- -

Photoinduced intersystem crossing in DNA oxidative lesions and epigenetic intermediates

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Photoinduced intersystem crossing in DNA oxidative lesions and epigenetic intermediates

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Francés-Monerris, Antonio es_ES
dc.contributor.author Lineros-Rosa, Mauricio es_ES
dc.contributor.author Miranda Alonso, Miguel Ángel es_ES
dc.contributor.author Lhiaubet, Virginie Lyria es_ES
dc.contributor.author Monari, Antonio es_ES
dc.date.accessioned 2021-04-21T03:31:44Z
dc.date.available 2021-04-21T03:31:44Z
dc.date.issued 2020-04-25 es_ES
dc.identifier.issn 1359-7345 es_ES
dc.identifier.uri http://hdl.handle.net/10251/165411
dc.description.abstract [EN] The propensity of 5-formyluracil and 5-formylcytosine, i.e. oxidative lesions and epigenetic intermediates, in acting as intrinsic DNA photosensitizers is unraveled by using a combination of molecular modeling, simulation and spectroscopy. Exploration of potential energy surfaces and non-adiabatic dynamics confirm a higher intersystem crossing rate for 5-formyluracil, whereas the kinetic models evidence different equilibria in the excited states for both compounds. es_ES
dc.description.sponsorship Support from the Universite de Lorraine, CNRS and Spanish Government (PGC2018-096684-B-I00) is kindly acknowledged. A. F.-M. is grateful to Generalitat Valenciana (CTQ2017-87054-C2-2-P) and the European Social Fund for a postdoctoral contract (APOSTD/2019/149), M. L.-R. acknowledges the Universitat Politecnica de Valencia for the FPI grant. Calculations have been performed on the local LPCT computer center and on the Explor regional center in the framework of the project "Dancing under the light''. es_ES
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation.ispartof Chemical Communications es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Photoinduced intersystem crossing in DNA oxidative lesions and epigenetic intermediates es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/d0cc01132k es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CTQ2017-87054-C2-2-P/ES/FOTOFISICA DE SISTEMAS ORGANICOS DE TRANSFERENCIA DE CARGA INNOVADORES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-096684-B-I00/ES/REPARACION DEL ADN POR PROCESOS MULTIFOTONICOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//APOSTD%2F2019%2F149/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Francés-Monerris, A.; Lineros-Rosa, M.; Miranda Alonso, MÁ.; Lhiaubet, VL.; Monari, A. (2020). Photoinduced intersystem crossing in DNA oxidative lesions and epigenetic intermediates. Chemical Communications. 56(32):4404-4407. https://doi.org/10.1039/d0cc01132k es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/d0cc01132k es_ES
dc.description.upvformatpinicio 4404 es_ES
dc.description.upvformatpfin 4407 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 56 es_ES
dc.description.issue 32 es_ES
dc.identifier.pmid 32239074 es_ES
dc.relation.pasarela S\425469 es_ES
dc.contributor.funder European Social Fund es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Université de Lorraine es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Centre National de la Recherche Scientifique, Francia es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Madabhushi, R., Pan, L., & Tsai, L.-H. (2014). DNA Damage and Its Links to Neurodegeneration. Neuron, 83(2), 266-282. doi:10.1016/j.neuron.2014.06.034 es_ES
dc.description.references Sage, E. (1993). DISTRIBUTION AND REPAIR OF PHOTOLESIONS IN DNA: GENETIC CONSEQUENCES AND THE ROLE OF SEQUENCE CONTEXT. Photochemistry and Photobiology, 57(1), 163-174. doi:10.1111/j.1751-1097.1993.tb02273.x es_ES
dc.description.references Cadet, J., Sage, E., & Douki, T. (2005). Ultraviolet radiation-mediated damage to cellular DNA. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 571(1-2), 3-17. doi:10.1016/j.mrfmmm.2004.09.012 es_ES
dc.description.references G. T. Wondrak , Skin stress response pathways: Environmental factors and molecular opportunities , Springer , 2016 es_ES
dc.description.references Nakamura, J., Mutlu, E., Sharma, V., Collins, L., Bodnar, W., Yu, R., … Swenberg, J. (2014). The endogenous exposome. DNA Repair, 19, 3-13. doi:10.1016/j.dnarep.2014.03.031 es_ES
dc.description.references Esposito, L., Banyasz, A., Douki, T., Perron, M., Markovitsi, D., & Improta, R. (2014). Effect of C5-Methylation of Cytosine on the Photoreactivity of DNA: A Joint Experimental and Computational Study of TCG Trinucleotides. Journal of the American Chemical Society, 136(31), 10838-10841. doi:10.1021/ja5040478 es_ES
dc.description.references Ikehata, H., Mori, T., Kamei, Y., Douki, T., Cadet, J., & Yamamoto, M. (2019). Wavelength‐ and Tissue‐dependent Variations in the Mutagenicity of Cyclobutane Pyrimidine Dimers in Mouse Skin. Photochemistry and Photobiology, 96(1), 94-104. doi:10.1111/php.13159 es_ES
dc.description.references Cadet, J., & Douki, T. (2018). Formation of UV-induced DNA damage contributing to skin cancer development. Photochemical & Photobiological Sciences, 17(12), 1816-1841. doi:10.1039/c7pp00395a es_ES
dc.description.references Dumont, E., & Monari, A. (2015). Understanding DNA under oxidative stress and sensitization: the role of molecular modeling. Frontiers in Chemistry, 3. doi:10.3389/fchem.2015.00043 es_ES
dc.description.references Cadet, J., & Wagner, J. R. (2013). DNA Base Damage by Reactive Oxygen Species, Oxidizing Agents, and UV Radiation. Cold Spring Harbor Perspectives in Biology, 5(2), a012559-a012559. doi:10.1101/cshperspect.a012559 es_ES
dc.description.references Banyasz, A., Douki, T., Improta, R., Gustavsson, T., Onidas, D., Vayá, I., … Markovitsi, D. (2012). Electronic Excited States Responsible for Dimer Formation upon UV Absorption Directly by Thymine Strands: Joint Experimental and Theoretical Study. Journal of the American Chemical Society, 134(36), 14834-14845. doi:10.1021/ja304069f es_ES
dc.description.references Rauer, C., Nogueira, J. J., Marquetand, P., & González, L. (2016). Cyclobutane Thymine Photodimerization Mechanism Revealed by Nonadiabatic Molecular Dynamics. Journal of the American Chemical Society, 138(49), 15911-15916. doi:10.1021/jacs.6b06701 es_ES
dc.description.references IKEHATA, H., & ONO, T. (2011). The Mechanisms of UV Mutagenesis. Journal of Radiation Research, 52(2), 115-125. doi:10.1269/jrr.10175 es_ES
dc.description.references Gomez-Mendoza, M., Banyasz, A., Douki, T., Markovitsi, D., & Ravanat, J.-L. (2016). Direct Oxidative Damage of Naked DNA Generated upon Absorption of UV Radiation by Nucleobases. The Journal of Physical Chemistry Letters, 7(19), 3945-3948. doi:10.1021/acs.jpclett.6b01781 es_ES
dc.description.references Banyasz, A., Martínez-Fernández, L., Balty, C., Perron, M., Douki, T., Improta, R., & Markovitsi, D. (2017). Absorption of Low-Energy UV Radiation by Human Telomere G-Quadruplexes Generates Long-Lived Guanine Radical Cations. Journal of the American Chemical Society, 139(30), 10561-10568. doi:10.1021/jacs.7b05931 es_ES
dc.description.references Epe, B. (2012). DNA damage spectra induced by photosensitization. Photochem. Photobiol. Sci., 11(1), 98-106. doi:10.1039/c1pp05190c es_ES
dc.description.references Cuquerella, M. C., Lhiaubet-Vallet, V., Cadet, J., & Miranda, M. A. (2012). Benzophenone Photosensitized DNA Damage. Accounts of Chemical Research, 45(9), 1558-1570. doi:10.1021/ar300054e es_ES
dc.description.references Cuquerella, M. C., Lhiaubet-Vallet, V., Bosca, F., & Miranda, M. A. (2011). Photosensitised pyrimidine dimerisation in DNA. Chemical Science, 2(7), 1219. doi:10.1039/c1sc00088h es_ES
dc.description.references V. Lhiaubet-Vallet and M. A.Miranda , in CRC handbook of organic photochemistry and photobiology , ed. F. Ghetti , A. G. Griesbeck and M. Oelgemöller , CRC Press , 2012 , pp. 1541–1555 es_ES
dc.description.references Cadet, J., Douki, T., & Ravanat, J.-L. (2008). Oxidatively Generated Damage to the Guanine Moiety of DNA: Mechanistic Aspects and Formation in Cells. Accounts of Chemical Research, 41(8), 1075-1083. doi:10.1021/ar700245e es_ES
dc.description.references Dumont, E., Grüber, R., Bignon, E., Morell, C., Moreau, Y., Monari, A., & Ravanat, J.-L. (2015). Probing the reactivity of singlet oxygen with purines. Nucleic Acids Research, 44(1), 56-62. doi:10.1093/nar/gkv1364 es_ES
dc.description.references Baptista, M. S., Cadet, J., Di Mascio, P., Ghogare, A. A., Greer, A., Hamblin, M. R., … Yoshimura, T. M. (2017). Type I and Type II Photosensitized Oxidation Reactions: Guidelines and Mechanistic Pathways. Photochemistry and Photobiology, 93(4), 912-919. doi:10.1111/php.12716 es_ES
dc.description.references Dumont, E., Wibowo, M., Roca-Sanjuán, D., Garavelli, M., Assfeld, X., & Monari, A. (2015). Resolving the Benzophenone DNA-Photosensitization Mechanism at QM/MM Level. The Journal of Physical Chemistry Letters, 6(4), 576-580. doi:10.1021/jz502562d es_ES
dc.description.references Dumont, É., & Monari, A. (2014). Interaction of Palmatine with DNA: An Environmentally Controlled Phototherapy Drug. The Journal of Physical Chemistry B, 119(2), 410-419. doi:10.1021/jp5088515 es_ES
dc.description.references Nogueira, J. J., Oppel, M., & González, L. (2015). Enhancing Intersystem Crossing in Phenotiazinium Dyes by Intercalation into DNA. Angewandte Chemie International Edition, 54(14), 4375-4378. doi:10.1002/anie.201411456 es_ES
dc.description.references Vendrell-Criado, V., Rodríguez-Muñiz, G. M., Cuquerella, M. C., Lhiaubet-Vallet, V., & Miranda, M. A. (2013). Photosensitization of DNA by 5-Methyl-2-Pyrimidone Deoxyribonucleoside: (6-4) Photoproduct as a Possible Trojan Horse. Angewandte Chemie International Edition, 52(25), 6476-6479. doi:10.1002/anie.201302176 es_ES
dc.description.references Vendrell-Criado, V., Rodríguez-Muñiz, G. M., Lhiaubet-Vallet, V., Cuquerella, M. C., & Miranda, M. A. (2016). The (6-4) Dimeric Lesion as a DNA Photosensitizer. ChemPhysChem, 17(13), 1979-1982. doi:10.1002/cphc.201600154 es_ES
dc.description.references Bignon, E., Gattuso, H., Morell, C., Dumont, E., & Monari, A. (2015). DNA Photosensitization by an «Insider»: Photophysics and Triplet Energy Transfer of 5‐Methyl‐2‐pyrimidone Deoxyribonucleoside. Chemistry – A European Journal, 21(32), 11509-11516. doi:10.1002/chem.201501212 es_ES
dc.description.references Francés-Monerris, A., Hognon, C., Miranda, M. A., Lhiaubet-Vallet, V., & Monari, A. (2018). Triplet photosensitization mechanism of thymine by an oxidized nucleobase: from a dimeric model to DNA environment. Physical Chemistry Chemical Physics, 20(40), 25666-25675. doi:10.1039/c8cp04866e es_ES
dc.description.references Liu, P., Burdzy, A., & Sowers, L. C. (2003). Repair of the mutagenic DNA oxidation product, 5-formyluracil. DNA Repair, 2(2), 199-210. doi:10.1016/s1568-7864(02)00198-2 es_ES
dc.description.references Rogstad, D. K., Heo, J., Vaidehi, N., Goddard, W. A., Burdzy, A., & Sowers, L. C. (2004). 5-Formyluracil-Induced Perturbations of DNA Function. Biochemistry, 43(19), 5688-5697. doi:10.1021/bi030247j es_ES
dc.description.references Wang, Y., Zhang, X., Zou, G., Peng, S., Liu, C., & Zhou, X. (2019). Detection and Application of 5-Formylcytosine and 5-Formyluracil in DNA. Accounts of Chemical Research, 52(4), 1016-1024. doi:10.1021/acs.accounts.8b00543 es_ES
dc.description.references Xing, J., Ai, Y., Liu, Y., Du, J., Chen, W., Lu, Z., & Wang, X. (2018). Theoretical Studies on the Photophysics and Photochemistry of 5-Formylcytosine and 5-Carboxylcytosine: The Oxidative Products of Epigenetic Modification of Cytosine in DNA. The Journal of Physical Chemistry B, 122(10), 2704-2714. doi:10.1021/acs.jpcb.7b10218 es_ES
dc.description.references López, V., Fernández, A. F., & Fraga, M. F. (2017). The role of 5-hydroxymethylcytosine in development, aging and age-related diseases. Ageing Research Reviews, 37, 28-38. doi:10.1016/j.arr.2017.05.002 es_ES
dc.description.references Berson, A., Nativio, R., Berger, S. L., & Bonini, N. M. (2018). Epigenetic Regulation in Neurodegenerative Diseases. Trends in Neurosciences, 41(9), 587-598. doi:10.1016/j.tins.2018.05.005 es_ES
dc.description.references Deans, C., & Maggert, K. A. (2015). What Do You Mean, «Epigenetic»? Genetics, 199(4), 887-896. doi:10.1534/genetics.114.173492 es_ES
dc.description.references Hognon, C., Besancenot, V., Gruez, A., Grandemange, S., & Monari, A. (2019). Cooperative Effects of Cytosine Methylation on DNA Structure and Dynamics. The Journal of Physical Chemistry B, 123(34), 7365-7371. doi:10.1021/acs.jpcb.9b05835 es_ES
dc.description.references Tang, Y., Zheng, S.-J., Qi, C.-B., Feng, Y.-Q., & Yuan, B.-F. (2015). Sensitive and Simultaneous Determination of 5-Methylcytosine and Its Oxidation Products in Genomic DNA by Chemical Derivatization Coupled with Liquid Chromatography-Tandem Mass Spectrometry Analysis. Analytical Chemistry, 87(6), 3445-3452. doi:10.1021/ac504786r es_ES
dc.description.references Bachman, M., Uribe-Lewis, S., Yang, X., Burgess, H. E., Iurlaro, M., Reik, W., … Balasubramanian, S. (2015). 5-Formylcytosine can be a stable DNA modification in mammals. Nature Chemical Biology, 11(8), 555-557. doi:10.1038/nchembio.1848 es_ES
dc.description.references Iurlaro, M., Ficz, G., Oxley, D., Raiber, E.-A., Bachman, M., Booth, M. J., … Reik, W. (2013). A screen for hydroxymethylcytosine and formylcytosine binding proteins suggests functions in transcription and chromatin regulation. Genome Biology, 14(10), R119. doi:10.1186/gb-2013-14-10-r119 es_ES
dc.description.references Etienne, T., Assfeld, X., & Monari, A. (2014). Toward a Quantitative Assessment of Electronic Transitions’ Charge-Transfer Character. Journal of Chemical Theory and Computation, 10(9), 3896-3905. doi:10.1021/ct5003994 es_ES
dc.description.references Crespo-Otero, R., & Barbatti, M. (2018). Recent Advances and Perspectives on Nonadiabatic Mixed Quantum–Classical Dynamics. Chemical Reviews, 118(15), 7026-7068. doi:10.1021/acs.chemrev.7b00577 es_ES
dc.description.references Mai, S., Marquetand, P., & González, L. (2015). A general method to describe intersystem crossing dynamics in trajectory surface hopping. International Journal of Quantum Chemistry, 115(18), 1215-1231. doi:10.1002/qua.24891 es_ES
dc.description.references Martin, R. L. (2003). Natural transition orbitals. The Journal of Chemical Physics, 118(11), 4775-4777. doi:10.1063/1.1558471 es_ES
dc.description.references Janicki, M. J., Szabla, R., Šponer, J., & Góra, R. W. (2018). Solvation effects alter the photochemistry of 2-thiocytosine. Chemical Physics, 515, 502-508. doi:10.1016/j.chemphys.2018.06.016 es_ES
dc.description.references Mai, S., Pollum, M., Martínez-Fernández, L., Dunn, N., Marquetand, P., Corral, I., … González, L. (2016). The origin of efficient triplet state population in sulfur-substituted nucleobases. Nature Communications, 7(1). doi:10.1038/ncomms13077 es_ES
dc.description.references Marazzi, M., Mai, S., Roca-Sanjuán, D., Delcey, M. G., Lindh, R., González, L., & Monari, A. (2016). Benzophenone Ultrafast Triplet Population: Revisiting the Kinetic Model by Surface-Hopping Dynamics. The Journal of Physical Chemistry Letters, 7(4), 622-626. doi:10.1021/acs.jpclett.5b02792 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem