- -

The Influence of the Support on the Activity of Mn-Fe Catalysts Used for the Selective Catalytic Reduction of NOx with Ammonia

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The Influence of the Support on the Activity of Mn-Fe Catalysts Used for the Selective Catalytic Reduction of NOx with Ammonia

Mostrar el registro completo del ítem

López-Hernández, I.; Mengual Cuquerella, J.; Palomares Gimeno, AE. (2020). The Influence of the Support on the Activity of Mn-Fe Catalysts Used for the Selective Catalytic Reduction of NOx with Ammonia. Catalysts. 10(1):1-12. https://doi.org/10.3390/catal10010063

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/165399

Ficheros en el ítem

Metadatos del ítem

Título: The Influence of the Support on the Activity of Mn-Fe Catalysts Used for the Selective Catalytic Reduction of NOx with Ammonia
Autor: López-Hernández, Irene Mengual Cuquerella, Jesús Palomares Gimeno, Antonio Eduardo
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear
Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient
Fecha difusión:
Resumen:
[EN] Mono and bimetallic Mn-Fe catalysts supported on different materials were prepared and their catalytic performance in the NH3-SCR of NOx was investigated. It was shown that Mn and Fe have a synergic effect that enhances ...[+]
Palabras clave: NOx , NH3-SCR , Mn , Fe , Catalysts , Support
Derechos de uso: Reconocimiento (by)
Fuente:
Catalysts. (eissn: 2073-4344 )
DOI: 10.3390/catal10010063
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/catal10010063
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-101784-B-I00/ES/NUEVOS MATERIALES ZEOLITICOS PARA PROCESOS DE SEPARACION SELECTIVA DE GASES, APLICACIONES MEDIOAMBIENTALES Y CONSERVACION DE ALIMENTOS/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-101033-B-I00/ES/DISEÑO DE CATALIZADORES MULTIFUNCIONALES PARA LA CONVERSION EFICIENTE DE BIOGAS Y GAS NATURAL A HIDROCARBUROS DE INTERES INDUSTRIAL/
info:eu-repo/grantAgreement/GVA//ACIF%2F2017%2F079/
Agradecimientos:
This research was funded by the Spanish Ministry of Economy and Competitiveness (MINECO/FEDER), projects RTI2018-101784-B-I00 and RTI2018-101033-B-100 and by Generalitat Valenciana and European Social Fund, the pre doctoral ...[+]
Tipo: Artículo

References

Gao, F., Tang, X., Yi, H., Zhao, S., Li, C., Li, J., … Meng, X. (2017). A Review on Selective Catalytic Reduction of NOx by NH3 over Mn–Based Catalysts at Low Temperatures: Catalysts, Mechanisms, Kinetics and DFT Calculations. Catalysts, 7(7), 199. doi:10.3390/catal7070199

Yu, J. J., Cheng, J., Ma, C. Y., Wang, H. L., Li, L. D., Hao, Z. P., & Xu, Z. P. (2009). NOx decomposition, storage and reduction over novel mixed oxide catalysts derived from hydrotalcite-like compounds. Journal of Colloid and Interface Science, 333(2), 423-430. doi:10.1016/j.jcis.2009.02.022

Forzatti, P. (2001). Present status and perspectives in de-NOx SCR catalysis. Applied Catalysis A: General, 222(1-2), 221-236. doi:10.1016/s0926-860x(01)00832-8 [+]
Gao, F., Tang, X., Yi, H., Zhao, S., Li, C., Li, J., … Meng, X. (2017). A Review on Selective Catalytic Reduction of NOx by NH3 over Mn–Based Catalysts at Low Temperatures: Catalysts, Mechanisms, Kinetics and DFT Calculations. Catalysts, 7(7), 199. doi:10.3390/catal7070199

Yu, J. J., Cheng, J., Ma, C. Y., Wang, H. L., Li, L. D., Hao, Z. P., & Xu, Z. P. (2009). NOx decomposition, storage and reduction over novel mixed oxide catalysts derived from hydrotalcite-like compounds. Journal of Colloid and Interface Science, 333(2), 423-430. doi:10.1016/j.jcis.2009.02.022

Forzatti, P. (2001). Present status and perspectives in de-NOx SCR catalysis. Applied Catalysis A: General, 222(1-2), 221-236. doi:10.1016/s0926-860x(01)00832-8

Rutkowska, M., Díaz, U., Palomares, A. E., & Chmielarz, L. (2015). Cu and Fe modified derivatives of 2D MWW-type zeolites (MCM-22, ITQ-2 and MCM-36) as new catalysts for DeNO x process. Applied Catalysis B: Environmental, 168-169, 531-539. doi:10.1016/j.apcatb.2015.01.016

PALOMARES, A., PRATO, J., IMBERT, F., & CORMA, A. (2007). Catalysts based on tin and beta zeolite for the reduction of NOx under lean conditions in the presence of water. Applied Catalysis B: Environmental, 75(1-2), 88-94. doi:10.1016/j.apcatb.2007.03.013

Palomares, A. E., Franch, C., & Corma, A. (2011). Determining the characteristics of a Co-zeolite to be active for the selective catalytic reduction of NOx with hydrocarbons. Catalysis Today, 176(1), 239-241. doi:10.1016/j.cattod.2010.11.092

Palomares, A. E., Prato, J. G., & Corma, A. (2003). Co-Exchanged IM5, a Stable Zeolite for the Selective Catalytic Reduction of NO in the Presence of Water and SO2. Industrial & Engineering Chemistry Research, 42(8), 1538-1542. doi:10.1021/ie020345l

Wang, R., Wu, X., Zou, C., Li, X., & Du, Y. (2018). NOx Removal by Selective Catalytic Reduction with Ammonia over a Hydrotalcite-Derived NiFe Mixed Oxide. Catalysts, 8(9), 384. doi:10.3390/catal8090384

Qi, G., & Yang, R. T. (2003). Low-temperature selective catalytic reduction of NO with NH3 over iron and manganese oxides supported on titania. Applied Catalysis B: Environmental, 44(3), 217-225. doi:10.1016/s0926-3373(03)00100-0

Forzatti, P., Nova, I., & Tronconi, E. (2009). Enhanced NH3 Selective Catalytic Reduction for NOx Abatement. Angewandte Chemie International Edition, 48(44), 8366-8368. doi:10.1002/anie.200903857

Gillot, S., Tricot, G., Vezin, H., Dacquin, J.-P., Dujardin, C., & Granger, P. (2018). Induced effect of tungsten incorporation on the catalytic properties of CeVO4 systems for the selective reduction of NOx by ammonia. Applied Catalysis B: Environmental, 234, 318-328. doi:10.1016/j.apcatb.2018.04.059

Krishnan, A. T., & Boehman, A. L. (1998). Selective catalytic reduction of nitric oxide with ammonia at low temperatures. Applied Catalysis B: Environmental, 18(3-4), 189-198. doi:10.1016/s0926-3373(98)00036-8

Li, J., Chang, H., Ma, L., Hao, J., & Yang, R. T. (2011). Low-temperature selective catalytic reduction of NOx with NH3 over metal oxide and zeolite catalysts—A review. Catalysis Today, 175(1), 147-156. doi:10.1016/j.cattod.2011.03.034

Boningari, T., & Smirniotis, P. G. (2016). Impact of nitrogen oxides on the environment and human health: Mn-based materials for the NO x abatement. Current Opinion in Chemical Engineering, 13, 133-141. doi:10.1016/j.coche.2016.09.004

Putluru, S. S. R., Schill, L., Jensen, A. D., Siret, B., Tabaries, F., & Fehrmann, R. (2015). Mn/TiO2 and Mn–Fe/TiO2 catalysts synthesized by deposition precipitation—promising for selective catalytic reduction of NO with NH3 at low temperatures. Applied Catalysis B: Environmental, 165, 628-635. doi:10.1016/j.apcatb.2014.10.060

Chmielarz, L., Kuśtrowski, P., Dziembaj, R., Cool, P., & Vansant, E. F. (2006). Catalytic performance of various mesoporous silicas modified with copper or iron oxides introduced by different ways in the selective reduction of NO by ammonia. Applied Catalysis B: Environmental, 62(3-4), 369-380. doi:10.1016/j.apcatb.2005.09.004

Chmielarz, L., Dziembaj, R., Grzybek, T., Klinik, J., Łojewski, T., Olszewska, D., & Papp, H. (2000). Catalysis Letters, 68(1/2), 95-100. doi:10.1023/a:1019094327927

Gao, Y., Luan, T., Zhang, S., Jiang, W., Feng, W., & Jiang, H. (2019). Comprehensive Comparison between Nanocatalysts of Mn−Co/TiO2 and Mn−Fe/TiO2 for NO Catalytic Conversion: An Insight from Nanostructure, Performance, Kinetics, and Thermodynamics. Catalysts, 9(2), 175. doi:10.3390/catal9020175

Song, C., Zhang, L., Li, Z., Lu, Y., & Li, K. (2019). Co-Exchange of Mn: A Simple Method to Improve Both the Hydrothermal Stability and Activity of Cu–SSZ-13 NH3–SCR Catalysts. Catalysts, 9(5), 455. doi:10.3390/catal9050455

Paolucci, C., Di Iorio, J. R., Ribeiro, F. H., Gounder, R., & Schneider, W. F. (2016). Catalysis Science of NOx Selective Catalytic Reduction With Ammonia Over Cu-SSZ-13 and Cu-SAPO-34. Advances in Catalysis, 1-107. doi:10.1016/bs.acat.2016.10.002

Wu, Z., Jiang, B., & Liu, Y. (2008). Effect of transition metals addition on the catalyst of manganese/titania for low-temperature selective catalytic reduction of nitric oxide with ammonia. Applied Catalysis B: Environmental, 79(4), 347-355. doi:10.1016/j.apcatb.2007.09.039

Putluru, S. S. R., Schill, L., Jensen, A. D., & Fehrmann, R. S. N. (2018). Selective Catalytic Reduction of NOx with NH3 on Cu-, Fe-, and Mn-Zeolites Prepared by Impregnation: Comparison of Activity and Hydrothermal Stability. Journal of Chemistry, 2018, 1-11. doi:10.1155/2018/8614747

Thirupathi, B., & Smirniotis, P. G. (2012). Nickel-doped Mn/TiO2 as an efficient catalyst for the low-temperature SCR of NO with NH3: Catalytic evaluation and characterizations. Journal of Catalysis, 288, 74-83. doi:10.1016/j.jcat.2012.01.003

Peña, D. A., Uphade, B. S., & Smirniotis, P. G. (2004). TiO2-supported metal oxide catalysts for low-temperature selective catalytic reduction of NO with NH3I. Evaluation and characterization of first row transition metals. Journal of Catalysis, 221(2), 421-431. doi:10.1016/j.jcat.2003.09.003

Qi, G., Yang, R. T., & Chang, R. (2004). MnOx-CeO2 mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures. Applied Catalysis B: Environmental, 51(2), 93-106. doi:10.1016/j.apcatb.2004.01.023

Roy, S., Viswanath, B., Hegde, M. S., & Madras, G. (2008). Low-Temperature Selective Catalytic Reduction of NO with NH3 over Ti0.9M0.1O2-δ (M = Cr, Mn, Fe, Co, Cu). The Journal of Physical Chemistry C, 112(15), 6002-6012. doi:10.1021/jp7117086

Shi, J., Zhang, Z., Chen, M., Zhang, Z., & Shangguan, W. (2017). Promotion effect of tungsten and iron co-addition on the catalytic performance of MnOx/TiO2 for NH3-SCR of NOx. Fuel, 210, 783-789. doi:10.1016/j.fuel.2017.09.035

Husnain, N., Wang, E., Li, K., Anwar, M. T., Mehmood, A., Gul, M., … Mao, J. (2018). Iron oxide-based catalysts for low-temperature selective catalytic reduction of NO x with NH3. Reviews in Chemical Engineering, 35(2), 239-264. doi:10.1515/revce-2017-0064

Wang, X., Wu, S., Zou, W., Yu, S., Gui, K., & Dong, L. (2016). Fe-Mn/Al 2 O 3 catalysts for low temperature selective catalytic reduction of NO with NH 3. Chinese Journal of Catalysis, 37(8), 1314-1323. doi:10.1016/s1872-2067(15)61115-9

Thirupathi, B., & Smirniotis, P. G. (2011). Co-doping a metal (Cr, Fe, Co, Ni, Cu, Zn, Ce, and Zr) on Mn/TiO2 catalyst and its effect on the selective reduction of NO with NH3 at low-temperatures. Applied Catalysis B: Environmental, 110, 195-206. doi:10.1016/j.apcatb.2011.09.001

Kim, Y. J., Kwon, H. J., Heo, I., Nam, I.-S., Cho, B. K., Choung, J. W., … Yeo, G. K. (2012). Mn–Fe/ZSM5 as a low-temperature SCR catalyst to remove NOx from diesel engine exhaust. Applied Catalysis B: Environmental, 126, 9-21. doi:10.1016/j.apcatb.2012.06.010

Huang, J., Tong, Z., Huang, Y., & Zhang, J. (2008). Selective catalytic reduction of NO with NH3 at low temperatures over iron and manganese oxides supported on mesoporous silica. Applied Catalysis B: Environmental, 78(3-4), 309-314. doi:10.1016/j.apcatb.2007.09.031

Li, J., Yang, C., Zhang, Q., Li, Z., & Huang, W. (2015). Effects of Fe addition on the structure and catalytic performance of mesoporous Mn/Al–SBA-15 catalysts for the reduction of NO with ammonia. Catalysis Communications, 62, 24-28. doi:10.1016/j.catcom.2015.01.003

Chen, Z., Wang, F., Li, H., Yang, Q., Wang, L., & Li, X. (2011). Low-Temperature Selective Catalytic Reduction of NOx with NH3 over Fe–Mn Mixed-Oxide Catalysts Containing Fe3Mn3O8 Phase. Industrial & Engineering Chemistry Research, 51(1), 202-212. doi:10.1021/ie201894c

Palomares, A. E., Prato, J. ., & Corma, A. (2002). A new active zeolite structure for the selective catalytic reduction (SCR) of nitrogen oxides: ITQ7 zeolite. Catalysis Today, 75(1-4), 367-371. doi:10.1016/s0920-5861(02)00066-4

Jeong, N. C., Lee, J. S., Tae, E. L., Lee, Y. J., & Yoon, K. B. (2008). Acidity Scale for Metal Oxides and Sanderson’s Electronegativities of Lanthanide Elements. Angewandte Chemie International Edition, 47(52), 10128-10132. doi:10.1002/anie.200803837

Sun, M., Lan, B., Yu, L., Ye, F., Song, W., He, J., … Zheng, Y. (2012). Manganese oxides with different crystalline structures: Facile hydrothermal synthesis and catalytic activities. Materials Letters, 86, 18-20. doi:10.1016/j.matlet.2012.07.011

Deng, S., Zhuang, K., Xu, B., Ding, Y., Yu, L., & Fan, Y. (2016). Promotional effect of iron oxide on the catalytic properties of Fe–MnOx/TiO2 (anatase) catalysts for the SCR reaction at low temperatures. Catalysis Science & Technology, 6(6), 1772-1778. doi:10.1039/c5cy01217a

Fang, N., Guo, J., Shu, S., Luo, H., Chu, Y., & Li, J. (2017). Enhancement of low-temperature activity and sulfur resistance of Fe 0.3 Mn 0.5 Zr 0.2 catalyst for NO removal by NH 3 -SCR. Chemical Engineering Journal, 325, 114-123. doi:10.1016/j.cej.2017.05.053

Stobbe, E. R., de Boer, B. A., & Geus, J. W. (1999). The reduction and oxidation behaviour of manganese oxides. Catalysis Today, 47(1-4), 161-167. doi:10.1016/s0920-5861(98)00296-x

Fiorenza, R., Spitaleri, L., Gulino, A., & Scirè, S. (2018). Ru–Pd Bimetallic Catalysts Supported on CeO2-MnOX Oxides as Efficient Systems for H2 Purification through CO Preferential Oxidation. Catalysts, 8(5), 203. doi:10.3390/catal8050203

Tu, Y.-B., Luo, J.-Y., Meng, M., Wang, G., & He, J.-J. (2009). Ultrasonic-assisted synthesis of highly active catalyst Au/MnOx–CeO2 used for the preferential oxidation of CO in H2-rich stream. International Journal of Hydrogen Energy, 34(9), 3743-3754. doi:10.1016/j.ijhydene.2009.03.015

Corma, A. (1997). From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis. Chemical Reviews, 97(6), 2373-2420. doi:10.1021/cr960406n

Gallo, J. M. R., Bisio, C., Gatti, G., Marchese, L., & Pastore, H. O. (2010). Physicochemical Characterization and Surface Acid Properties of Mesoporous [Al]-SBA-15 Obtained by Direct Synthesis. Langmuir, 26(8), 5791-5800. doi:10.1021/la903661q

Wu, S., Han, Y., Zou, Y.-C., Song, J.-W., Zhao, L., Di, Y., … Xiao, F.-S. (2004). Synthesis of Heteroatom Substituted SBA-15 by the «pH-Adjusting» Method. Chemistry of Materials, 16(3), 486-492. doi:10.1021/cm0343857

Chuah, G. ., Liu, S. ., Jaenicke, S., & Li, J. (2000). High surface area zirconia by digestion of zirconium propoxide at different pH. Microporous and Mesoporous Materials, 39(1-2), 381-392. doi:10.1016/s1387-1811(00)00189-x

Galarneau, A., Nader, M., Guenneau, F., Di Renzo, F., & Gedeon, A. (2007). Understanding the Stability in Water of Mesoporous SBA-15 and MCM-41. The Journal of Physical Chemistry C, 111(23), 8268-8277. doi:10.1021/jp068526e

Chen, C.-Y., Li, H.-X., & Davis, M. E. (1993). Studies on mesoporous materials. Microporous Materials, 2(1), 17-26. doi:10.1016/0927-6513(93)80058-3

Li, Y., Yang, Q., Yang, J., & Li, C. (2006). Synthesis of mesoporous aluminosilicates with low Si/Al ratios using a single-source molecular precursor under acidic conditions. Journal of Porous Materials, 13(3-4), 187-193. doi:10.1007/s10934-006-8003-8

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem