1039/c9cc05274g | es_ES |
dc.description.references | Marco, Y., García-Bordejé, E., Franch, C., Palomares, A. E., Yuranova, T., & Kiwi-Minsker, L. (2013). Bromate catalytic reduction in continuous mode using metal catalysts supported on monoliths coated with carbon nanofibers. Chemical Engineering Journal, 230, 605-611. doi:10.1016/j.cej.2013.06.040 | es_ES |
dc.description.references | Yuranova, T., Kiwi-Minsker, L., Franch, C., Palomares, A. E., Armenise, S., & García-Bordejé, E. (2013). Nanostructured Catalysts for the Continuous Reduction of Nitrates and Bromates in Water. Industrial & Engineering Chemistry Research, 52(39), 13930-13937. doi:10.1021/ie302977h | es_ES |
dc.description.references | Palomares, A. E., Franch, C., & Corma, A. (2011). A study of different supports for the catalytic reduction of nitrates from natural water with a continuous reactor. Catalysis Today, 172(1), 90-94. doi:10.1016/j.cattod.2011.05.015 | es_ES |
dc.description.references | Yuranova, T., Franch, C., Palomares, A. E., Garcia-Bordejé, E., & Kiwi-Minsker, L. (2012). Structured fibrous carbon-based catalysts for continuous nitrate removal from natural water. Applied Catalysis B: Environmental, 123-124, 221-228. doi:10.1016/j.apcatb.2012.04.007 | es_ES |
dc.description.references | Lan, H., Mao, R., Tong, Y., Liu, Y., Liu, H., An, X., & Liu, R. (2016). Enhanced Electroreductive Removal of Bromate by a Supported Pd–In Bimetallic Catalyst: Kinetics and Mechanism Investigation. Environmental Science & Technology, 50(21), 11872-11878. doi:10.1021/acs.est.6b02822 | es_ES |
dc.description.references | Yao, F., Yang, Q., Yan, M., Li, X., Chen, F., Zhong, Y., … Li, X. (2020). Synergistic adsorption and electrocatalytic reduction of bromate by Pd/N-doped loofah sponge-derived biochar electrode. Journal of Hazardous Materials, 386, 121651. doi:10.1016/j.jhazmat.2019.121651 | es_ES |
dc.description.references | Morais, D. F. S., Boaventura, R. A. R., Moreira, F. C., & Vilar, V. J. P. (2019). Advances in bromate reduction by heterogeneous photocatalysis: The use of a static mixer as photocatalyst support. Applied Catalysis B: Environmental, 249, 322-332. doi:10.1016/j.apcatb.2019.02.070 | es_ES |
dc.description.references | Cunha, G. S., Santos, S. G. S., Souza-Chaves, B. M., Silva, T. F. C. V., Bassin, J. P., Dezotti, M. W. C., … Vilar, V. J. P. (2019). Removal of bromate from drinking water using a heterogeneous photocatalytic mili-reactor: impact of the reactor material and water matrix. Environmental Science and Pollution Research, 26(32), 33281-33293. doi:10.1007/s11356-019-06266-9 | es_ES |
dc.description.references | Matatov-Meytal, Y., & Sheintuch, M. (2002). Catalytic fibers and cloths. Applied Catalysis A: General, 231(1-2), 1-16. doi:10.1016/s0926-860x(01)00963-2 | es_ES |
dc.description.references | Joannet, E., Horny, C., Kiwi-Minsker, L., & Renken, A. (2002). Palladium supported on filamentous active carbon as effective catalyst for liquid-phase hydrogenation of 2-butyne-1,4-diol to 2-butene-1,4-diol. Chemical Engineering Science, 57(16), 3453-3460. doi:10.1016/s0009-2509(02)00215-4 | es_ES |
dc.description.references | Crespo-Quesada, M., Dykeman, R. R., Laurenczy, G., Dyson, P. J., & Kiwi-Minsker, L. (2011). Supported nitrogen-modified Pd nanoparticles for the selective hydrogenation of 1-hexyne. Journal of Catalysis, 279(1), 66-74. doi:10.1016/j.jcat.2011.01.003 | es_ES |
dc.description.references | Fang, W., Yang, S., Wang, X.-L., Yuan, T.-Q., & Sun, R.-C. (2017). Manufacture and application of lignin-based carbon fibers (LCFs) and lignin-based carbon nanofibers (LCNFs). Green Chemistry, 19(8), 1794-1827. doi:10.1039/c6gc03206k | es_ES |
dc.description.references | Yaseneva, P., Marti, C. F., Palomares, E., Fan, X., Morgan, T., Perez, P. S., … Lapkin, A. A. (2014). Efficient reduction of bromates using carbon nanofibre supported catalysts: Experimental and a comparative life cycle assessment study. Chemical Engineering Journal, 248, 230-241. doi:10.1016/j.cej.2014.03.034 | es_ES |
dc.description.references | Shim, J.-W., Park, S.-J., & Ryu, S.-K. (2001). Effect of modification with HNO3 and NaOH on metal adsorption by pitch-based activated carbon fibers. Carbon, 39(11), 1635-1642. doi:10.1016/s0008-6223(00)00290-6 | es_ES |
dc.description.references | Rouquerol, J., Llewellyn, P., & Rouquerol, F. (2007). Is the bet equation applicable to microporous adsorbents? Characterization of Porous Solids VII - Proceedings of the 7th International Symposium on the Characterization of Porous Solids (COPS-VII), Aix-en-Provence, France, 26-28 May 2005, 49-56. doi:10.1016/s0167-2991(07)80008-5 | es_ES |
dc.description.references | J. R. Anderson , Structure of metallic catalysts , Academic Press , London-New York , 1918 | es_ES |
dc.description.references | Martínez, A., Arribas, M. A., Derewinski, M., & Burkat-Dulak, A. (2010). Enhanced sulfur resistance of bifunctional Pd/HZSM-5 catalyst comprising hierarchical carbon-templated zeolite. Applied Catalysis A: General, 379(1-2), 188-197. doi:10.1016/j.apcata.2010.03.023 | es_ES |
dc.description.references | Ravel, B., & Newville, M. (2005). ATHENA,ARTEMIS,HEPHAESTUS: data analysis for X-ray absorption spectroscopy usingIFEFFIT. Journal of Synchrotron Radiation, 12(4), 537-541. doi:10.1107/s0909049505012719 | es_ES |
dc.description.references | Groppo, E., Agostini, G., Borfecchia, E., Wei, L., Giannici, F., Portale, G., … Lamberti, C. (2014). Formation and Growth of Pd Nanoparticles Inside a Highly Cross-Linked Polystyrene Support: Role of the Reducing Agent. The Journal of Physical Chemistry C, 118(16), 8406-8415. doi:10.1021/jp5003897 | es_ES |
dc.description.references | Groppo, E., Liu, W., Zavorotynska, O., Agostini, G., Spoto, G., Bordiga, S., … Zecchina, A. (2010). Subnanometric Pd Particles Stabilized Inside Highly Cross-Linked Polymeric Supports. Chemistry of Materials, 22(7), 2297-2308. doi:10.1021/cm903176d | es_ES |
dc.description.references | Bugaev, A. L., Guda, A. A., Lazzarini, A., Lomachenko, K. A., Groppo, E., Pellegrini, R., … Lamberti, C. (2017). In situ formation of hydrides and carbides in palladium catalyst: When XANES is better than EXAFS and XRD. Catalysis Today, 283, 119-126. doi:10.1016/j.cattod.2016.02.065 | es_ES |
dc.description.references | Fernández-García, M. (2002). XANES analysis of catalytic systems under reaction conditions. Catalysis Reviews, 44(1), 59-121. doi:10.1081/cr-120001459 | es_ES |
dc.description.references | Lopes, C. W., Cerrillo, J. L., Palomares, A. E., Rey, F., & Agostini, G. (2018). An in situ XAS study of the activation of precursor-dependent Pd nanoparticles. Physical Chemistry Chemical Physics, 20(18), 12700-12709. doi:10.1039/c8cp00517f | es_ES |
dc.description.references | Wang, J., Wang, Q., Jiang, X., Liu, Z., Yang, W., & Frenkel, A. I. (2014). Determination of Nanoparticle Size by Measuring the Metal–Metal Bond Length: The Case of Palladium Hydride. The Journal of Physical Chemistry C, 119(1), 854-861. doi:10.1021/jp510730a | es_ES |
dc.description.references | Srabionyan, V. V., Bugaev, A. L., Pryadchenko, V. V., Avakyan, L. A., van Bokhoven, J. A., & Bugaev, L. A. (2014). EXAFS study of size dependence of atomic structure in palladium nanoparticles. Journal of Physics and Chemistry of Solids, 75(4), 470-476. doi:10.1016/j.jpcs.2013.12.012 | es_ES |
dc.description.references | Franch, C., Rodríguez-Castellón, E., Reyes-Carmona, Á., & Palomares, A. E. (2012). Characterization of (Sn and Cu)/Pd catalysts for the nitrate reduction in natural water. Applied Catalysis A: General, 425-426, 145-152. doi:10.1016/j.apcata.2012.03.015 | es_ES |
dc.description.references | Dong, Z., Dong, W., Sun, F., Zhu, R., & Ouyang, F. (2012). Effects of preparation conditions on catalytic activity of Ru/AC catalyst to reduce bromate ion in water. Reaction Kinetics, Mechanisms and Catalysis, 107(1), 231-244. doi:10.1007/s11144-012-0473-x | es_ES |
dc.description.references | Restivo, J., Soares, O. S. G. P., Órfão, J. J. M., & Pereira, M. F. R. (2015). Metal assessment for the catalytic reduction of bromate in water under hydrogen. Chemical Engineering Journal, 263, 119-126. doi:10.1016/j.cej.2014.11.052 | es_ES |
dc.description.references | Siddiqui, M., Zhai, W., Amy, G., & Mysore, C. (1996). Bromate ion removal by activated carbon. Water Research, 30(7), 1651-1660. doi:10.1016/0043-1354(96)00070-x | es_ES |
dc.description.references | Sun, J., Zhang, J., Fu, H., Wan, H., Wan, Y., Qu, X., … Zheng, S. (2018). Enhanced catalytic hydrogenation reduction of bromate on Pd catalyst supported on CeO2 modified SBA-15 prepared by strong electrostatic adsorption. Applied Catalysis B: Environmental, 229, 32-40. doi:10.1016/j.apcatb.2018.02.009 | es_ES |
dc.description.references | Sun, W., Li, Q., Gao, S., & Shang, J. K. (2013). Highly efficient catalytic reduction of bromate in water over a quasi-monodisperse, superparamagnetic Pd/Fe3O4 catalyst. Journal of Materials Chemistry A, 1(32), 9215. doi:10.1039/c3ta11455d | es_ES |