Beissinger, T. M., Rosa, G. J., Kaeppler, S. M., Gianola, D., & de Leon, N. (2015). Defining window-boundaries for genomic analyses using smoothing spline techniques. Genetics Selection Evolution, 47(1). doi:10.1186/s12711-015-0105-9
Carneiro, M., Albert, F. W., Afonso, S., Pereira, R. J., Burbano, H., Campos, R., … Ferrand, N. (2014). The Genomic Architecture of Population Divergence between Subspecies of the European Rabbit. PLoS Genetics, 10(8), e1003519. doi:10.1371/journal.pgen.1003519
Carneiro M, Rubin CJ, Di Palma F, Albert FW, Alföldi J, Barrio AM, Pielberg G, Rafati N, Sayyab S, Turner-Maier J, Younis S, Afonso S, Aken B, Alves JM, Barrell D, Bolet G, Boucher S, Burbano HA, Campos R, Chang JL, Duranthon V, Fontanesi L, Garreau H, Heiman D, Johnson J, Mage RG, Peng Z, Queney G, Rogel-Gaillard C, Ruffier M, Searle S, Villafuerte R, Xiong A, Young S, Forsberg-Nilsson K, Good JM, Lander ES, Ferrand N, Lindblad-Toh K and Andersson L 2014b. Rabbit genome analysis reveals a polygenic basis for phenotypic change during domestication. Science 345, 1074–1079.
[+]
Beissinger, T. M., Rosa, G. J., Kaeppler, S. M., Gianola, D., & de Leon, N. (2015). Defining window-boundaries for genomic analyses using smoothing spline techniques. Genetics Selection Evolution, 47(1). doi:10.1186/s12711-015-0105-9
Carneiro, M., Albert, F. W., Afonso, S., Pereira, R. J., Burbano, H., Campos, R., … Ferrand, N. (2014). The Genomic Architecture of Population Divergence between Subspecies of the European Rabbit. PLoS Genetics, 10(8), e1003519. doi:10.1371/journal.pgen.1003519
Carneiro M, Rubin CJ, Di Palma F, Albert FW, Alföldi J, Barrio AM, Pielberg G, Rafati N, Sayyab S, Turner-Maier J, Younis S, Afonso S, Aken B, Alves JM, Barrell D, Bolet G, Boucher S, Burbano HA, Campos R, Chang JL, Duranthon V, Fontanesi L, Garreau H, Heiman D, Johnson J, Mage RG, Peng Z, Queney G, Rogel-Gaillard C, Ruffier M, Searle S, Villafuerte R, Xiong A, Young S, Forsberg-Nilsson K, Good JM, Lander ES, Ferrand N, Lindblad-Toh K and Andersson L 2014b. Rabbit genome analysis reveals a polygenic basis for phenotypic change during domestication. Science 345, 1074–1079.
Cesar, A. S., Regitano, L. C., Mourão, G. B., Tullio, R. R., Lanna, D. P., Nassu, R. T., … Coutinho, L. L. (2014). Genome-wide association study for intramuscular fat deposition and composition in Nellore cattle. BMC Genetics, 15(1). doi:10.1186/1471-2156-15-39
Chen, H., Patterson, N., & Reich, D. (2010). Population differentiation as a test for selective sweeps. Genome Research, 20(3), 393-402. doi:10.1101/gr.100545.109
Damon, M., Wyszynska-Koko, J., Vincent, A., Hérault, F., & Lebret, B. (2012). Comparison of Muscle Transcriptome between Pigs with Divergent Meat Quality Phenotypes Identifies Genes Related to Muscle Metabolism and Structure. PLoS ONE, 7(3), e33763. doi:10.1371/journal.pone.0033763
Gandolfi, G., Mazzoni, M., Zambonelli, P., Lalatta-Costerbosa, G., Tronca, A., Russo, V., & Davoli, R. (2011). Perilipin 1 and perilipin 2 protein localization and gene expression study in skeletal muscles of European cross-breed pigs with different intramuscular fat contents. Meat Science, 88(4), 631-637. doi:10.1016/j.meatsci.2011.02.020
Gol, S., Ros-Freixedes, R., Zambonelli, P., Tor, M., Pena, R. N., Braglia, S., … Davoli, R. (2015). Relationship between perilipin genes polymorphisms and growth, carcass and meat quality traits in pigs. Journal of Animal Breeding and Genetics, 133(1), 24-30. doi:10.1111/jbg.12159
González-Rodríguez, A., Munilla, S., Mouresan, E. F., Cañas-Álvarez, J. J., Díaz, C., Piedrafita, J., … Varona, L. (2016). On the performance of tests for the detection of signatures of selection: a case study with the Spanish autochthonous beef cattle populations. Genetics Selection Evolution, 48(1). doi:10.1186/s12711-016-0258-1
Grams, V., Wellmann, R., Preuß, S., Grashorn, M. A., Kjaer, J. B., Bessei, W., & Bennewitz, J. (2015). Genetic parameters and signatures of selection in two divergent laying hen lines selected for feather pecking behaviour. Genetics Selection Evolution, 47(1). doi:10.1186/s12711-015-0154-0
Gurgul, A., Jasielczuk, I., Ropka-Molik, K., Semik-Gurgul, E., Pawlina-Tyszko, K., Szmatoła, T., … Krupiński, J. (2018). A genome-wide detection of selection signatures in conserved and commercial pig breeds maintained in Poland. BMC Genetics, 19(1). doi:10.1186/s12863-018-0681-0
Johansson, A. M., Pettersson, M. E., Siegel, P. B., & Carlborg, Ö. (2010). Genome-Wide Effects of Long-Term Divergent Selection. PLoS Genetics, 6(11), e1001188. doi:10.1371/journal.pgen.1001188
Kim, E.-S., Ros-Freixedes, R., Pena, R. N., Baas, T. J., Estany, J., & Rothschild, M. F. (2015). Identification of signatures of selection for intramuscular fat and backfat thickness in two Duroc populations1. Journal of Animal Science, 93(7), 3292-3302. doi:10.2527/jas.2015-8879
Kuleshov, M. V., Jones, M. R., Rouillard, A. D., Fernandez, N. F., Duan, Q., Wang, Z., … Ma’ayan, A. (2016). Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Research, 44(W1), W90-W97. doi:10.1093/nar/gkw377
Li, X., Lee, C.-K., Choi, B.-H., Kim, T.-H., Kim, J.-J., & Kim, K.-S. (2010). Quantitative gene expression analysis on chromosome 6 between Korean native pigs and Yorkshire breeds for fat deposition. Genes & Genomics, 32(4), 385-393. doi:10.1007/s13258-010-0009-6
Lillie, M., Sheng, Z., Honaker, C. F., Dorshorst, B. J., Ashwell, C. M., Siegel, P. B., & Carlborg, Ö. (2017). Genome-wide standing variation facilitates long-term response to bidirectional selection for antibody response in chickens. BMC Genomics, 18(1). doi:10.1186/s12864-016-3414-7
Ma, H., Zhang, S., Zhang, K., Zhan, H., Peng, X., Xie, S., … Ma, Y. (2019). Identifying Selection Signatures for Backfat Thickness in Yorkshire Pigs Highlights New Regions Affecting Fat Metabolism. Genes, 10(4), 254. doi:10.3390/genes10040254
Mallick, S., Gnerre, S., Muller, P., & Reich, D. (2009). The difficulty of avoiding false positives in genome scans for natural selection. Genome Research, 19(5), 922-933. doi:10.1101/gr.086512.108
Martínez-Álvaro, M., Hernández, P., & Blasco, A. (2016). Divergent selection on intramuscular fat in rabbits: Responses to selection and genetic parameters1. Journal of Animal Science, 94(12), 4993-5003. doi:10.2527/jas.2016-0590
Mauch E, Servin B, Gilbert H and Dekkers J 2018. Signatures of selection in two independent populations of pigs divergently selected for feed efficiency. Animal Industry Report AS 664, ASL R3274.
Oleksyk, T. K., Smith, M. W., & O’Brien, S. J. (2010). Genome-wide scans for footprints of natural selection. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1537), 185-205. doi:10.1098/rstb.2009.0219
Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A. R., Bender, D., … Sham, P. C. (2007). PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. The American Journal of Human Genetics, 81(3), 559-575. doi:10.1086/519795
Qanbari, S., & Simianer, H. (2014). Mapping signatures of positive selection in the genome of livestock. Livestock Science, 166, 133-143. doi:10.1016/j.livsci.2014.05.003
Sabeti, P. C., Varilly, P., Fry, B., Lohmueller, J., Hostetter, E., … Lander, E. S. (2007). Genome-wide detection and characterization of positive selection in human populations. Nature, 449(7164), 913-918. doi:10.1038/nature06250
Sargolzaei, M., Chesnais, J. P., & Schenkel, F. S. (2014). A new approach for efficient genotype imputation using information from relatives. BMC Genomics, 15(1), 478. doi:10.1186/1471-2164-15-478
Sosa-Madrid BS, Hernández P, Blasco A, Haley CS, Fontanesi L, Santacreu MA, Pena RN, Navarro P and Ibáñez-Escriche N 2020. Genomic regions influencing intramuscular fat in divergently selected rabbit lines. Animal Genetics 51, 58–69.
Sosa-Madrid BS, Ibañez-Escriche N, Santacreu MA, Varona L and Blasco A 2017. Huellas de selección en un experimento de seleccion divergente para capacidad uterina en conejo. In Proceedings of the XVII Jornadas sobre Producción Animal, 30–31 May 2017, Zaragoza, Spain, pp. 558–560.
Szpiech ZA and Hernandez RD 2014. selscan: an efficient multithreaded program to perform EHH-based scans for positive selection. Molecular Biology and Evolution 31, 2824–2827.
Utsunomiya, Y. T., Pérez O’Brien, A. M., Sonstegard, T. S., Van Tassell, C. P., do Carmo, A. S., Mészáros, G., … Garcia, J. F. (2013). Detecting Loci under Recent Positive Selection in Dairy and Beef Cattle by Combining Different Genome-Wide Scan Methods. PLoS ONE, 8(5), e64280. doi:10.1371/journal.pone.0064280
Walter, M., Chen, F. W., Tamari, F., Wang, R., & Ioannou, Y. A. (2009). Endosomal lipid accumulation in NPC1 leads to inhibition of PKC, hypophosphorylation of vimentin and Rab9 entrapment. Biology of the Cell, 101(3), 141-153. doi:10.1042/bc20070171
Wang, Z., Ma, H., Xu, L., Zhu, B., Liu, Y., Bordbar, F., … Li, J. (2019). Genome-Wide Scan Identifies Selection Signatures in Chinese Wagyu Cattle Using a High-Density SNP Array. Animals, 9(6), 296. doi:10.3390/ani9060296
Wipperman, M. F., Montrose, D. C., Gotto, A. M., & Hajjar, D. P. (2019). Mammalian Target of Rapamycin. The American Journal of Pathology, 189(3), 492-501. doi:10.1016/j.ajpath.2018.11.013
Zomeño, C., Hernández, P., & Blasco, A. (2013). Divergent selection for intramuscular fat content in rabbits. I. Direct response to selection1. Journal of Animal Science, 91(9), 4526-4531. doi:10.2527/jas.2013-6361
[-]