- -

Characterisation and In Vitro Evaluation of Fenugreek (Trigonella foenum-graecum) Seed Gum as a Potential Prebiotic in Growing Rabbit Nutrition

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Characterisation and In Vitro Evaluation of Fenugreek (Trigonella foenum-graecum) Seed Gum as a Potential Prebiotic in Growing Rabbit Nutrition

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Zemzmi, Jihed es_ES
dc.contributor.author Ródenas Martínez, Luis es_ES
dc.contributor.author Blas Ferrer, Enrique es_ES
dc.contributor.author Najar, Taha es_ES
dc.contributor.author Pascual Amorós, Juan José es_ES
dc.date.accessioned 2021-04-21T03:31:14Z
dc.date.available 2021-04-21T03:31:14Z
dc.date.issued 2020-06 es_ES
dc.identifier.uri http://hdl.handle.net/10251/165397
dc.description.abstract [EN] A fenugreek seed gum, extracted fromTrigonella foenum-graecumseeds and rich in galactomannan, was chemically and physically characterised and its prebiotic potential for young rabbits was evaluated in vitro, both as pure fenugreek seed gum and when included up to 20 g/kg in rabbit diets rich in soluble and insoluble fibre. Fenugreek seed gum was resistant to pepsin and pancreatin digestion but was totally fermented by rabbit caecal bacteria. Fenugreek seed gum linear inclusion up to 20 g/kg in diets rich in soluble fibre has led to a reduction in the solubility of some nutrients during in vitro enzymatic phase and an increase in the fermented fraction. Fenugreek seed gum satisfies two essential conditions of a prebiotic: resistance to enzymatic digestion and being totally fermented by caecal bacteria. Some components of soluble fibre appear to have prebiotic effects that can contribute to improving digestive health in post-weaning rabbits. In this work, a fenugreek seed gum (FGS), extracted fromTrigonella foenum-graecumseeds and rich in galactomannan, was characterised. Both the pure FSG and ten substrates obtained by the inclusion of 0, 5, 10, 15 and 20 g/kg of FSG in diets rich in soluble (SF) and insoluble (IF) fibre were evaluated in vitro to determine FSG prebiotic potential for rabbit diets. FSG was rich in total sugars (630 g/kg dry matter), consisting entirely of galactose and mannose in a 1:1 ratio, and a moderate protein content (223 g/kg dry matter). Pure FSG was affected very little by in vitro digestion, as only 145 g/kg of the FSG was dissolved during the enzymatic phase. However, the linear inclusion of FSG up to 20 g/kg in growing rabbit feeds has led to a reduction in the solubility of some nutrients during in vitro enzymatic phase, especially in SF diets. Pure FSG not digested during the enzymatic phase almost completely disappeared during the in vitro fermentation phase, 984 g/kg of this indigestible fraction. However, although linear inclusion of FSG up to 20 g/kg in SF diets increased the fermented fraction, no relevant changes in the fermentation profile were observed. In conclusion, FSG satisfies two essential conditions of the prebiotic effect, showing resistance to in vitro enzymatic digestion and being totally fermented in vitro by caecal bacteria, although in vivo studies will be necessary to determine its prebiotic potential. es_ES
dc.description.sponsorship This study is supported by the Ministerio de Economia, Industria y Competitividad of the Spanish Government (AGL2017-85162-C2-1R), the Universitat Politecnica de Valencia (Project 20180290; Spain), and the Higher School of Agriculture of Mateur of the Carthage University (Tunisia Republic). The grant for Jihed Zemzmi from the Carthage University is also gratefully acknowledged. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Animals es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Fenugreek seed es_ES
dc.subject Galactomannan es_ES
dc.subject Rabbit es_ES
dc.subject Digestion in vitro es_ES
dc.subject Prebiotic es_ES
dc.subject.classification PRODUCCION ANIMAL es_ES
dc.title Characterisation and In Vitro Evaluation of Fenugreek (Trigonella foenum-graecum) Seed Gum as a Potential Prebiotic in Growing Rabbit Nutrition es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/ani10061041 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//20180290/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/AGL2017-85162-C2-1-R/ES/MEJORA GENETICA DEL CONEJO DE CARNE: ESTRATEGIAS PARA INCREMENTAR LA EFICACIA DE LA MEJORA, REPRODUCCION Y SALUD DE LINEAS PATERNALES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal es_ES
dc.description.bibliographicCitation Zemzmi, J.; Ródenas Martínez, L.; Blas Ferrer, E.; Najar, T.; Pascual Amorós, JJ. (2020). Characterisation and In Vitro Evaluation of Fenugreek (Trigonella foenum-graecum) Seed Gum as a Potential Prebiotic in Growing Rabbit Nutrition. Animals. 10(6):1-15. https://doi.org/10.3390/ani10061041 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/ani10061041 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 15 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 6 es_ES
dc.identifier.eissn 2076-2615 es_ES
dc.relation.pasarela S\424801 es_ES
dc.contributor.funder Université de Carthage, Túnez es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Rosell J.M., de la Fuente L.F., Badiola J.I., Fernández de Luco D., Casal J., & Saco M. (2010). Study of urgent visits to commercial rabbit farms in Spain and Portugal during 1997-2007. World Rabbit Science, 17(3). doi:10.4995/wrs.2009.652 es_ES
dc.description.references Gidenne, T., Arveux, P., & Madec, O. (2001). The effect of the quality of dietary lignocellulose on digestion, zootechnical performance and health of the growing rabbit. Animal Science, 73(1), 97-104. doi:10.1017/s1357729800058094 es_ES
dc.description.references Carabaño R., Villamide M.J., García J., Nicodemus N., Llorente A., Chamorro S., & Menoyo D. (2010). New concepts and objectives for protein-amino acid nutrition in rabbits: a review. World Rabbit Science, 17(1). doi:10.4995/wrs.2009.664 es_ES
dc.description.references Trocino, A., García Alonso, J., Carabaño, R., & Xiccato, G. (2013). A meta-analysis on the role of soluble fibre in diets for growing rabbits. World Rabbit Science, 21(1). doi:10.4995/wrs.2013.1285 es_ES
dc.description.references Gidenne, T. (1995). Effect of fibre level reduction and gluco-oligosaccharide addition on the growth performance and caecal fermentation in the growing rabbit. Animal Feed Science and Technology, 56(3-4), 253-263. doi:10.1016/0377-8401(95)00834-9 es_ES
dc.description.references Morisse, J., Maurice, R., Boilletot, E., & Cotte, J. (1993). Assessment of the activity of a fructo-oligo-saccharide on different caecal parameters in rabbits experimentally infected with E coli 0.103. Annales de Zootechnie, 42(1), 81-87. doi:10.1051/animres:19930109 es_ES
dc.description.references Mourão, J. L., Pinheiro, V., Alves, A., Guedes, C. M., Pinto, L., Saavedra, M. J., … Kocher, A. (2006). Effect of mannan oligosaccharides on the performance, intestinal morphology and cecal fermentation of fattening rabbits. Animal Feed Science and Technology, 126(1-2), 107-120. doi:10.1016/j.anifeedsci.2005.06.009 es_ES
dc.description.references Jiang, J. X., Zhu, L. W., Zhang, W. M., & Sun, R. C. (2007). Characterization of Galactomannan Gum from Fenugreek (Trigonella foenum-graecum) Seeds and Its Rheological Properties. International Journal of Polymeric Materials, 56(12), 1145-1154. doi:10.1080/00914030701323745 es_ES
dc.description.references Van Nevel, C. J., Decuypere, J. A., Dierick, N. A., & Molly, K. (2005). Incorporation of galactomannans in the diet of newly weaned piglets: Effect on bacteriological and some morphological characteristics of the small intestine. Archives of Animal Nutrition, 59(2), 123-138. doi:10.1080/17450390512331387936 es_ES
dc.description.references Dakia, P. A., Blecker, C., Robert, C., Wathelet, B., & Paquot, M. (2008). Composition and physicochemical properties of locust bean gum extracted from whole seeds by acid or water dehulling pre-treatment. Food Hydrocolloids, 22(5), 807-818. doi:10.1016/j.foodhyd.2007.03.007 es_ES
dc.description.references Majeed, M., Majeed, S., Nagabhushanam, K., Arumugam, S., Natarajan, S., Beede, K., & Ali, F. (2018). Galactomannan fromTrigonella foenum-graecumL. seed: Prebiotic application and its fermentation by the probioticBacillus coagulansstrain MTCC 5856. Food Science & Nutrition, 6(3), 666-673. doi:10.1002/fsn3.606 es_ES
dc.description.references Fernández-Carmona J., Blas E., Pascual J.J., Maertens L., Gidenne T., Xiccato G., & García. (2010). Recommendations and guidelines for applied nutrition experiments in rabbits. World Rabbit Science, 13(4). doi:10.4995/wrs.2005.516 es_ES
dc.description.references NARAYANA, K., & NARASINGA RAO, M. S. (1982). Functional Properties of Raw and Heat Processed Winged Bean (Psophocarpus tetragonolobus) Flour. Journal of Food Science, 47(5), 1534-1538. doi:10.1111/j.1365-2621.1982.tb04976.x es_ES
dc.description.references Schofield, P., Pitt, R. E., & Pell, A. N. (1994). Kinetics of fiber digestion from in vitro gas production. Journal of Animal Science, 72(11), 2980-2991. doi:10.2527/1994.72112980x es_ES
dc.description.references Edeoga, H. O., Okwu, D. E., & Mbaebie, B. O. (2005). Phytochemical constituents of some Nigerian medicinal plants. African Journal of Biotechnology, 4(7), 685-688. doi:10.5897/ajb2005.000-3127 es_ES
dc.description.references Kumar, A., Ilavarasan, R., Jayachandr, T., Decaraman, M., Aravindhan, P., Padmanabha, N., & Krishnan, M. R. V. (2008). Phytochemicals Investigation on a Tropical Plant, Syzygium cumini from Kattuppalayam, Erode District, Tamil Nadu, South India. Pakistan Journal of Nutrition, 8(1), 83-85. doi:10.3923/pjn.2009.83.85 es_ES
dc.description.references Batey, I. L. (1982). Starch Analysis Using Thermostable alpha-Amylases. Starch - Stärke, 34(4), 125-128. doi:10.1002/star.19820340407 es_ES
dc.description.references Van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. Journal of Dairy Science, 74(10), 3583-3597. doi:10.3168/jds.s0022-0302(91)78551-2 es_ES
dc.description.references Bosch, L., Alegría, A., & Farré, R. (2006). Application of the 6-aminoquinolyl-N-hydroxysccinimidyl carbamate (AQC) reagent to the RP-HPLC determination of amino acids in infant foods. Journal of Chromatography B, 831(1-2), 176-183. doi:10.1016/j.jchromb.2005.12.002 es_ES
dc.description.references McCleary, B. V. (1988). Carob and guar galactomannans. Biomass Part A: Cellulose and Hemicellulose, 523-527. doi:10.1016/0076-6879(88)60163-7 es_ES
dc.description.references Chaires-Martínez, L., Salazar-Montoya, J. A., & Ramos-Ramírez, E. G. (2008). Physicochemical and functional characterization of the galactomannan obtained from mesquite seeds (Prosopis pallida). European Food Research and Technology, 227(6), 1669-1676. doi:10.1007/s00217-008-0892-0 es_ES
dc.description.references Nour, A. A. M., & Magboul, B. I. (1986). Chemical and amino acid composition of fenugreek seeds grown in Sudan. Food Chemistry, 22(1), 1-5. doi:10.1016/0308-8146(86)90002-6 es_ES
dc.description.references Piquer, O., Casado, C., Biglia, S., Fernández, C., Blas, E., & Pascual, J. (2009). In vitro gas production kinetics of whole citrus fruits. Journal of Animal and Feed Sciences, 18(4), 743-757. doi:10.22358/jafs/66449/2009 es_ES
dc.description.references Abad-Guzmán, R., Larrea-Dávalos, J. A., Carabaño, R., García, J., & Carro, M. D. (2018). Influence of inoculum type (ileal, caecal and faecal) on the in vitro fermentation of different sources of carbohydrates in rabbits. World Rabbit Science, 26(3), 227. doi:10.4995/wrs.2018.9726 es_ES
dc.description.references Ocasio-Vega, C., Abad-Guamán, R., Delgado, R., Carabaño, R., Carro, M. D., & García, J. (2018). Effect of cellobiose supplementation and dietary soluble fibre content on in vitro caecal fermentation of carbohydrate-rich substrates in rabbits. Archives of Animal Nutrition, 72(3), 221-238. doi:10.1080/1745039x.2018.1458459 es_ES
dc.description.references Gómez-Conde, M. S., de Rozas, A. P., Badiola, I., Pérez-Alba, L., de Blas, C., Carabaño, R., & García, J. (2009). Effect of neutral detergent soluble fibre on digestion, intestinal microbiota and performance in twenty five day old weaned rabbits. Livestock Science, 125(2-3), 192-198. doi:10.1016/j.livsci.2009.04.010 es_ES
dc.description.references Trocino, A., Fragkiadakis, M., Majolini, D., Tazzoli, M., Radaelli, G., & Xiccato, G. (2013). Soluble fibre, starch and protein level in diets for growing rabbits: Effects on digestive efficiency and productive traits. Animal Feed Science and Technology, 180(1-4), 73-82. doi:10.1016/j.anifeedsci.2013.01.007 es_ES
dc.description.references Gibson, G. R., & Roberfroid, M. B. (1995). Dietary Modulation of the Human Colonic Microbiota: Introducing the Concept of Prebiotics. The Journal of Nutrition, 125(6), 1401-1412. doi:10.1093/jn/125.6.1401 es_ES
dc.description.references Roberfroid, M. (2007). Prebiotics: The Concept Revisited. The Journal of Nutrition, 137(3), 830S-837S. doi:10.1093/jn/137.3.830s es_ES
dc.description.references Gidenne, T. (2015). Dietary fibres in the nutrition of the growing rabbit and recommendations to preserve digestive health: a review. Animal, 9(2), 227-242. doi:10.1017/s1751731114002729 es_ES
dc.description.references Marounek, M., Vovk, S. J., & Benda, V. (1997). Fermentation Patterns in Rabbit Caecal Cultures Supplied with Plant Polysaccharides and Lactate. Acta Veterinaria Brno, 66(1), 9-13. doi:10.2754/avb199766010009 es_ES
dc.description.references García, J., Gidenne, T., Luisa Falcao-e-Cunha, & de Blas, C. (2002). Identification of the main factors that influence caecal fermentation traits in growing rabbits. Animal Research, 51(2), 165-173. doi:10.1051/animres:2002011 es_ES
dc.description.references Volek, Z., & Marounek, M. (2011). Dried chicory root (Cichorium intybus L.) as a natural fructan source in rabbit diet: effects on growth performance, digestion and caecal and carcass traits. World Rabbit Science, 19(3). doi:10.4995/wrs.2011.850 es_ES
dc.description.references Owusu-Asiedu, A., Patience, J. F., Laarveld, B., Van Kessel, A. G., Simmins, P. H., & Zijlstra, R. T. (2006). Effects of guar gum and cellulose on digesta passage rate, ileal microbial populations, energy and protein digestibility, and performance of grower pigs1,2. Journal of Animal Science, 84(4), 843-852. doi:10.2527/2006.844843x es_ES
dc.description.references Dartois, A., Singh, J., Kaur, L., & Singh, H. (2010). Influence of Guar Gum on the In Vitro Starch Digestibility—Rheological and Microstructural Characteristics. Food Biophysics, 5(3), 149-160. doi:10.1007/s11483-010-9155-2 es_ES
dc.subject.ods 15.- Proteger, restaurar y promover la utilización sostenible de los ecosistemas terrestres, gestionar de manera sostenible los bosques, combatir la desertificación y detener y revertir la degradación de la tierra, y frenar la pérdida de diversidad biológica es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem