Mostrar el registro sencillo del ítem
dc.contributor.author | Zemzmi, Jihed | es_ES |
dc.contributor.author | Ródenas Martínez, Luis | es_ES |
dc.contributor.author | Blas Ferrer, Enrique | es_ES |
dc.contributor.author | Najar, Taha | es_ES |
dc.contributor.author | Pascual Amorós, Juan José | es_ES |
dc.date.accessioned | 2021-04-21T03:31:14Z | |
dc.date.available | 2021-04-21T03:31:14Z | |
dc.date.issued | 2020-06 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/165397 | |
dc.description.abstract | [EN] A fenugreek seed gum, extracted fromTrigonella foenum-graecumseeds and rich in galactomannan, was chemically and physically characterised and its prebiotic potential for young rabbits was evaluated in vitro, both as pure fenugreek seed gum and when included up to 20 g/kg in rabbit diets rich in soluble and insoluble fibre. Fenugreek seed gum was resistant to pepsin and pancreatin digestion but was totally fermented by rabbit caecal bacteria. Fenugreek seed gum linear inclusion up to 20 g/kg in diets rich in soluble fibre has led to a reduction in the solubility of some nutrients during in vitro enzymatic phase and an increase in the fermented fraction. Fenugreek seed gum satisfies two essential conditions of a prebiotic: resistance to enzymatic digestion and being totally fermented by caecal bacteria. Some components of soluble fibre appear to have prebiotic effects that can contribute to improving digestive health in post-weaning rabbits. In this work, a fenugreek seed gum (FGS), extracted fromTrigonella foenum-graecumseeds and rich in galactomannan, was characterised. Both the pure FSG and ten substrates obtained by the inclusion of 0, 5, 10, 15 and 20 g/kg of FSG in diets rich in soluble (SF) and insoluble (IF) fibre were evaluated in vitro to determine FSG prebiotic potential for rabbit diets. FSG was rich in total sugars (630 g/kg dry matter), consisting entirely of galactose and mannose in a 1:1 ratio, and a moderate protein content (223 g/kg dry matter). Pure FSG was affected very little by in vitro digestion, as only 145 g/kg of the FSG was dissolved during the enzymatic phase. However, the linear inclusion of FSG up to 20 g/kg in growing rabbit feeds has led to a reduction in the solubility of some nutrients during in vitro enzymatic phase, especially in SF diets. Pure FSG not digested during the enzymatic phase almost completely disappeared during the in vitro fermentation phase, 984 g/kg of this indigestible fraction. However, although linear inclusion of FSG up to 20 g/kg in SF diets increased the fermented fraction, no relevant changes in the fermentation profile were observed. In conclusion, FSG satisfies two essential conditions of the prebiotic effect, showing resistance to in vitro enzymatic digestion and being totally fermented in vitro by caecal bacteria, although in vivo studies will be necessary to determine its prebiotic potential. | es_ES |
dc.description.sponsorship | This study is supported by the Ministerio de Economia, Industria y Competitividad of the Spanish Government (AGL2017-85162-C2-1R), the Universitat Politecnica de Valencia (Project 20180290; Spain), and the Higher School of Agriculture of Mateur of the Carthage University (Tunisia Republic). The grant for Jihed Zemzmi from the Carthage University is also gratefully acknowledged. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Animals | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Fenugreek seed | es_ES |
dc.subject | Galactomannan | es_ES |
dc.subject | Rabbit | es_ES |
dc.subject | Digestion in vitro | es_ES |
dc.subject | Prebiotic | es_ES |
dc.subject.classification | PRODUCCION ANIMAL | es_ES |
dc.title | Characterisation and In Vitro Evaluation of Fenugreek (Trigonella foenum-graecum) Seed Gum as a Potential Prebiotic in Growing Rabbit Nutrition | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/ani10061041 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//20180290/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/AGL2017-85162-C2-1-R/ES/MEJORA GENETICA DEL CONEJO DE CARNE: ESTRATEGIAS PARA INCREMENTAR LA EFICACIA DE LA MEJORA, REPRODUCCION Y SALUD DE LINEAS PATERNALES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal | es_ES |
dc.description.bibliographicCitation | Zemzmi, J.; Ródenas Martínez, L.; Blas Ferrer, E.; Najar, T.; Pascual Amorós, JJ. (2020). Characterisation and In Vitro Evaluation of Fenugreek (Trigonella foenum-graecum) Seed Gum as a Potential Prebiotic in Growing Rabbit Nutrition. Animals. 10(6):1-15. https://doi.org/10.3390/ani10061041 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/ani10061041 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 15 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 10 | es_ES |
dc.description.issue | 6 | es_ES |
dc.identifier.eissn | 2076-2615 | es_ES |
dc.relation.pasarela | S\424801 | es_ES |
dc.contributor.funder | Université de Carthage, Túnez | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.description.references | Rosell J.M., de la Fuente L.F., Badiola J.I., Fernández de Luco D., Casal J., & Saco M. (2010). Study of urgent visits to commercial rabbit farms in Spain and Portugal during 1997-2007. World Rabbit Science, 17(3). doi:10.4995/wrs.2009.652 | es_ES |
dc.description.references | Gidenne, T., Arveux, P., & Madec, O. (2001). The effect of the quality of dietary lignocellulose on digestion, zootechnical performance and health of the growing rabbit. Animal Science, 73(1), 97-104. doi:10.1017/s1357729800058094 | es_ES |
dc.description.references | Carabaño R., Villamide M.J., García J., Nicodemus N., Llorente A., Chamorro S., & Menoyo D. (2010). New concepts and objectives for protein-amino acid nutrition in rabbits: a review. World Rabbit Science, 17(1). doi:10.4995/wrs.2009.664 | es_ES |
dc.description.references | Trocino, A., García Alonso, J., Carabaño, R., & Xiccato, G. (2013). A meta-analysis on the role of soluble fibre in diets for growing rabbits. World Rabbit Science, 21(1). doi:10.4995/wrs.2013.1285 | es_ES |
dc.description.references | Gidenne, T. (1995). Effect of fibre level reduction and gluco-oligosaccharide addition on the growth performance and caecal fermentation in the growing rabbit. Animal Feed Science and Technology, 56(3-4), 253-263. doi:10.1016/0377-8401(95)00834-9 | es_ES |
dc.description.references | Morisse, J., Maurice, R., Boilletot, E., & Cotte, J. (1993). Assessment of the activity of a fructo-oligo-saccharide on different caecal parameters in rabbits experimentally infected with E coli 0.103. Annales de Zootechnie, 42(1), 81-87. doi:10.1051/animres:19930109 | es_ES |
dc.description.references | Mourão, J. L., Pinheiro, V., Alves, A., Guedes, C. M., Pinto, L., Saavedra, M. J., … Kocher, A. (2006). Effect of mannan oligosaccharides on the performance, intestinal morphology and cecal fermentation of fattening rabbits. Animal Feed Science and Technology, 126(1-2), 107-120. doi:10.1016/j.anifeedsci.2005.06.009 | es_ES |
dc.description.references | Jiang, J. X., Zhu, L. W., Zhang, W. M., & Sun, R. C. (2007). Characterization of Galactomannan Gum from Fenugreek (Trigonella foenum-graecum) Seeds and Its Rheological Properties. International Journal of Polymeric Materials, 56(12), 1145-1154. doi:10.1080/00914030701323745 | es_ES |
dc.description.references | Van Nevel, C. J., Decuypere, J. A., Dierick, N. A., & Molly, K. (2005). Incorporation of galactomannans in the diet of newly weaned piglets: Effect on bacteriological and some morphological characteristics of the small intestine. Archives of Animal Nutrition, 59(2), 123-138. doi:10.1080/17450390512331387936 | es_ES |
dc.description.references | Dakia, P. A., Blecker, C., Robert, C., Wathelet, B., & Paquot, M. (2008). Composition and physicochemical properties of locust bean gum extracted from whole seeds by acid or water dehulling pre-treatment. Food Hydrocolloids, 22(5), 807-818. doi:10.1016/j.foodhyd.2007.03.007 | es_ES |
dc.description.references | Majeed, M., Majeed, S., Nagabhushanam, K., Arumugam, S., Natarajan, S., Beede, K., & Ali, F. (2018). Galactomannan fromTrigonella foenum-graecumL. seed: Prebiotic application and its fermentation by the probioticBacillus coagulansstrain MTCC 5856. Food Science & Nutrition, 6(3), 666-673. doi:10.1002/fsn3.606 | es_ES |
dc.description.references | Fernández-Carmona J., Blas E., Pascual J.J., Maertens L., Gidenne T., Xiccato G., & García. (2010). Recommendations and guidelines for applied nutrition experiments in rabbits. World Rabbit Science, 13(4). doi:10.4995/wrs.2005.516 | es_ES |
dc.description.references | NARAYANA, K., & NARASINGA RAO, M. S. (1982). Functional Properties of Raw and Heat Processed Winged Bean (Psophocarpus tetragonolobus) Flour. Journal of Food Science, 47(5), 1534-1538. doi:10.1111/j.1365-2621.1982.tb04976.x | es_ES |
dc.description.references | Schofield, P., Pitt, R. E., & Pell, A. N. (1994). Kinetics of fiber digestion from in vitro gas production. Journal of Animal Science, 72(11), 2980-2991. doi:10.2527/1994.72112980x | es_ES |
dc.description.references | Edeoga, H. O., Okwu, D. E., & Mbaebie, B. O. (2005). Phytochemical constituents of some Nigerian medicinal plants. African Journal of Biotechnology, 4(7), 685-688. doi:10.5897/ajb2005.000-3127 | es_ES |
dc.description.references | Kumar, A., Ilavarasan, R., Jayachandr, T., Decaraman, M., Aravindhan, P., Padmanabha, N., & Krishnan, M. R. V. (2008). Phytochemicals Investigation on a Tropical Plant, Syzygium cumini from Kattuppalayam, Erode District, Tamil Nadu, South India. Pakistan Journal of Nutrition, 8(1), 83-85. doi:10.3923/pjn.2009.83.85 | es_ES |
dc.description.references | Batey, I. L. (1982). Starch Analysis Using Thermostable alpha-Amylases. Starch - Stärke, 34(4), 125-128. doi:10.1002/star.19820340407 | es_ES |
dc.description.references | Van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. Journal of Dairy Science, 74(10), 3583-3597. doi:10.3168/jds.s0022-0302(91)78551-2 | es_ES |
dc.description.references | Bosch, L., Alegría, A., & Farré, R. (2006). Application of the 6-aminoquinolyl-N-hydroxysccinimidyl carbamate (AQC) reagent to the RP-HPLC determination of amino acids in infant foods. Journal of Chromatography B, 831(1-2), 176-183. doi:10.1016/j.jchromb.2005.12.002 | es_ES |
dc.description.references | McCleary, B. V. (1988). Carob and guar galactomannans. Biomass Part A: Cellulose and Hemicellulose, 523-527. doi:10.1016/0076-6879(88)60163-7 | es_ES |
dc.description.references | Chaires-Martínez, L., Salazar-Montoya, J. A., & Ramos-Ramírez, E. G. (2008). Physicochemical and functional characterization of the galactomannan obtained from mesquite seeds (Prosopis pallida). European Food Research and Technology, 227(6), 1669-1676. doi:10.1007/s00217-008-0892-0 | es_ES |
dc.description.references | Nour, A. A. M., & Magboul, B. I. (1986). Chemical and amino acid composition of fenugreek seeds grown in Sudan. Food Chemistry, 22(1), 1-5. doi:10.1016/0308-8146(86)90002-6 | es_ES |
dc.description.references | Piquer, O., Casado, C., Biglia, S., Fernández, C., Blas, E., & Pascual, J. (2009). In vitro gas production kinetics of whole citrus fruits. Journal of Animal and Feed Sciences, 18(4), 743-757. doi:10.22358/jafs/66449/2009 | es_ES |
dc.description.references | Abad-Guzmán, R., Larrea-Dávalos, J. A., Carabaño, R., García, J., & Carro, M. D. (2018). Influence of inoculum type (ileal, caecal and faecal) on the in vitro fermentation of different sources of carbohydrates in rabbits. World Rabbit Science, 26(3), 227. doi:10.4995/wrs.2018.9726 | es_ES |
dc.description.references | Ocasio-Vega, C., Abad-Guamán, R., Delgado, R., Carabaño, R., Carro, M. D., & García, J. (2018). Effect of cellobiose supplementation and dietary soluble fibre content on in vitro caecal fermentation of carbohydrate-rich substrates in rabbits. Archives of Animal Nutrition, 72(3), 221-238. doi:10.1080/1745039x.2018.1458459 | es_ES |
dc.description.references | Gómez-Conde, M. S., de Rozas, A. P., Badiola, I., Pérez-Alba, L., de Blas, C., Carabaño, R., & García, J. (2009). Effect of neutral detergent soluble fibre on digestion, intestinal microbiota and performance in twenty five day old weaned rabbits. Livestock Science, 125(2-3), 192-198. doi:10.1016/j.livsci.2009.04.010 | es_ES |
dc.description.references | Trocino, A., Fragkiadakis, M., Majolini, D., Tazzoli, M., Radaelli, G., & Xiccato, G. (2013). Soluble fibre, starch and protein level in diets for growing rabbits: Effects on digestive efficiency and productive traits. Animal Feed Science and Technology, 180(1-4), 73-82. doi:10.1016/j.anifeedsci.2013.01.007 | es_ES |
dc.description.references | Gibson, G. R., & Roberfroid, M. B. (1995). Dietary Modulation of the Human Colonic Microbiota: Introducing the Concept of Prebiotics. The Journal of Nutrition, 125(6), 1401-1412. doi:10.1093/jn/125.6.1401 | es_ES |
dc.description.references | Roberfroid, M. (2007). Prebiotics: The Concept Revisited. The Journal of Nutrition, 137(3), 830S-837S. doi:10.1093/jn/137.3.830s | es_ES |
dc.description.references | Gidenne, T. (2015). Dietary fibres in the nutrition of the growing rabbit and recommendations to preserve digestive health: a review. Animal, 9(2), 227-242. doi:10.1017/s1751731114002729 | es_ES |
dc.description.references | Marounek, M., Vovk, S. J., & Benda, V. (1997). Fermentation Patterns in Rabbit Caecal Cultures Supplied with Plant Polysaccharides and Lactate. Acta Veterinaria Brno, 66(1), 9-13. doi:10.2754/avb199766010009 | es_ES |
dc.description.references | García, J., Gidenne, T., Luisa Falcao-e-Cunha, & de Blas, C. (2002). Identification of the main factors that influence caecal fermentation traits in growing rabbits. Animal Research, 51(2), 165-173. doi:10.1051/animres:2002011 | es_ES |
dc.description.references | Volek, Z., & Marounek, M. (2011). Dried chicory root (Cichorium intybus L.) as a natural fructan source in rabbit diet: effects on growth performance, digestion and caecal and carcass traits. World Rabbit Science, 19(3). doi:10.4995/wrs.2011.850 | es_ES |
dc.description.references | Owusu-Asiedu, A., Patience, J. F., Laarveld, B., Van Kessel, A. G., Simmins, P. H., & Zijlstra, R. T. (2006). Effects of guar gum and cellulose on digesta passage rate, ileal microbial populations, energy and protein digestibility, and performance of grower pigs1,2. Journal of Animal Science, 84(4), 843-852. doi:10.2527/2006.844843x | es_ES |
dc.description.references | Dartois, A., Singh, J., Kaur, L., & Singh, H. (2010). Influence of Guar Gum on the In Vitro Starch Digestibility—Rheological and Microstructural Characteristics. Food Biophysics, 5(3), 149-160. doi:10.1007/s11483-010-9155-2 | es_ES |
dc.subject.ods | 15.- Proteger, restaurar y promover la utilización sostenible de los ecosistemas terrestres, gestionar de manera sostenible los bosques, combatir la desertificación y detener y revertir la degradación de la tierra, y frenar la pérdida de diversidad biológica | es_ES |