- -

The effect of divergent selection for intramuscular fat on the domestic rabbit genome

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The effect of divergent selection for intramuscular fat on the domestic rabbit genome

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sosa-Madrid, Bolivar Samuel es_ES
dc.contributor.author Varona, L. es_ES
dc.contributor.author Blasco Mateu, Agustín es_ES
dc.contributor.author Hernández, Pilar es_ES
dc.contributor.author Casto-Rebollo, Cristina es_ES
dc.contributor.author Ibáñez-Escriche, Noelia es_ES
dc.date.accessioned 2021-04-20T03:30:57Z
dc.date.available 2021-04-20T03:30:57Z
dc.date.issued 2020-11 es_ES
dc.identifier.issn 1751-7311 es_ES
dc.identifier.uri http://hdl.handle.net/10251/165355
dc.description.abstract [EN] An experiment of divergent selection for intramuscular fat was carried out at Universitat Politecnica de Valencia. The high response of selection in intramuscular fat content, after nine generations of selection, and a multidimensional scaling analysis showed a high degree of genomic differentiation between the two divergent populations. Therefore, local genomic differences could link genomic regions, encompassing selective sweeps, to the trait used as selection criterion. In this sense, the aim of this study was to identify genomic regions related to intramuscular fat through three methods for detection of selection signatures and to generate a list of candidate genes. The methods implemented in this study were Wright's fixation index, cross population composite likelihood ratio and cross population - extended haplotype homozygosity. Genomic data came from the 9th generation of the two populations divergently selected, 237 from Low line and 240 from High line. A high single nucleotide polymorphism (SNP) density array, Affymetrix Axiom OrcunSNP Array (around 200k SNPs), was used for genotyping samples. Several genomic regions distributed along rabbit chromosomes (OCU) were identified as signatures of selection (SNPs having a value above cut-off of 1%) within each method. In contrast, 8 genomic regions, harbouring 80 SNPs (OCU1, OCU3, OCU6, OCU7, OCU16 and OCU17), were identified by at least 2 methods and none by the 3 methods. In general, our results suggest that intramuscular fat selection influenced multiple genomic regions which can be a consequence of either only selection effect or the combined effect of selection and genetic drift. In addition, 73 genes were retrieved from the 8 selection signatures. After functional and enrichment analyses, the main genes into the selection signatures linked to energy, fatty acids, carbohydrates and lipid metabolic processes wereACER2, PLIN2, DENND4C, RPS6, RRAGA(OCU1),ST8SIA6, VIM(OCU16),RORA, GANCandPLA2G4B(OCU17). This genomic scan is the first study using rabbits from a divergent selection experiment. Our results pointed out a large polygenic component of the intramuscular fat content. Besides, promising positional candidate genes would be analysed in further studies in order to bear out their contributions to this trait and their feasible implications for rabbit breeding programmes. es_ES
dc.description.sponsorship The authors thank Federico Pardo, Veronica Juste and Marina Morini for technical assistance. The work was funded by project AGL2014-55921-C2-1-P and AGL2017-86083-C2-P1 from National Programme for Fostering Excellence in Scientific and Technical Research - Project I+D. B. Samuel Sosa-Madrid was supported by a FPI grant from the Economy Ministry of Spain (BES-2015-074194). es_ES
dc.language Inglés es_ES
dc.publisher Cambridge University Press es_ES
dc.relation.ispartof Animal es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Genome scan es_ES
dc.subject Genomic divergence es_ES
dc.subject Lagomorph es_ES
dc.subject Meat quality es_ES
dc.subject Selection signatures es_ES
dc.subject.classification PRODUCCION ANIMAL es_ES
dc.title The effect of divergent selection for intramuscular fat on the domestic rabbit genome es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1017/S1751731120001263 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2014-55921-C2-1-P/ES/ESTUDIO GENOMICO Y METABOLOMICO DE VARIAS LINEAS DE SELECCION DIVERGENTE EN CONEJO: EL CONEJO COMO MODELO EXPERIMENTAL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BES-2015-074194/ES/BES-2015-074194/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/AGL2017-86083-C2-1-P/ES/ESTUDIO MULTIOMICO SOBRE SENSIBILIDAD AMBIENTAL, LONGEVIDAD Y DEPOSICION GRASA EN LINEAS SELECCIONADAS DE CONEJO/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal es_ES
dc.description.bibliographicCitation Sosa-Madrid, BS.; Varona, L.; Blasco Mateu, A.; Hernández, P.; Casto-Rebollo, C.; Ibáñez-Escriche, N. (2020). The effect of divergent selection for intramuscular fat on the domestic rabbit genome. Animal. 14(11):2225-2235. https://doi.org/10.1017/S1751731120001263 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1017/S1751731120001263 es_ES
dc.description.upvformatpinicio 2225 es_ES
dc.description.upvformatpfin 2235 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 14 es_ES
dc.description.issue 11 es_ES
dc.identifier.pmid 32618550 es_ES
dc.relation.pasarela S\395343 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Beissinger, T. M., Rosa, G. J., Kaeppler, S. M., Gianola, D., & de Leon, N. (2015). Defining window-boundaries for genomic analyses using smoothing spline techniques. Genetics Selection Evolution, 47(1). doi:10.1186/s12711-015-0105-9 es_ES
dc.description.references Carneiro, M., Albert, F. W., Afonso, S., Pereira, R. J., Burbano, H., Campos, R., … Ferrand, N. (2014). The Genomic Architecture of Population Divergence between Subspecies of the European Rabbit. PLoS Genetics, 10(8), e1003519. doi:10.1371/journal.pgen.1003519 es_ES
dc.description.references Carneiro M, Rubin CJ, Di Palma F, Albert FW, Alföldi J, Barrio AM, Pielberg G, Rafati N, Sayyab S, Turner-Maier J, Younis S, Afonso S, Aken B, Alves JM, Barrell D, Bolet G, Boucher S, Burbano HA, Campos R, Chang JL, Duranthon V, Fontanesi L, Garreau H, Heiman D, Johnson J, Mage RG, Peng Z, Queney G, Rogel-Gaillard C, Ruffier M, Searle S, Villafuerte R, Xiong A, Young S, Forsberg-Nilsson K, Good JM, Lander ES, Ferrand N, Lindblad-Toh K and Andersson L 2014b. Rabbit genome analysis reveals a polygenic basis for phenotypic change during domestication. Science 345, 1074–1079. es_ES
dc.description.references Cesar, A. S., Regitano, L. C., Mourão, G. B., Tullio, R. R., Lanna, D. P., Nassu, R. T., … Coutinho, L. L. (2014). Genome-wide association study for intramuscular fat deposition and composition in Nellore cattle. BMC Genetics, 15(1). doi:10.1186/1471-2156-15-39 es_ES
dc.description.references Chen, H., Patterson, N., & Reich, D. (2010). Population differentiation as a test for selective sweeps. Genome Research, 20(3), 393-402. doi:10.1101/gr.100545.109 es_ES
dc.description.references Damon, M., Wyszynska-Koko, J., Vincent, A., Hérault, F., & Lebret, B. (2012). Comparison of Muscle Transcriptome between Pigs with Divergent Meat Quality Phenotypes Identifies Genes Related to Muscle Metabolism and Structure. PLoS ONE, 7(3), e33763. doi:10.1371/journal.pone.0033763 es_ES
dc.description.references Gandolfi, G., Mazzoni, M., Zambonelli, P., Lalatta-Costerbosa, G., Tronca, A., Russo, V., & Davoli, R. (2011). Perilipin 1 and perilipin 2 protein localization and gene expression study in skeletal muscles of European cross-breed pigs with different intramuscular fat contents. Meat Science, 88(4), 631-637. doi:10.1016/j.meatsci.2011.02.020 es_ES
dc.description.references Gol, S., Ros-Freixedes, R., Zambonelli, P., Tor, M., Pena, R. N., Braglia, S., … Davoli, R. (2015). Relationship between perilipin genes polymorphisms and growth, carcass and meat quality traits in pigs. Journal of Animal Breeding and Genetics, 133(1), 24-30. doi:10.1111/jbg.12159 es_ES
dc.description.references González-Rodríguez, A., Munilla, S., Mouresan, E. F., Cañas-Álvarez, J. J., Díaz, C., Piedrafita, J., … Varona, L. (2016). On the performance of tests for the detection of signatures of selection: a case study with the Spanish autochthonous beef cattle populations. Genetics Selection Evolution, 48(1). doi:10.1186/s12711-016-0258-1 es_ES
dc.description.references Grams, V., Wellmann, R., Preuß, S., Grashorn, M. A., Kjaer, J. B., Bessei, W., & Bennewitz, J. (2015). Genetic parameters and signatures of selection in two divergent laying hen lines selected for feather pecking behaviour. Genetics Selection Evolution, 47(1). doi:10.1186/s12711-015-0154-0 es_ES
dc.description.references Gurgul, A., Jasielczuk, I., Ropka-Molik, K., Semik-Gurgul, E., Pawlina-Tyszko, K., Szmatoła, T., … Krupiński, J. (2018). A genome-wide detection of selection signatures in conserved and commercial pig breeds maintained in Poland. BMC Genetics, 19(1). doi:10.1186/s12863-018-0681-0 es_ES
dc.description.references Johansson, A. M., Pettersson, M. E., Siegel, P. B., & Carlborg, Ö. (2010). Genome-Wide Effects of Long-Term Divergent Selection. PLoS Genetics, 6(11), e1001188. doi:10.1371/journal.pgen.1001188 es_ES
dc.description.references Kim, E.-S., Ros-Freixedes, R., Pena, R. N., Baas, T. J., Estany, J., & Rothschild, M. F. (2015). Identification of signatures of selection for intramuscular fat and backfat thickness in two Duroc populations1. Journal of Animal Science, 93(7), 3292-3302. doi:10.2527/jas.2015-8879 es_ES
dc.description.references Kuleshov, M. V., Jones, M. R., Rouillard, A. D., Fernandez, N. F., Duan, Q., Wang, Z., … Ma’ayan, A. (2016). Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Research, 44(W1), W90-W97. doi:10.1093/nar/gkw377 es_ES
dc.description.references Li, X., Lee, C.-K., Choi, B.-H., Kim, T.-H., Kim, J.-J., & Kim, K.-S. (2010). Quantitative gene expression analysis on chromosome 6 between Korean native pigs and Yorkshire breeds for fat deposition. Genes & Genomics, 32(4), 385-393. doi:10.1007/s13258-010-0009-6 es_ES
dc.description.references Lillie, M., Sheng, Z., Honaker, C. F., Dorshorst, B. J., Ashwell, C. M., Siegel, P. B., & Carlborg, Ö. (2017). Genome-wide standing variation facilitates long-term response to bidirectional selection for antibody response in chickens. BMC Genomics, 18(1). doi:10.1186/s12864-016-3414-7 es_ES
dc.description.references Ma, H., Zhang, S., Zhang, K., Zhan, H., Peng, X., Xie, S., … Ma, Y. (2019). Identifying Selection Signatures for Backfat Thickness in Yorkshire Pigs Highlights New Regions Affecting Fat Metabolism. Genes, 10(4), 254. doi:10.3390/genes10040254 es_ES
dc.description.references Mallick, S., Gnerre, S., Muller, P., & Reich, D. (2009). The difficulty of avoiding false positives in genome scans for natural selection. Genome Research, 19(5), 922-933. doi:10.1101/gr.086512.108 es_ES
dc.description.references Martínez-Álvaro, M., Hernández, P., & Blasco, A. (2016). Divergent selection on intramuscular fat in rabbits: Responses to selection and genetic parameters1. Journal of Animal Science, 94(12), 4993-5003. doi:10.2527/jas.2016-0590 es_ES
dc.description.references Mauch E, Servin B, Gilbert H and Dekkers J 2018. Signatures of selection in two independent populations of pigs divergently selected for feed efficiency. Animal Industry Report AS 664, ASL R3274. es_ES
dc.description.references Oleksyk, T. K., Smith, M. W., & O’Brien, S. J. (2010). Genome-wide scans for footprints of natural selection. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1537), 185-205. doi:10.1098/rstb.2009.0219 es_ES
dc.description.references Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A. R., Bender, D., … Sham, P. C. (2007). PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. The American Journal of Human Genetics, 81(3), 559-575. doi:10.1086/519795 es_ES
dc.description.references Qanbari, S., & Simianer, H. (2014). Mapping signatures of positive selection in the genome of livestock. Livestock Science, 166, 133-143. doi:10.1016/j.livsci.2014.05.003 es_ES
dc.description.references Sabeti, P. C., Varilly, P., Fry, B., Lohmueller, J., Hostetter, E., … Lander, E. S. (2007). Genome-wide detection and characterization of positive selection in human populations. Nature, 449(7164), 913-918. doi:10.1038/nature06250 es_ES
dc.description.references Sargolzaei, M., Chesnais, J. P., & Schenkel, F. S. (2014). A new approach for efficient genotype imputation using information from relatives. BMC Genomics, 15(1), 478. doi:10.1186/1471-2164-15-478 es_ES
dc.description.references Sosa-Madrid BS, Hernández P, Blasco A, Haley CS, Fontanesi L, Santacreu MA, Pena RN, Navarro P and Ibáñez-Escriche N 2020. Genomic regions influencing intramuscular fat in divergently selected rabbit lines. Animal Genetics 51, 58–69. es_ES
dc.description.references Sosa-Madrid BS, Ibañez-Escriche N, Santacreu MA, Varona L and Blasco A 2017. Huellas de selección en un experimento de seleccion divergente para capacidad uterina en conejo. In Proceedings of the XVII Jornadas sobre Producción Animal, 30–31 May 2017, Zaragoza, Spain, pp. 558–560. es_ES
dc.description.references Szpiech ZA and Hernandez RD 2014. selscan: an efficient multithreaded program to perform EHH-based scans for positive selection. Molecular Biology and Evolution 31, 2824–2827. es_ES
dc.description.references Utsunomiya, Y. T., Pérez O’Brien, A. M., Sonstegard, T. S., Van Tassell, C. P., do Carmo, A. S., Mészáros, G., … Garcia, J. F. (2013). Detecting Loci under Recent Positive Selection in Dairy and Beef Cattle by Combining Different Genome-Wide Scan Methods. PLoS ONE, 8(5), e64280. doi:10.1371/journal.pone.0064280 es_ES
dc.description.references Walter, M., Chen, F. W., Tamari, F., Wang, R., & Ioannou, Y. A. (2009). Endosomal lipid accumulation in NPC1 leads to inhibition of PKC, hypophosphorylation of vimentin and Rab9 entrapment. Biology of the Cell, 101(3), 141-153. doi:10.1042/bc20070171 es_ES
dc.description.references Wang, Z., Ma, H., Xu, L., Zhu, B., Liu, Y., Bordbar, F., … Li, J. (2019). Genome-Wide Scan Identifies Selection Signatures in Chinese Wagyu Cattle Using a High-Density SNP Array. Animals, 9(6), 296. doi:10.3390/ani9060296 es_ES
dc.description.references Wipperman, M. F., Montrose, D. C., Gotto, A. M., & Hajjar, D. P. (2019). Mammalian Target of Rapamycin. The American Journal of Pathology, 189(3), 492-501. doi:10.1016/j.ajpath.2018.11.013 es_ES
dc.description.references Zomeño, C., Hernández, P., & Blasco, A. (2013). Divergent selection for intramuscular fat content in rabbits. I. Direct response to selection1. Journal of Animal Science, 91(9), 4526-4531. doi:10.2527/jas.2013-6361 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem