- -

Selective Introduction of Acid Sites in Different Confined Positions in ZSM-5 and Its Catalytic Implications

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Selective Introduction of Acid Sites in Different Confined Positions in ZSM-5 and Its Catalytic Implications

Mostrar el registro completo del ítem

Li, C.; Vidal Moya, JA.; Miguel, PJ.; Dedecek, J.; Boronat Zaragoza, M.; Corma Canós, A. (2018). Selective Introduction of Acid Sites in Different Confined Positions in ZSM-5 and Its Catalytic Implications. ACS Catalysis. 8(8):7688-7697. https://doi.org/10.1021/acscatal.8b02112

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/165405

Ficheros en el ítem

Metadatos del ítem

Título: Selective Introduction of Acid Sites in Different Confined Positions in ZSM-5 and Its Catalytic Implications
Autor: Li, Chengeng Vidal Moya, José Alejandro Miguel, Pablo J. Dedecek, Jiri Boronat Zaragoza, Mercedes Corma Canós, Avelino
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
[EN] Controlling the location of acid sites in zeolites can have a great effect on catalysis. In this work we face the objective of directing the location of AI into the 10R channels of ZSM-5 by taking advantage of the ...[+]
Palabras clave: Zeolites , DFT , Al siting , Boron ZSM-5 , MTO , Catalytic cracking
Derechos de uso: Reserva de todos los derechos
Fuente:
ACS Catalysis. (issn: 2155-5435 )
DOI: 10.1021/acscatal.8b02112
Editorial:
American Chemical Society
Versión del editor: https://doi.org/10.1021/acscatal.8b02112
Código del Proyecto:
info:eu-repo/grantAgreement/EC/H2020/671093/EU/MATching zeolite SYNthesis with CATalytic activity/
info:eu-repo/grantAgreement/MINECO//CTQ2015-70126-R/ES/DISEÑO DE CATALIZADORES ZEOLITICOS PARA LA OPTIMIZACION DE PROCESOS QUIMICOS DE INTERES INDUSTRIAL/
info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/
Agradecimientos:
This work was supported by the European Union through ERC-AdG-2014-671093 (SynCatMatch) and the Spanish Government-MINECO through "Severo Ochoa" (SEV-2016-0683) and CTQ2015-70126-R. The Electron Microscopy Service of the ...[+]
Tipo: Artículo

References

Brand, H. V., Curtiss, L. A., & Iton, L. E. (1993). Ab initio molecular orbital cluster studies of the zeolite ZSM-5. 1. Proton affinities. The Journal of Physical Chemistry, 97(49), 12773-12782. doi:10.1021/j100151a024

Kassab, E., Seiti, K., & Allavena, M. (1988). Determination of structure and acidity scales in zeolite systems by ab initio and pseudopotential calculations. The Journal of Physical Chemistry, 92(23), 6705-6709. doi:10.1021/j100334a043

Brändle, M., & Sauer, J. (1998). Acidity Differences between Inorganic Solids Induced by Their Framework Structure. A Combined Quantum Mechanics/Molecular Mechanics ab Initio Study on Zeolites. Journal of the American Chemical Society, 120(7), 1556-1570. doi:10.1021/ja9729037 [+]
Brand, H. V., Curtiss, L. A., & Iton, L. E. (1993). Ab initio molecular orbital cluster studies of the zeolite ZSM-5. 1. Proton affinities. The Journal of Physical Chemistry, 97(49), 12773-12782. doi:10.1021/j100151a024

Kassab, E., Seiti, K., & Allavena, M. (1988). Determination of structure and acidity scales in zeolite systems by ab initio and pseudopotential calculations. The Journal of Physical Chemistry, 92(23), 6705-6709. doi:10.1021/j100334a043

Brändle, M., & Sauer, J. (1998). Acidity Differences between Inorganic Solids Induced by Their Framework Structure. A Combined Quantum Mechanics/Molecular Mechanics ab Initio Study on Zeolites. Journal of the American Chemical Society, 120(7), 1556-1570. doi:10.1021/ja9729037

Jones, A. J., Carr, R. T., Zones, S. I., & Iglesia, E. (2014). Acid strength and solvation in catalysis by MFI zeolites and effects of the identity, concentration and location of framework heteroatoms. Journal of Catalysis, 312, 58-68. doi:10.1016/j.jcat.2014.01.007

Jones, A. J., & Iglesia, E. (2015). The Strength of Brønsted Acid Sites in Microporous Aluminosilicates. ACS Catalysis, 5(10), 5741-5755. doi:10.1021/acscatal.5b01133

Derouane, E. G. (1998). Zeolites as solid solvents1Paper presented at the International Symposium `Organic Chemistry and Catalysis’ on the occasion of the 65th birthday of Prof. H. van Bekkum, Delft, Netherlands, 2–3 October 1997.1. Journal of Molecular Catalysis A: Chemical, 134(1-3), 29-45. doi:10.1016/s1381-1169(98)00021-1

Knott, B. C., Nimlos, C. T., Robichaud, D. J., Nimlos, M. R., Kim, S., & Gounder, R. (2017). Consideration of the Aluminum Distribution in Zeolites in Theoretical and Experimental Catalysis Research. ACS Catalysis, 8(2), 770-784. doi:10.1021/acscatal.7b03676

Gounder, R., & Iglesia, E. (2013). The catalytic diversity of zeolites: confinement and solvation effects within voids of molecular dimensions. Chemical Communications, 49(34), 3491. doi:10.1039/c3cc40731d

Jones, A. J., & Iglesia, E. (2014). Kinetic, Spectroscopic, and Theoretical Assessment of Associative and Dissociative Methanol Dehydration Routes in Zeolites. Angewandte Chemie International Edition, 53(45), 12177-12181. doi:10.1002/anie.201406823

Wang, S., & Iglesia, E. (2017). Catalytic diversity conferred by confinement of protons within porous aluminosilicates in Prins condensation reactions. Journal of Catalysis, 352, 415-435. doi:10.1016/j.jcat.2017.06.012

Ghorbanpour, A., Rimer, J. D., & Grabow, L. C. (2014). Periodic, vdW-corrected density functional theory investigation of the effect of Al siting in H-ZSM-5 on chemisorption properties and site-specific acidity. Catalysis Communications, 52, 98-102. doi:10.1016/j.catcom.2014.04.005

Mallikarjun Sharada, S., Zimmerman, P. M., Bell, A. T., & Head-Gordon, M. (2013). Insights into the Kinetics of Cracking and Dehydrogenation Reactions of Light Alkanes in H-MFI. The Journal of Physical Chemistry C, 117(24), 12600-12611. doi:10.1021/jp402506m

Janda, A., & Bell, A. T. (2013). Effects of Si/Al Ratio on the Distribution of Framework Al and on the Rates of Alkane Monomolecular Cracking and Dehydrogenation in H-MFI. Journal of the American Chemical Society, 135(51), 19193-19207. doi:10.1021/ja4081937

Olsbye, U., Svelle, S., Bjørgen, M., Beato, P., Janssens, T. V. W., Joensen, F., … Lillerud, K. P. (2012). Conversion of Methanol to Hydrocarbons: How Zeolite Cavity and Pore Size Controls Product Selectivity. Angewandte Chemie International Edition, 51(24), 5810-5831. doi:10.1002/anie.201103657

Van Speybroeck, V., De Wispelaere, K., Van der Mynsbrugge, J., Vandichel, M., Hemelsoet, K., & Waroquier, M. (2014). First principle chemical kinetics in zeolites: the methanol-to-olefin process as a case study. Chem. Soc. Rev., 43(21), 7326-7357. doi:10.1039/c4cs00146j

Tian, P., Wei, Y., Ye, M., & Liu, Z. (2015). Methanol to Olefins (MTO): From Fundamentals to Commercialization. ACS Catalysis, 5(3), 1922-1938. doi:10.1021/acscatal.5b00007

Svelle, S., Joensen, F., Nerlov, J., Olsbye, U., Lillerud, K.-P., Kolboe, S., & Bjørgen, M. (2006). Conversion of Methanol into Hydrocarbons over Zeolite H-ZSM-5:  Ethene Formation Is Mechanistically Separated from the Formation of Higher Alkenes. Journal of the American Chemical Society, 128(46), 14770-14771. doi:10.1021/ja065810a

BJORGEN, M., SVELLE, S., JOENSEN, F., NERLOV, J., KOLBOE, S., BONINO, F., … OLSBYE, U. (2007). Conversion of methanol to hydrocarbons over zeolite H-ZSM-5: On the origin of the olefinic species. Journal of Catalysis, 249(2), 195-207. doi:10.1016/j.jcat.2007.04.006

Wang, S., Chen, Y., Wei, Z., Qin, Z., Ma, H., Dong, M., … Wang, J. (2015). Polymethylbenzene or Alkene Cycle? Theoretical Study on Their Contribution to the Process of Methanol to Olefins over H-ZSM-5 Zeolite. The Journal of Physical Chemistry C, 119(51), 28482-28498. doi:10.1021/acs.jpcc.5b10299

Teketel, S., Olsbye, U., Lillerud, K.-P., Beato, P., & Svelle, S. (2010). Selectivity control through fundamental mechanistic insight in the conversion of methanol to hydrocarbons over zeolites. Microporous and Mesoporous Materials, 136(1-3), 33-41. doi:10.1016/j.micromeso.2010.07.013

Pinar, A. B., Márquez-Álvarez, C., Grande-Casas, M., & Pérez-Pariente, J. (2009). Template-controlled acidity and catalytic activity of ferrierite crystals. Journal of Catalysis, 263(2), 258-265. doi:10.1016/j.jcat.2009.02.017

Román-Leshkov, Y., Moliner, M., & Davis, M. E. (2010). Impact of Controlling the Site Distribution of Al Atoms on Catalytic Properties in Ferrierite-Type Zeolites. The Journal of Physical Chemistry C, 115(4), 1096-1102. doi:10.1021/jp106247g

Di Iorio, J. R., & Gounder, R. (2016). Controlling the Isolation and Pairing of Aluminum in Chabazite Zeolites Using Mixtures of Organic and Inorganic Structure-Directing Agents. Chemistry of Materials, 28(7), 2236-2247. doi:10.1021/acs.chemmater.6b00181

Di Iorio, J. R., Nimlos, C. T., & Gounder, R. (2017). Introducing Catalytic Diversity into Single-Site Chabazite Zeolites of Fixed Composition via Synthetic Control of Active Site Proximity. ACS Catalysis, 7(10), 6663-6674. doi:10.1021/acscatal.7b01273

Liu, M., Yokoi, T., Yoshioka, M., Imai, H., Kondo, J. N., & Tatsumi, T. (2014). Differences in Al distribution and acidic properties between RTH-type zeolites synthesized with OSDAs and without OSDAs. Physical Chemistry Chemical Physics, 16(9), 4155. doi:10.1039/c3cp54297a

Dedecek, J., Balgová, V., Pashkova, V., Klein, P., & Wichterlová, B. (2012). Synthesis of ZSM-5 Zeolites with Defined Distribution of Al Atoms in the Framework and Multinuclear MAS NMR Analysis of the Control of Al Distribution. Chemistry of Materials, 24(16), 3231-3239. doi:10.1021/cm301629a

Pashkova, V., Klein, P., Dedecek, J., Tokarová, V., & Wichterlová, B. (2015). Incorporation of Al at ZSM-5 hydrothermal synthesis. Tuning of Al pairs in the framework. Microporous and Mesoporous Materials, 202, 138-146. doi:10.1016/j.micromeso.2014.09.056

Yokoi, T., Mochizuki, H., Namba, S., Kondo, J. N., & Tatsumi, T. (2015). Control of the Al Distribution in the Framework of ZSM-5 Zeolite and Its Evaluation by Solid-State NMR Technique and Catalytic Properties. The Journal of Physical Chemistry C, 119(27), 15303-15315. doi:10.1021/acs.jpcc.5b03289

Liang, T., Chen, J., Qin, Z., Li, J., Wang, P., Wang, S., … Wang, J. (2016). Conversion of Methanol to Olefins over H-ZSM-5 Zeolite: Reaction Pathway Is Related to the Framework Aluminum Siting. ACS Catalysis, 6(11), 7311-7325. doi:10.1021/acscatal.6b01771

Pashkova, V., Sklenak, S., Klein, P., Urbanova, M., & Dědeček, J. (2016). Location of Framework Al Atoms in the Channels of ZSM-5: Effect of the (Hydrothermal) Synthesis. Chemistry - A European Journal, 22(12), 3937-3941. doi:10.1002/chem.201503758

Yokoi, T., Mochizuki, H., Biligetu, T., Wang, Y., & Tatsumi, T. (2017). Unique Al Distribution in the MFI Framework and Its Impact on Catalytic Properties. Chemistry Letters, 46(6), 798-800. doi:10.1246/cl.170156

Sklenak, S., Dědeček, J., Li, C., Wichterlová, B., Gábová, V., Sierka, M., & Sauer, J. (2007). Aluminum Siting in Silicon-Rich Zeolite Frameworks: A Combined High-Resolution27Al NMR Spectroscopy and Quantum Mechanics / Molecular Mechanics Study of ZSM-5. Angewandte Chemie International Edition, 46(38), 7286-7289. doi:10.1002/anie.200702628

Sklenak, S., Dědeček, J., Li, C., Wichterlová, B., Gábová, V., Sierka, M., & Sauer, J. (2009). Aluminium siting in the ZSM-5 framework by combination of high resolution 27Al NMR and DFT/MM calculations. Phys. Chem. Chem. Phys., 11(8), 1237-1247. doi:10.1039/b807755j

Dědeček, J., Sobalík, Z., & Wichterlová, B. (2012). Siting and Distribution of Framework Aluminium Atoms in Silicon-Rich Zeolites and Impact on Catalysis. Catalysis Reviews, 54(2), 135-223. doi:10.1080/01614940.2012.632662

Wang, S., Wei, Z., Chen, Y., Qin, Z., Ma, H., Dong, M., … Wang, J. (2015). Methanol to Olefins over H-MCM-22 Zeolite: Theoretical Study on the Catalytic Roles of Various Pores. ACS Catalysis, 5(2), 1131-1144. doi:10.1021/cs501232r

Chen, J., Liang, T., Li, J., Wang, S., Qin, Z., Wang, P., … Wang, J. (2016). Regulation of Framework Aluminum Siting and Acid Distribution in H-MCM-22 by Boron Incorporation and Its Effect on the Catalytic Performance in Methanol to Hydrocarbons. ACS Catalysis, 6(4), 2299-2313. doi:10.1021/acscatal.5b02862

Zhu, Q., Kondo, J. N., Yokoi, T., Setoyama, T., Yamaguchi, M., Takewaki, T., … Tatsumi, T. (2011). The influence of acidities of boron- and aluminium-containing MFI zeolites on co-reaction of methanol and ethene. Physical Chemistry Chemical Physics, 13(32), 14598. doi:10.1039/c1cp20338j

Yang, Y., Sun, C., Du, J., Yue, Y., Hua, W., Zhang, C., … Xu, H. (2012). The synthesis of endurable B–Al–ZSM-5 catalysts with tunable acidity for methanol to propylene reaction. Catalysis Communications, 24, 44-47. doi:10.1016/j.catcom.2012.03.013

Hu, Z., Zhang, H., Wang, L., Zhang, H., Zhang, Y., Xu, H., … Tang, Y. (2014). Highly stable boron-modified hierarchical nanocrystalline ZSM-5 zeolite for the methanol to propylene reaction. Catal. Sci. Technol., 4(9), 2891-2895. doi:10.1039/c4cy00376d

Yaripour, F., Shariatinia, Z., Sahebdelfar, S., & Irandoukht, A. (2015). Effect of boron incorporation on the structure, products selectivities and lifetime of H-ZSM-5 nanocatalyst designed for application in methanol-to-olefins (MTO) reaction. Microporous and Mesoporous Materials, 203, 41-53. doi:10.1016/j.micromeso.2014.10.024

Nachtigallová, D., Nachtigall, P., Sierka, M., & Sauer, J. (1999). Coordination and siting of Cu+ ions in ZSM-5: A combined quantum mechanics/interatomic potential function study. Physical Chemistry Chemical Physics, 1(8), 2019-2026. doi:10.1039/a900214f

Schröder, K.-P., Sauer, J., Leslie, M., & A.Catlow, C. R. (1992). Siting of AI and bridging hydroxyl groups in ZSM-5: A computer simulation study. Zeolites, 12(1), 20-23. doi:10.1016/0144-2449(92)90004-9

Schmidt, J. E., Fu, D., Deem, M. W., & Weckhuysen, B. M. (2016). Template–Framework Interactions in Tetraethylammonium‐Directed Zeolite Synthesis. Angewandte Chemie International Edition, 55(52), 16044-16048. doi:10.1002/anie.201609053

Dědeček, J., Kaucký, D., Wichterlová, B., & Gonsiorová, O. (2002). Co2+ions as probes of Al distribution in the framework of zeolites. ZSM-5 study. Phys. Chem. Chem. Phys., 4(21), 5406-5413. doi:10.1039/b203966b

Blay, V., Miguel, P. J., & Corma, A. (2017). Theta-1 zeolite catalyst for increasing the yield of propene when cracking olefins and its potential integration with an olefin metathesis unit. Catalysis Science & Technology, 7(24), 5847-5859. doi:10.1039/c7cy01502j

Sun, X., Mueller, S., Shi, H., Haller, G. L., Sanchez-Sanchez, M., van Veen, A. C., & Lercher, J. A. (2014). On the impact of co-feeding aromatics and olefins for the methanol-to-olefins reaction on HZSM-5. Journal of Catalysis, 314, 21-31. doi:10.1016/j.jcat.2014.03.013

Teketel, S., Svelle, S., Lillerud, K.-P., & Olsbye, U. (2009). Shape-Selective Conversion of Methanol to Hydrocarbons Over 10-Ring Unidirectional-Channel Acidic H-ZSM-22. ChemCatChem, 1(1), 78-81. doi:10.1002/cctc.200900057

Teketel, S., Skistad, W., Benard, S., Olsbye, U., Lillerud, K. P., Beato, P., & Svelle, S. (2011). Shape Selectivity in the Conversion of Methanol to Hydrocarbons: The Catalytic Performance of One-Dimensional 10-Ring Zeolites: ZSM-22, ZSM-23, ZSM-48, and EU-1. ACS Catalysis, 2(1), 26-37. doi:10.1021/cs200517u

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem