- -

Photoinduced intersystem crossing in DNA oxidative lesions and epigenetic intermediates

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Photoinduced intersystem crossing in DNA oxidative lesions and epigenetic intermediates

Mostrar el registro completo del ítem

Francés-Monerris, A.; Lineros-Rosa, M.; Miranda Alonso, MÁ.; Lhiaubet, VL.; Monari, A. (2020). Photoinduced intersystem crossing in DNA oxidative lesions and epigenetic intermediates. Chemical Communications. 56(32):4404-4407. https://doi.org/10.1039/d0cc01132k

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/165411

Ficheros en el ítem

Metadatos del ítem

Título: Photoinduced intersystem crossing in DNA oxidative lesions and epigenetic intermediates
Autor: Francés-Monerris, Antonio Lineros-Rosa, Mauricio Miranda Alonso, Miguel Ángel Lhiaubet, Virginie Lyria Monari, Antonio
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
[EN] The propensity of 5-formyluracil and 5-formylcytosine, i.e. oxidative lesions and epigenetic intermediates, in acting as intrinsic DNA photosensitizers is unraveled by using a combination of molecular modeling, ...[+]
Derechos de uso: Reconocimiento (by)
Fuente:
Chemical Communications. (issn: 1359-7345 )
DOI: 10.1039/d0cc01132k
Editorial:
The Royal Society of Chemistry
Versión del editor: https://doi.org/10.1039/d0cc01132k
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CTQ2017-87054-C2-2-P/ES/FOTOFISICA DE SISTEMAS ORGANICOS DE TRANSFERENCIA DE CARGA INNOVADORES/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-096684-B-I00/ES/REPARACION DEL ADN POR PROCESOS MULTIFOTONICOS/
info:eu-repo/grantAgreement/GVA//APOSTD%2F2019%2F149/
Agradecimientos:
Support from the Universite de Lorraine, CNRS and Spanish Government (PGC2018-096684-B-I00) is kindly acknowledged. A. F.-M. is grateful to Generalitat Valenciana (CTQ2017-87054-C2-2-P) and the European Social Fund for a ...[+]
Tipo: Artículo

References

Madabhushi, R., Pan, L., & Tsai, L.-H. (2014). DNA Damage and Its Links to Neurodegeneration. Neuron, 83(2), 266-282. doi:10.1016/j.neuron.2014.06.034

Sage, E. (1993). DISTRIBUTION AND REPAIR OF PHOTOLESIONS IN DNA: GENETIC CONSEQUENCES AND THE ROLE OF SEQUENCE CONTEXT. Photochemistry and Photobiology, 57(1), 163-174. doi:10.1111/j.1751-1097.1993.tb02273.x

Cadet, J., Sage, E., & Douki, T. (2005). Ultraviolet radiation-mediated damage to cellular DNA. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 571(1-2), 3-17. doi:10.1016/j.mrfmmm.2004.09.012 [+]
Madabhushi, R., Pan, L., & Tsai, L.-H. (2014). DNA Damage and Its Links to Neurodegeneration. Neuron, 83(2), 266-282. doi:10.1016/j.neuron.2014.06.034

Sage, E. (1993). DISTRIBUTION AND REPAIR OF PHOTOLESIONS IN DNA: GENETIC CONSEQUENCES AND THE ROLE OF SEQUENCE CONTEXT. Photochemistry and Photobiology, 57(1), 163-174. doi:10.1111/j.1751-1097.1993.tb02273.x

Cadet, J., Sage, E., & Douki, T. (2005). Ultraviolet radiation-mediated damage to cellular DNA. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 571(1-2), 3-17. doi:10.1016/j.mrfmmm.2004.09.012

G. T. Wondrak , Skin stress response pathways: Environmental factors and molecular opportunities , Springer , 2016

Nakamura, J., Mutlu, E., Sharma, V., Collins, L., Bodnar, W., Yu, R., … Swenberg, J. (2014). The endogenous exposome. DNA Repair, 19, 3-13. doi:10.1016/j.dnarep.2014.03.031

Esposito, L., Banyasz, A., Douki, T., Perron, M., Markovitsi, D., & Improta, R. (2014). Effect of C5-Methylation of Cytosine on the Photoreactivity of DNA: A Joint Experimental and Computational Study of TCG Trinucleotides. Journal of the American Chemical Society, 136(31), 10838-10841. doi:10.1021/ja5040478

Ikehata, H., Mori, T., Kamei, Y., Douki, T., Cadet, J., & Yamamoto, M. (2019). Wavelength‐ and Tissue‐dependent Variations in the Mutagenicity of Cyclobutane Pyrimidine Dimers in Mouse Skin. Photochemistry and Photobiology, 96(1), 94-104. doi:10.1111/php.13159

Cadet, J., & Douki, T. (2018). Formation of UV-induced DNA damage contributing to skin cancer development. Photochemical & Photobiological Sciences, 17(12), 1816-1841. doi:10.1039/c7pp00395a

Dumont, E., & Monari, A. (2015). Understanding DNA under oxidative stress and sensitization: the role of molecular modeling. Frontiers in Chemistry, 3. doi:10.3389/fchem.2015.00043

Cadet, J., & Wagner, J. R. (2013). DNA Base Damage by Reactive Oxygen Species, Oxidizing Agents, and UV Radiation. Cold Spring Harbor Perspectives in Biology, 5(2), a012559-a012559. doi:10.1101/cshperspect.a012559

Banyasz, A., Douki, T., Improta, R., Gustavsson, T., Onidas, D., Vayá, I., … Markovitsi, D. (2012). Electronic Excited States Responsible for Dimer Formation upon UV Absorption Directly by Thymine Strands: Joint Experimental and Theoretical Study. Journal of the American Chemical Society, 134(36), 14834-14845. doi:10.1021/ja304069f

Rauer, C., Nogueira, J. J., Marquetand, P., & González, L. (2016). Cyclobutane Thymine Photodimerization Mechanism Revealed by Nonadiabatic Molecular Dynamics. Journal of the American Chemical Society, 138(49), 15911-15916. doi:10.1021/jacs.6b06701

IKEHATA, H., & ONO, T. (2011). The Mechanisms of UV Mutagenesis. Journal of Radiation Research, 52(2), 115-125. doi:10.1269/jrr.10175

Gomez-Mendoza, M., Banyasz, A., Douki, T., Markovitsi, D., & Ravanat, J.-L. (2016). Direct Oxidative Damage of Naked DNA Generated upon Absorption of UV Radiation by Nucleobases. The Journal of Physical Chemistry Letters, 7(19), 3945-3948. doi:10.1021/acs.jpclett.6b01781

Banyasz, A., Martínez-Fernández, L., Balty, C., Perron, M., Douki, T., Improta, R., & Markovitsi, D. (2017). Absorption of Low-Energy UV Radiation by Human Telomere G-Quadruplexes Generates Long-Lived Guanine Radical Cations. Journal of the American Chemical Society, 139(30), 10561-10568. doi:10.1021/jacs.7b05931

Epe, B. (2012). DNA damage spectra induced by photosensitization. Photochem. Photobiol. Sci., 11(1), 98-106. doi:10.1039/c1pp05190c

Cuquerella, M. C., Lhiaubet-Vallet, V., Cadet, J., & Miranda, M. A. (2012). Benzophenone Photosensitized DNA Damage. Accounts of Chemical Research, 45(9), 1558-1570. doi:10.1021/ar300054e

Cuquerella, M. C., Lhiaubet-Vallet, V., Bosca, F., & Miranda, M. A. (2011). Photosensitised pyrimidine dimerisation in DNA. Chemical Science, 2(7), 1219. doi:10.1039/c1sc00088h

V. Lhiaubet-Vallet and M. A.Miranda , in CRC handbook of organic photochemistry and photobiology , ed. F. Ghetti , A. G. Griesbeck and M. Oelgemöller , CRC Press , 2012 , pp. 1541–1555

Cadet, J., Douki, T., & Ravanat, J.-L. (2008). Oxidatively Generated Damage to the Guanine Moiety of DNA: Mechanistic Aspects and Formation in Cells. Accounts of Chemical Research, 41(8), 1075-1083. doi:10.1021/ar700245e

Dumont, E., Grüber, R., Bignon, E., Morell, C., Moreau, Y., Monari, A., & Ravanat, J.-L. (2015). Probing the reactivity of singlet oxygen with purines. Nucleic Acids Research, 44(1), 56-62. doi:10.1093/nar/gkv1364

Baptista, M. S., Cadet, J., Di Mascio, P., Ghogare, A. A., Greer, A., Hamblin, M. R., … Yoshimura, T. M. (2017). Type I and Type II Photosensitized Oxidation Reactions: Guidelines and Mechanistic Pathways. Photochemistry and Photobiology, 93(4), 912-919. doi:10.1111/php.12716

Dumont, E., Wibowo, M., Roca-Sanjuán, D., Garavelli, M., Assfeld, X., & Monari, A. (2015). Resolving the Benzophenone DNA-Photosensitization Mechanism at QM/MM Level. The Journal of Physical Chemistry Letters, 6(4), 576-580. doi:10.1021/jz502562d

Dumont, É., & Monari, A. (2014). Interaction of Palmatine with DNA: An Environmentally Controlled Phototherapy Drug. The Journal of Physical Chemistry B, 119(2), 410-419. doi:10.1021/jp5088515

Nogueira, J. J., Oppel, M., & González, L. (2015). Enhancing Intersystem Crossing in Phenotiazinium Dyes by Intercalation into DNA. Angewandte Chemie International Edition, 54(14), 4375-4378. doi:10.1002/anie.201411456

Vendrell-Criado, V., Rodríguez-Muñiz, G. M., Cuquerella, M. C., Lhiaubet-Vallet, V., & Miranda, M. A. (2013). Photosensitization of DNA by 5-Methyl-2-Pyrimidone Deoxyribonucleoside: (6-4) Photoproduct as a Possible Trojan Horse. Angewandte Chemie International Edition, 52(25), 6476-6479. doi:10.1002/anie.201302176

Vendrell-Criado, V., Rodríguez-Muñiz, G. M., Lhiaubet-Vallet, V., Cuquerella, M. C., & Miranda, M. A. (2016). The (6-4) Dimeric Lesion as a DNA Photosensitizer. ChemPhysChem, 17(13), 1979-1982. doi:10.1002/cphc.201600154

Bignon, E., Gattuso, H., Morell, C., Dumont, E., & Monari, A. (2015). DNA Photosensitization by an «Insider»: Photophysics and Triplet Energy Transfer of 5‐Methyl‐2‐pyrimidone Deoxyribonucleoside. Chemistry – A European Journal, 21(32), 11509-11516. doi:10.1002/chem.201501212

Francés-Monerris, A., Hognon, C., Miranda, M. A., Lhiaubet-Vallet, V., & Monari, A. (2018). Triplet photosensitization mechanism of thymine by an oxidized nucleobase: from a dimeric model to DNA environment. Physical Chemistry Chemical Physics, 20(40), 25666-25675. doi:10.1039/c8cp04866e

Liu, P., Burdzy, A., & Sowers, L. C. (2003). Repair of the mutagenic DNA oxidation product, 5-formyluracil. DNA Repair, 2(2), 199-210. doi:10.1016/s1568-7864(02)00198-2

Rogstad, D. K., Heo, J., Vaidehi, N., Goddard, W. A., Burdzy, A., & Sowers, L. C. (2004). 5-Formyluracil-Induced Perturbations of DNA Function. Biochemistry, 43(19), 5688-5697. doi:10.1021/bi030247j

Wang, Y., Zhang, X., Zou, G., Peng, S., Liu, C., & Zhou, X. (2019). Detection and Application of 5-Formylcytosine and 5-Formyluracil in DNA. Accounts of Chemical Research, 52(4), 1016-1024. doi:10.1021/acs.accounts.8b00543

Xing, J., Ai, Y., Liu, Y., Du, J., Chen, W., Lu, Z., & Wang, X. (2018). Theoretical Studies on the Photophysics and Photochemistry of 5-Formylcytosine and 5-Carboxylcytosine: The Oxidative Products of Epigenetic Modification of Cytosine in DNA. The Journal of Physical Chemistry B, 122(10), 2704-2714. doi:10.1021/acs.jpcb.7b10218

López, V., Fernández, A. F., & Fraga, M. F. (2017). The role of 5-hydroxymethylcytosine in development, aging and age-related diseases. Ageing Research Reviews, 37, 28-38. doi:10.1016/j.arr.2017.05.002

Berson, A., Nativio, R., Berger, S. L., & Bonini, N. M. (2018). Epigenetic Regulation in Neurodegenerative Diseases. Trends in Neurosciences, 41(9), 587-598. doi:10.1016/j.tins.2018.05.005

Deans, C., & Maggert, K. A. (2015). What Do You Mean, «Epigenetic»? Genetics, 199(4), 887-896. doi:10.1534/genetics.114.173492

Hognon, C., Besancenot, V., Gruez, A., Grandemange, S., & Monari, A. (2019). Cooperative Effects of Cytosine Methylation on DNA Structure and Dynamics. The Journal of Physical Chemistry B, 123(34), 7365-7371. doi:10.1021/acs.jpcb.9b05835

Tang, Y., Zheng, S.-J., Qi, C.-B., Feng, Y.-Q., & Yuan, B.-F. (2015). Sensitive and Simultaneous Determination of 5-Methylcytosine and Its Oxidation Products in Genomic DNA by Chemical Derivatization Coupled with Liquid Chromatography-Tandem Mass Spectrometry Analysis. Analytical Chemistry, 87(6), 3445-3452. doi:10.1021/ac504786r

Bachman, M., Uribe-Lewis, S., Yang, X., Burgess, H. E., Iurlaro, M., Reik, W., … Balasubramanian, S. (2015). 5-Formylcytosine can be a stable DNA modification in mammals. Nature Chemical Biology, 11(8), 555-557. doi:10.1038/nchembio.1848

Iurlaro, M., Ficz, G., Oxley, D., Raiber, E.-A., Bachman, M., Booth, M. J., … Reik, W. (2013). A screen for hydroxymethylcytosine and formylcytosine binding proteins suggests functions in transcription and chromatin regulation. Genome Biology, 14(10), R119. doi:10.1186/gb-2013-14-10-r119

Etienne, T., Assfeld, X., & Monari, A. (2014). Toward a Quantitative Assessment of Electronic Transitions’ Charge-Transfer Character. Journal of Chemical Theory and Computation, 10(9), 3896-3905. doi:10.1021/ct5003994

Crespo-Otero, R., & Barbatti, M. (2018). Recent Advances and Perspectives on Nonadiabatic Mixed Quantum–Classical Dynamics. Chemical Reviews, 118(15), 7026-7068. doi:10.1021/acs.chemrev.7b00577

Mai, S., Marquetand, P., & González, L. (2015). A general method to describe intersystem crossing dynamics in trajectory surface hopping. International Journal of Quantum Chemistry, 115(18), 1215-1231. doi:10.1002/qua.24891

Martin, R. L. (2003). Natural transition orbitals. The Journal of Chemical Physics, 118(11), 4775-4777. doi:10.1063/1.1558471

Janicki, M. J., Szabla, R., Šponer, J., & Góra, R. W. (2018). Solvation effects alter the photochemistry of 2-thiocytosine. Chemical Physics, 515, 502-508. doi:10.1016/j.chemphys.2018.06.016

Mai, S., Pollum, M., Martínez-Fernández, L., Dunn, N., Marquetand, P., Corral, I., … González, L. (2016). The origin of efficient triplet state population in sulfur-substituted nucleobases. Nature Communications, 7(1). doi:10.1038/ncomms13077

Marazzi, M., Mai, S., Roca-Sanjuán, D., Delcey, M. G., Lindh, R., González, L., & Monari, A. (2016). Benzophenone Ultrafast Triplet Population: Revisiting the Kinetic Model by Surface-Hopping Dynamics. The Journal of Physical Chemistry Letters, 7(4), 622-626. doi:10.1021/acs.jpclett.5b02792

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem