- -

The Influence of the Support on the Activity of Mn-Fe Catalysts Used for the Selective Catalytic Reduction of NOx with Ammonia

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The Influence of the Support on the Activity of Mn-Fe Catalysts Used for the Selective Catalytic Reduction of NOx with Ammonia

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author López-Hernández, Irene es_ES
dc.contributor.author Mengual Cuquerella, Jesús es_ES
dc.contributor.author Palomares Gimeno, Antonio Eduardo es_ES
dc.date.accessioned 2021-04-21T03:31:18Z
dc.date.available 2021-04-21T03:31:18Z
dc.date.issued 2020-01 es_ES
dc.identifier.uri http://hdl.handle.net/10251/165399
dc.description.abstract [EN] Mono and bimetallic Mn-Fe catalysts supported on different materials were prepared and their catalytic performance in the NH3-SCR of NOx was investigated. It was shown that Mn and Fe have a synergic effect that enhances the activity at low temperature. Nevertheless, the activity of the bimetallic catalysts depends very much on the support selected. The influence of the support on the catalyst activity has been studied using materials with different textural and acid-base properties. Microporous (BEA-zeolite), mesoporous (SBA15 and MCM41) and bulk (metallic oxides) materials with different acidity have been used as supports for the Mn-Fe catalysts. It has been shown that the activity depends on the acidity of the support and on the surface area. Acid sites are necessary for ammonia adsorption and high surface area produces a better dispersion of the active sites resulting in improved redox properties. The best results have been obtained with the catalysts supported on alumina and on beta zeolite. The first one is the most active at low temperatures but it presents some reversible deactivation in the presence of water. The Mn-Fe catalyst supported on beta zeolite is the most active at temperatures higher than 350 degrees C, without any deactivation in the presence of water and with a 100% selectivity towards nitrogen. es_ES
dc.description.sponsorship This research was funded by the Spanish Ministry of Economy and Competitiveness (MINECO/FEDER), projects RTI2018-101784-B-I00 and RTI2018-101033-B-100 and by Generalitat Valenciana and European Social Fund, the pre doctoral grant ACIF2017. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Catalysts es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject NOx es_ES
dc.subject NH3-SCR es_ES
dc.subject Mn es_ES
dc.subject Fe es_ES
dc.subject Catalysts es_ES
dc.subject Support es_ES
dc.subject.classification INGENIERIA QUIMICA es_ES
dc.subject.classification TECNOLOGIA DEL MEDIO AMBIENTE es_ES
dc.title The Influence of the Support on the Activity of Mn-Fe Catalysts Used for the Selective Catalytic Reduction of NOx with Ammonia es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/catal10010063 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-101784-B-I00/ES/NUEVOS MATERIALES ZEOLITICOS PARA PROCESOS DE SEPARACION SELECTIVA DE GASES, APLICACIONES MEDIOAMBIENTALES Y CONSERVACION DE ALIMENTOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-101033-B-I00/ES/DISEÑO DE CATALIZADORES MULTIFUNCIONALES PARA LA CONVERSION EFICIENTE DE BIOGAS Y GAS NATURAL A HIDROCARBUROS DE INTERES INDUSTRIAL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ACIF%2F2017%2F079/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation López-Hernández, I.; Mengual Cuquerella, J.; Palomares Gimeno, AE. (2020). The Influence of the Support on the Activity of Mn-Fe Catalysts Used for the Selective Catalytic Reduction of NOx with Ammonia. Catalysts. 10(1):1-12. https://doi.org/10.3390/catal10010063 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/catal10010063 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 2073-4344 es_ES
dc.relation.pasarela S\409632 es_ES
dc.contributor.funder European Social Fund es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Gao, F., Tang, X., Yi, H., Zhao, S., Li, C., Li, J., … Meng, X. (2017). A Review on Selective Catalytic Reduction of NOx by NH3 over Mn–Based Catalysts at Low Temperatures: Catalysts, Mechanisms, Kinetics and DFT Calculations. Catalysts, 7(7), 199. doi:10.3390/catal7070199 es_ES
dc.description.references Yu, J. J., Cheng, J., Ma, C. Y., Wang, H. L., Li, L. D., Hao, Z. P., & Xu, Z. P. (2009). NOx decomposition, storage and reduction over novel mixed oxide catalysts derived from hydrotalcite-like compounds. Journal of Colloid and Interface Science, 333(2), 423-430. doi:10.1016/j.jcis.2009.02.022 es_ES
dc.description.references Forzatti, P. (2001). Present status and perspectives in de-NOx SCR catalysis. Applied Catalysis A: General, 222(1-2), 221-236. doi:10.1016/s0926-860x(01)00832-8 es_ES
dc.description.references Rutkowska, M., Díaz, U., Palomares, A. E., & Chmielarz, L. (2015). Cu and Fe modified derivatives of 2D MWW-type zeolites (MCM-22, ITQ-2 and MCM-36) as new catalysts for DeNO x process. Applied Catalysis B: Environmental, 168-169, 531-539. doi:10.1016/j.apcatb.2015.01.016 es_ES
dc.description.references PALOMARES, A., PRATO, J., IMBERT, F., & CORMA, A. (2007). Catalysts based on tin and beta zeolite for the reduction of NOx under lean conditions in the presence of water. Applied Catalysis B: Environmental, 75(1-2), 88-94. doi:10.1016/j.apcatb.2007.03.013 es_ES
dc.description.references Palomares, A. E., Franch, C., & Corma, A. (2011). Determining the characteristics of a Co-zeolite to be active for the selective catalytic reduction of NOx with hydrocarbons. Catalysis Today, 176(1), 239-241. doi:10.1016/j.cattod.2010.11.092 es_ES
dc.description.references Palomares, A. E., Prato, J. G., & Corma, A. (2003). Co-Exchanged IM5, a Stable Zeolite for the Selective Catalytic Reduction of NO in the Presence of Water and SO2. Industrial & Engineering Chemistry Research, 42(8), 1538-1542. doi:10.1021/ie020345l es_ES
dc.description.references Wang, R., Wu, X., Zou, C., Li, X., & Du, Y. (2018). NOx Removal by Selective Catalytic Reduction with Ammonia over a Hydrotalcite-Derived NiFe Mixed Oxide. Catalysts, 8(9), 384. doi:10.3390/catal8090384 es_ES
dc.description.references Qi, G., & Yang, R. T. (2003). Low-temperature selective catalytic reduction of NO with NH3 over iron and manganese oxides supported on titania. Applied Catalysis B: Environmental, 44(3), 217-225. doi:10.1016/s0926-3373(03)00100-0 es_ES
dc.description.references Forzatti, P., Nova, I., & Tronconi, E. (2009). Enhanced NH3 Selective Catalytic Reduction for NOx Abatement. Angewandte Chemie International Edition, 48(44), 8366-8368. doi:10.1002/anie.200903857 es_ES
dc.description.references Gillot, S., Tricot, G., Vezin, H., Dacquin, J.-P., Dujardin, C., & Granger, P. (2018). Induced effect of tungsten incorporation on the catalytic properties of CeVO4 systems for the selective reduction of NOx by ammonia. Applied Catalysis B: Environmental, 234, 318-328. doi:10.1016/j.apcatb.2018.04.059 es_ES
dc.description.references Krishnan, A. T., & Boehman, A. L. (1998). Selective catalytic reduction of nitric oxide with ammonia at low temperatures. Applied Catalysis B: Environmental, 18(3-4), 189-198. doi:10.1016/s0926-3373(98)00036-8 es_ES
dc.description.references Li, J., Chang, H., Ma, L., Hao, J., & Yang, R. T. (2011). Low-temperature selective catalytic reduction of NOx with NH3 over metal oxide and zeolite catalysts—A review. Catalysis Today, 175(1), 147-156. doi:10.1016/j.cattod.2011.03.034 es_ES
dc.description.references Boningari, T., & Smirniotis, P. G. (2016). Impact of nitrogen oxides on the environment and human health: Mn-based materials for the NO x abatement. Current Opinion in Chemical Engineering, 13, 133-141. doi:10.1016/j.coche.2016.09.004 es_ES
dc.description.references Putluru, S. S. R., Schill, L., Jensen, A. D., Siret, B., Tabaries, F., & Fehrmann, R. (2015). Mn/TiO2 and Mn–Fe/TiO2 catalysts synthesized by deposition precipitation—promising for selective catalytic reduction of NO with NH3 at low temperatures. Applied Catalysis B: Environmental, 165, 628-635. doi:10.1016/j.apcatb.2014.10.060 es_ES
dc.description.references Chmielarz, L., Kuśtrowski, P., Dziembaj, R., Cool, P., & Vansant, E. F. (2006). Catalytic performance of various mesoporous silicas modified with copper or iron oxides introduced by different ways in the selective reduction of NO by ammonia. Applied Catalysis B: Environmental, 62(3-4), 369-380. doi:10.1016/j.apcatb.2005.09.004 es_ES
dc.description.references Chmielarz, L., Dziembaj, R., Grzybek, T., Klinik, J., Łojewski, T., Olszewska, D., & Papp, H. (2000). Catalysis Letters, 68(1/2), 95-100. doi:10.1023/a:1019094327927 es_ES
dc.description.references Gao, Y., Luan, T., Zhang, S., Jiang, W., Feng, W., & Jiang, H. (2019). Comprehensive Comparison between Nanocatalysts of Mn−Co/TiO2 and Mn−Fe/TiO2 for NO Catalytic Conversion: An Insight from Nanostructure, Performance, Kinetics, and Thermodynamics. Catalysts, 9(2), 175. doi:10.3390/catal9020175 es_ES
dc.description.references Song, C., Zhang, L., Li, Z., Lu, Y., & Li, K. (2019). Co-Exchange of Mn: A Simple Method to Improve Both the Hydrothermal Stability and Activity of Cu–SSZ-13 NH3–SCR Catalysts. Catalysts, 9(5), 455. doi:10.3390/catal9050455 es_ES
dc.description.references Paolucci, C., Di Iorio, J. R., Ribeiro, F. H., Gounder, R., & Schneider, W. F. (2016). Catalysis Science of NOx Selective Catalytic Reduction With Ammonia Over Cu-SSZ-13 and Cu-SAPO-34. Advances in Catalysis, 1-107. doi:10.1016/bs.acat.2016.10.002 es_ES
dc.description.references Wu, Z., Jiang, B., & Liu, Y. (2008). Effect of transition metals addition on the catalyst of manganese/titania for low-temperature selective catalytic reduction of nitric oxide with ammonia. Applied Catalysis B: Environmental, 79(4), 347-355. doi:10.1016/j.apcatb.2007.09.039 es_ES
dc.description.references Putluru, S. S. R., Schill, L., Jensen, A. D., & Fehrmann, R. S. N. (2018). Selective Catalytic Reduction of NOx with NH3 on Cu-, Fe-, and Mn-Zeolites Prepared by Impregnation: Comparison of Activity and Hydrothermal Stability. Journal of Chemistry, 2018, 1-11. doi:10.1155/2018/8614747 es_ES
dc.description.references Thirupathi, B., & Smirniotis, P. G. (2012). Nickel-doped Mn/TiO2 as an efficient catalyst for the low-temperature SCR of NO with NH3: Catalytic evaluation and characterizations. Journal of Catalysis, 288, 74-83. doi:10.1016/j.jcat.2012.01.003 es_ES
dc.description.references Peña, D. A., Uphade, B. S., & Smirniotis, P. G. (2004). TiO2-supported metal oxide catalysts for low-temperature selective catalytic reduction of NO with NH3I. Evaluation and characterization of first row transition metals. Journal of Catalysis, 221(2), 421-431. doi:10.1016/j.jcat.2003.09.003 es_ES
dc.description.references Qi, G., Yang, R. T., & Chang, R. (2004). MnOx-CeO2 mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures. Applied Catalysis B: Environmental, 51(2), 93-106. doi:10.1016/j.apcatb.2004.01.023 es_ES
dc.description.references Roy, S., Viswanath, B., Hegde, M. S., & Madras, G. (2008). Low-Temperature Selective Catalytic Reduction of NO with NH3 over Ti0.9M0.1O2-δ (M = Cr, Mn, Fe, Co, Cu). The Journal of Physical Chemistry C, 112(15), 6002-6012. doi:10.1021/jp7117086 es_ES
dc.description.references Shi, J., Zhang, Z., Chen, M., Zhang, Z., & Shangguan, W. (2017). Promotion effect of tungsten and iron co-addition on the catalytic performance of MnOx/TiO2 for NH3-SCR of NOx. Fuel, 210, 783-789. doi:10.1016/j.fuel.2017.09.035 es_ES
dc.description.references Husnain, N., Wang, E., Li, K., Anwar, M. T., Mehmood, A., Gul, M., … Mao, J. (2018). Iron oxide-based catalysts for low-temperature selective catalytic reduction of NO x with NH3. Reviews in Chemical Engineering, 35(2), 239-264. doi:10.1515/revce-2017-0064 es_ES
dc.description.references Wang, X., Wu, S., Zou, W., Yu, S., Gui, K., & Dong, L. (2016). Fe-Mn/Al 2 O 3 catalysts for low temperature selective catalytic reduction of NO with NH 3. Chinese Journal of Catalysis, 37(8), 1314-1323. doi:10.1016/s1872-2067(15)61115-9 es_ES
dc.description.references Thirupathi, B., & Smirniotis, P. G. (2011). Co-doping a metal (Cr, Fe, Co, Ni, Cu, Zn, Ce, and Zr) on Mn/TiO2 catalyst and its effect on the selective reduction of NO with NH3 at low-temperatures. Applied Catalysis B: Environmental, 110, 195-206. doi:10.1016/j.apcatb.2011.09.001 es_ES
dc.description.references Kim, Y. J., Kwon, H. J., Heo, I., Nam, I.-S., Cho, B. K., Choung, J. W., … Yeo, G. K. (2012). Mn–Fe/ZSM5 as a low-temperature SCR catalyst to remove NOx from diesel engine exhaust. Applied Catalysis B: Environmental, 126, 9-21. doi:10.1016/j.apcatb.2012.06.010 es_ES
dc.description.references Huang, J., Tong, Z., Huang, Y., & Zhang, J. (2008). Selective catalytic reduction of NO with NH3 at low temperatures over iron and manganese oxides supported on mesoporous silica. Applied Catalysis B: Environmental, 78(3-4), 309-314. doi:10.1016/j.apcatb.2007.09.031 es_ES
dc.description.references Li, J., Yang, C., Zhang, Q., Li, Z., & Huang, W. (2015). Effects of Fe addition on the structure and catalytic performance of mesoporous Mn/Al–SBA-15 catalysts for the reduction of NO with ammonia. Catalysis Communications, 62, 24-28. doi:10.1016/j.catcom.2015.01.003 es_ES
dc.description.references Chen, Z., Wang, F., Li, H., Yang, Q., Wang, L., & Li, X. (2011). Low-Temperature Selective Catalytic Reduction of NOx with NH3 over Fe–Mn Mixed-Oxide Catalysts Containing Fe3Mn3O8 Phase. Industrial & Engineering Chemistry Research, 51(1), 202-212. doi:10.1021/ie201894c es_ES
dc.description.references Palomares, A. E., Prato, J. ., & Corma, A. (2002). A new active zeolite structure for the selective catalytic reduction (SCR) of nitrogen oxides: ITQ7 zeolite. Catalysis Today, 75(1-4), 367-371. doi:10.1016/s0920-5861(02)00066-4 es_ES
dc.description.references Jeong, N. C., Lee, J. S., Tae, E. L., Lee, Y. J., & Yoon, K. B. (2008). Acidity Scale for Metal Oxides and Sanderson’s Electronegativities of Lanthanide Elements. Angewandte Chemie International Edition, 47(52), 10128-10132. doi:10.1002/anie.200803837 es_ES
dc.description.references Sun, M., Lan, B., Yu, L., Ye, F., Song, W., He, J., … Zheng, Y. (2012). Manganese oxides with different crystalline structures: Facile hydrothermal synthesis and catalytic activities. Materials Letters, 86, 18-20. doi:10.1016/j.matlet.2012.07.011 es_ES
dc.description.references Deng, S., Zhuang, K., Xu, B., Ding, Y., Yu, L., & Fan, Y. (2016). Promotional effect of iron oxide on the catalytic properties of Fe–MnOx/TiO2 (anatase) catalysts for the SCR reaction at low temperatures. Catalysis Science & Technology, 6(6), 1772-1778. doi:10.1039/c5cy01217a es_ES
dc.description.references Fang, N., Guo, J., Shu, S., Luo, H., Chu, Y., & Li, J. (2017). Enhancement of low-temperature activity and sulfur resistance of Fe 0.3 Mn 0.5 Zr 0.2 catalyst for NO removal by NH 3 -SCR. Chemical Engineering Journal, 325, 114-123. doi:10.1016/j.cej.2017.05.053 es_ES
dc.description.references Stobbe, E. R., de Boer, B. A., & Geus, J. W. (1999). The reduction and oxidation behaviour of manganese oxides. Catalysis Today, 47(1-4), 161-167. doi:10.1016/s0920-5861(98)00296-x es_ES
dc.description.references Fiorenza, R., Spitaleri, L., Gulino, A., & Scirè, S. (2018). Ru–Pd Bimetallic Catalysts Supported on CeO2-MnOX Oxides as Efficient Systems for H2 Purification through CO Preferential Oxidation. Catalysts, 8(5), 203. doi:10.3390/catal8050203 es_ES
dc.description.references Tu, Y.-B., Luo, J.-Y., Meng, M., Wang, G., & He, J.-J. (2009). Ultrasonic-assisted synthesis of highly active catalyst Au/MnOx–CeO2 used for the preferential oxidation of CO in H2-rich stream. International Journal of Hydrogen Energy, 34(9), 3743-3754. doi:10.1016/j.ijhydene.2009.03.015 es_ES
dc.description.references Corma, A. (1997). From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis. Chemical Reviews, 97(6), 2373-2420. doi:10.1021/cr960406n es_ES
dc.description.references Gallo, J. M. R., Bisio, C., Gatti, G., Marchese, L., & Pastore, H. O. (2010). Physicochemical Characterization and Surface Acid Properties of Mesoporous [Al]-SBA-15 Obtained by Direct Synthesis. Langmuir, 26(8), 5791-5800. doi:10.1021/la903661q es_ES
dc.description.references Wu, S., Han, Y., Zou, Y.-C., Song, J.-W., Zhao, L., Di, Y., … Xiao, F.-S. (2004). Synthesis of Heteroatom Substituted SBA-15 by the «pH-Adjusting» Method. Chemistry of Materials, 16(3), 486-492. doi:10.1021/cm0343857 es_ES
dc.description.references Chuah, G. ., Liu, S. ., Jaenicke, S., & Li, J. (2000). High surface area zirconia by digestion of zirconium propoxide at different pH. Microporous and Mesoporous Materials, 39(1-2), 381-392. doi:10.1016/s1387-1811(00)00189-x es_ES
dc.description.references Galarneau, A., Nader, M., Guenneau, F., Di Renzo, F., & Gedeon, A. (2007). Understanding the Stability in Water of Mesoporous SBA-15 and MCM-41. The Journal of Physical Chemistry C, 111(23), 8268-8277. doi:10.1021/jp068526e es_ES
dc.description.references Chen, C.-Y., Li, H.-X., & Davis, M. E. (1993). Studies on mesoporous materials. Microporous Materials, 2(1), 17-26. doi:10.1016/0927-6513(93)80058-3 es_ES
dc.description.references Li, Y., Yang, Q., Yang, J., & Li, C. (2006). Synthesis of mesoporous aluminosilicates with low Si/Al ratios using a single-source molecular precursor under acidic conditions. Journal of Porous Materials, 13(3-4), 187-193. doi:10.1007/s10934-006-8003-8 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem