- -

The effect of divergent selection for intramuscular fat on the domestic rabbit genome

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The effect of divergent selection for intramuscular fat on the domestic rabbit genome

Mostrar el registro completo del ítem

Sosa-Madrid, BS.; Varona, L.; Blasco Mateu, A.; Hernández, P.; Casto-Rebollo, C.; Ibáñez-Escriche, N. (2020). The effect of divergent selection for intramuscular fat on the domestic rabbit genome. Animal. 14(11):2225-2235. https://doi.org/10.1017/S1751731120001263

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/165355

Ficheros en el ítem

Metadatos del ítem

Título: The effect of divergent selection for intramuscular fat on the domestic rabbit genome
Autor: Sosa-Madrid, Bolivar Samuel Varona, L. Blasco Mateu, Agustín Hernández, Pilar Casto-Rebollo, Cristina Ibáñez-Escriche, Noelia
Entidad UPV: Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal
Fecha difusión:
Resumen:
[EN] An experiment of divergent selection for intramuscular fat was carried out at Universitat Politecnica de Valencia. The high response of selection in intramuscular fat content, after nine generations of selection, and ...[+]
Palabras clave: Genome scan , Genomic divergence , Lagomorph , Meat quality , Selection signatures
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Animal. (issn: 1751-7311 )
DOI: 10.1017/S1751731120001263
Editorial:
Cambridge University Press
Versión del editor: https://doi.org/10.1017/S1751731120001263
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//AGL2014-55921-C2-1-P/ES/ESTUDIO GENOMICO Y METABOLOMICO DE VARIAS LINEAS DE SELECCION DIVERGENTE EN CONEJO: EL CONEJO COMO MODELO EXPERIMENTAL/
info:eu-repo/grantAgreement/MINECO//BES-2015-074194/ES/BES-2015-074194/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/AGL2017-86083-C2-1-P/ES/ESTUDIO MULTIOMICO SOBRE SENSIBILIDAD AMBIENTAL, LONGEVIDAD Y DEPOSICION GRASA EN LINEAS SELECCIONADAS DE CONEJO/
Agradecimientos:
The authors thank Federico Pardo, Veronica Juste and Marina Morini for technical assistance. The work was funded by project AGL2014-55921-C2-1-P and AGL2017-86083-C2-P1 from National Programme for Fostering Excellence in ...[+]
Tipo: Artículo

References

Beissinger, T. M., Rosa, G. J., Kaeppler, S. M., Gianola, D., & de Leon, N. (2015). Defining window-boundaries for genomic analyses using smoothing spline techniques. Genetics Selection Evolution, 47(1). doi:10.1186/s12711-015-0105-9

Carneiro, M., Albert, F. W., Afonso, S., Pereira, R. J., Burbano, H., Campos, R., … Ferrand, N. (2014). The Genomic Architecture of Population Divergence between Subspecies of the European Rabbit. PLoS Genetics, 10(8), e1003519. doi:10.1371/journal.pgen.1003519

Carneiro M, Rubin CJ, Di Palma F, Albert FW, Alföldi J, Barrio AM, Pielberg G, Rafati N, Sayyab S, Turner-Maier J, Younis S, Afonso S, Aken B, Alves JM, Barrell D, Bolet G, Boucher S, Burbano HA, Campos R, Chang JL, Duranthon V, Fontanesi L, Garreau H, Heiman D, Johnson J, Mage RG, Peng Z, Queney G, Rogel-Gaillard C, Ruffier M, Searle S, Villafuerte R, Xiong A, Young S, Forsberg-Nilsson K, Good JM, Lander ES, Ferrand N, Lindblad-Toh K and Andersson L 2014b. Rabbit genome analysis reveals a polygenic basis for phenotypic change during domestication. Science 345, 1074–1079. [+]
Beissinger, T. M., Rosa, G. J., Kaeppler, S. M., Gianola, D., & de Leon, N. (2015). Defining window-boundaries for genomic analyses using smoothing spline techniques. Genetics Selection Evolution, 47(1). doi:10.1186/s12711-015-0105-9

Carneiro, M., Albert, F. W., Afonso, S., Pereira, R. J., Burbano, H., Campos, R., … Ferrand, N. (2014). The Genomic Architecture of Population Divergence between Subspecies of the European Rabbit. PLoS Genetics, 10(8), e1003519. doi:10.1371/journal.pgen.1003519

Carneiro M, Rubin CJ, Di Palma F, Albert FW, Alföldi J, Barrio AM, Pielberg G, Rafati N, Sayyab S, Turner-Maier J, Younis S, Afonso S, Aken B, Alves JM, Barrell D, Bolet G, Boucher S, Burbano HA, Campos R, Chang JL, Duranthon V, Fontanesi L, Garreau H, Heiman D, Johnson J, Mage RG, Peng Z, Queney G, Rogel-Gaillard C, Ruffier M, Searle S, Villafuerte R, Xiong A, Young S, Forsberg-Nilsson K, Good JM, Lander ES, Ferrand N, Lindblad-Toh K and Andersson L 2014b. Rabbit genome analysis reveals a polygenic basis for phenotypic change during domestication. Science 345, 1074–1079.

Cesar, A. S., Regitano, L. C., Mourão, G. B., Tullio, R. R., Lanna, D. P., Nassu, R. T., … Coutinho, L. L. (2014). Genome-wide association study for intramuscular fat deposition and composition in Nellore cattle. BMC Genetics, 15(1). doi:10.1186/1471-2156-15-39

Chen, H., Patterson, N., & Reich, D. (2010). Population differentiation as a test for selective sweeps. Genome Research, 20(3), 393-402. doi:10.1101/gr.100545.109

Damon, M., Wyszynska-Koko, J., Vincent, A., Hérault, F., & Lebret, B. (2012). Comparison of Muscle Transcriptome between Pigs with Divergent Meat Quality Phenotypes Identifies Genes Related to Muscle Metabolism and Structure. PLoS ONE, 7(3), e33763. doi:10.1371/journal.pone.0033763

Gandolfi, G., Mazzoni, M., Zambonelli, P., Lalatta-Costerbosa, G., Tronca, A., Russo, V., & Davoli, R. (2011). Perilipin 1 and perilipin 2 protein localization and gene expression study in skeletal muscles of European cross-breed pigs with different intramuscular fat contents. Meat Science, 88(4), 631-637. doi:10.1016/j.meatsci.2011.02.020

Gol, S., Ros-Freixedes, R., Zambonelli, P., Tor, M., Pena, R. N., Braglia, S., … Davoli, R. (2015). Relationship between perilipin genes polymorphisms and growth, carcass and meat quality traits in pigs. Journal of Animal Breeding and Genetics, 133(1), 24-30. doi:10.1111/jbg.12159

González-Rodríguez, A., Munilla, S., Mouresan, E. F., Cañas-Álvarez, J. J., Díaz, C., Piedrafita, J., … Varona, L. (2016). On the performance of tests for the detection of signatures of selection: a case study with the Spanish autochthonous beef cattle populations. Genetics Selection Evolution, 48(1). doi:10.1186/s12711-016-0258-1

Grams, V., Wellmann, R., Preuß, S., Grashorn, M. A., Kjaer, J. B., Bessei, W., & Bennewitz, J. (2015). Genetic parameters and signatures of selection in two divergent laying hen lines selected for feather pecking behaviour. Genetics Selection Evolution, 47(1). doi:10.1186/s12711-015-0154-0

Gurgul, A., Jasielczuk, I., Ropka-Molik, K., Semik-Gurgul, E., Pawlina-Tyszko, K., Szmatoła, T., … Krupiński, J. (2018). A genome-wide detection of selection signatures in conserved and commercial pig breeds maintained in Poland. BMC Genetics, 19(1). doi:10.1186/s12863-018-0681-0

Johansson, A. M., Pettersson, M. E., Siegel, P. B., & Carlborg, Ö. (2010). Genome-Wide Effects of Long-Term Divergent Selection. PLoS Genetics, 6(11), e1001188. doi:10.1371/journal.pgen.1001188

Kim, E.-S., Ros-Freixedes, R., Pena, R. N., Baas, T. J., Estany, J., & Rothschild, M. F. (2015). Identification of signatures of selection for intramuscular fat and backfat thickness in two Duroc populations1. Journal of Animal Science, 93(7), 3292-3302. doi:10.2527/jas.2015-8879

Kuleshov, M. V., Jones, M. R., Rouillard, A. D., Fernandez, N. F., Duan, Q., Wang, Z., … Ma’ayan, A. (2016). Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Research, 44(W1), W90-W97. doi:10.1093/nar/gkw377

Li, X., Lee, C.-K., Choi, B.-H., Kim, T.-H., Kim, J.-J., & Kim, K.-S. (2010). Quantitative gene expression analysis on chromosome 6 between Korean native pigs and Yorkshire breeds for fat deposition. Genes & Genomics, 32(4), 385-393. doi:10.1007/s13258-010-0009-6

Lillie, M., Sheng, Z., Honaker, C. F., Dorshorst, B. J., Ashwell, C. M., Siegel, P. B., & Carlborg, Ö. (2017). Genome-wide standing variation facilitates long-term response to bidirectional selection for antibody response in chickens. BMC Genomics, 18(1). doi:10.1186/s12864-016-3414-7

Ma, H., Zhang, S., Zhang, K., Zhan, H., Peng, X., Xie, S., … Ma, Y. (2019). Identifying Selection Signatures for Backfat Thickness in Yorkshire Pigs Highlights New Regions Affecting Fat Metabolism. Genes, 10(4), 254. doi:10.3390/genes10040254

Mallick, S., Gnerre, S., Muller, P., & Reich, D. (2009). The difficulty of avoiding false positives in genome scans for natural selection. Genome Research, 19(5), 922-933. doi:10.1101/gr.086512.108

Martínez-Álvaro, M., Hernández, P., & Blasco, A. (2016). Divergent selection on intramuscular fat in rabbits: Responses to selection and genetic parameters1. Journal of Animal Science, 94(12), 4993-5003. doi:10.2527/jas.2016-0590

Mauch E, Servin B, Gilbert H and Dekkers J 2018. Signatures of selection in two independent populations of pigs divergently selected for feed efficiency. Animal Industry Report AS 664, ASL R3274.

Oleksyk, T. K., Smith, M. W., & O’Brien, S. J. (2010). Genome-wide scans for footprints of natural selection. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1537), 185-205. doi:10.1098/rstb.2009.0219

Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A. R., Bender, D., … Sham, P. C. (2007). PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. The American Journal of Human Genetics, 81(3), 559-575. doi:10.1086/519795

Qanbari, S., & Simianer, H. (2014). Mapping signatures of positive selection in the genome of livestock. Livestock Science, 166, 133-143. doi:10.1016/j.livsci.2014.05.003

Sabeti, P. C., Varilly, P., Fry, B., Lohmueller, J., Hostetter, E., … Lander, E. S. (2007). Genome-wide detection and characterization of positive selection in human populations. Nature, 449(7164), 913-918. doi:10.1038/nature06250

Sargolzaei, M., Chesnais, J. P., & Schenkel, F. S. (2014). A new approach for efficient genotype imputation using information from relatives. BMC Genomics, 15(1), 478. doi:10.1186/1471-2164-15-478

Sosa-Madrid BS, Hernández P, Blasco A, Haley CS, Fontanesi L, Santacreu MA, Pena RN, Navarro P and Ibáñez-Escriche N 2020. Genomic regions influencing intramuscular fat in divergently selected rabbit lines. Animal Genetics 51, 58–69.

Sosa-Madrid BS, Ibañez-Escriche N, Santacreu MA, Varona L and Blasco A 2017. Huellas de selección en un experimento de seleccion divergente para capacidad uterina en conejo. In Proceedings of the XVII Jornadas sobre Producción Animal, 30–31 May 2017, Zaragoza, Spain, pp. 558–560.

Szpiech ZA and Hernandez RD 2014. selscan: an efficient multithreaded program to perform EHH-based scans for positive selection. Molecular Biology and Evolution 31, 2824–2827.

Utsunomiya, Y. T., Pérez O’Brien, A. M., Sonstegard, T. S., Van Tassell, C. P., do Carmo, A. S., Mészáros, G., … Garcia, J. F. (2013). Detecting Loci under Recent Positive Selection in Dairy and Beef Cattle by Combining Different Genome-Wide Scan Methods. PLoS ONE, 8(5), e64280. doi:10.1371/journal.pone.0064280

Walter, M., Chen, F. W., Tamari, F., Wang, R., & Ioannou, Y. A. (2009). Endosomal lipid accumulation in NPC1 leads to inhibition of PKC, hypophosphorylation of vimentin and Rab9 entrapment. Biology of the Cell, 101(3), 141-153. doi:10.1042/bc20070171

Wang, Z., Ma, H., Xu, L., Zhu, B., Liu, Y., Bordbar, F., … Li, J. (2019). Genome-Wide Scan Identifies Selection Signatures in Chinese Wagyu Cattle Using a High-Density SNP Array. Animals, 9(6), 296. doi:10.3390/ani9060296

Wipperman, M. F., Montrose, D. C., Gotto, A. M., & Hajjar, D. P. (2019). Mammalian Target of Rapamycin. The American Journal of Pathology, 189(3), 492-501. doi:10.1016/j.ajpath.2018.11.013

Zomeño, C., Hernández, P., & Blasco, A. (2013). Divergent selection for intramuscular fat content in rabbits. I. Direct response to selection1. Journal of Animal Science, 91(9), 4526-4531. doi:10.2527/jas.2013-6361

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem