- -

What Is Measured When Measuring Acidity in Zeolites with Probe Molecules?

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by


What Is Measured When Measuring Acidity in Zeolites with Probe Molecules?

Show full item record

Boronat Zaragoza, M.; Corma Canós, A. (2019). What Is Measured When Measuring Acidity in Zeolites with Probe Molecules?. ACS Catalysis. 9(2):1539-1548. https://doi.org/10.1021/acscatal.8b04317

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/165475

Files in this item

Item Metadata

Title: What Is Measured When Measuring Acidity in Zeolites with Probe Molecules?
Author: Boronat Zaragoza, Mercedes Corma Canós, Avelino
UPV Unit: Universitat Politècnica de València. Departamento de Química - Departament de Química
Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Issued date:
[EN] Based on theoretical calculations of CO, NH3, and pyridine adsorption at different sites in MOR and MFI zeolites, we analyze how confinement effects influence the measurement of acidity based on the interaction of ...[+]
Subjects: Bronsted acid , Confinement , DFT , Dispersion , Microporous structure
Copyrigths: Reserva de todos los derechos
ACS Catalysis. (issn: 2155-5435 )
DOI: 10.1021/acscatal.8b04317
American Chemical Society
Publisher version: https://doi.org/10.1021/acscatal.8b04317
Project ID:
info:eu-repo/grantAgreement/EC/H2020/671093/EU/MATching zeolite SYNthesis with CATalytic activity/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-82288-C2-1-P/ES/MATERIALES HIBRIDOS MULTIFUNCIONALES BASADOS EN NANO-UNIDADES ESTRUCTURALES ACTIVAS/
This work was supported by the European Union through No. ERC-AdG-2014-671093 (SynCatMatch), and by the Spanish Government-MINECO through "Severo Ochoa" (No. SEV-2016-0683) and No. MAT2017-82288-C2-1-P projects. Red Espanola ...[+]
Type: Artículo


Chen, H.Y. In Urea–SCR Technology for deNOx After Treatment of Diesel Exhausts; Nova, I., Tronconi, E., Eds. Springer: New York, 2014; pp 123–147.

Corma, A. (1995). Inorganic Solid Acids and Their Use in Acid-Catalyzed Hydrocarbon Reactions. Chemical Reviews, 95(3), 559-614. doi:10.1021/cr00035a006

Corma, A. (1997). From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis. Chemical Reviews, 97(6), 2373-2420. doi:10.1021/cr960406n [+]
Chen, H.Y. In Urea–SCR Technology for deNOx After Treatment of Diesel Exhausts; Nova, I., Tronconi, E., Eds. Springer: New York, 2014; pp 123–147.

Corma, A. (1995). Inorganic Solid Acids and Their Use in Acid-Catalyzed Hydrocarbon Reactions. Chemical Reviews, 95(3), 559-614. doi:10.1021/cr00035a006

Corma, A. (1997). From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis. Chemical Reviews, 97(6), 2373-2420. doi:10.1021/cr960406n

Clerici, M. G. (2000). Topics in Catalysis, 13(4), 373-386. doi:10.1023/a:1009063106954

Haw, J. F., Song, W., Marcus, D. M., & Nicholas, J. B. (2003). The Mechanism of Methanol to Hydrocarbon Catalysis. Accounts of Chemical Research, 36(5), 317-326. doi:10.1021/ar020006o

Corma, A. (2003). State of the art and future challenges of zeolites as catalysts. Journal of Catalysis, 216(1-2), 298-312. doi:10.1016/s0021-9517(02)00132-x

Bhan, A., & Iglesia, E. (2008). A Link between Reactivity and Local Structure in Acid Catalysis on Zeolites. Accounts of Chemical Research, 41(4), 559-567. doi:10.1021/ar700181t

Wang, W., & Hunger, M. (2008). Reactivity of Surface Alkoxy Species on Acidic Zeolite Catalysts. Accounts of Chemical Research, 41(8), 895-904. doi:10.1021/ar700210f

Martínez, C., & Corma, A. (2011). Inorganic molecular sieves: Preparation, modification and industrial application in catalytic processes. Coordination Chemistry Reviews, 255(13-14), 1558-1580. doi:10.1016/j.ccr.2011.03.014

Vermeiren, W., & Gilson, J.-P. (2009). Impact of Zeolites on the Petroleum and Petrochemical Industry. Topics in Catalysis, 52(9), 1131-1161. doi:10.1007/s11244-009-9271-8

Yilmaz, B., & Müller, U. (2009). Catalytic Applications of Zeolites in Chemical Industry. Topics in Catalysis, 52(6-7), 888-895. doi:10.1007/s11244-009-9226-0

Rinaldi, R., & Schüth, F. (2009). Design of solid catalysts for the conversion of biomass. Energy & Environmental Science, 2(6), 610. doi:10.1039/b902668a

Olsbye, U., Svelle, S., Lillerud, K. P., Wei, Z. H., Chen, Y. Y., Li, J. F., … Fan, W. B. (2015). The formation and degradation of active species during methanol conversion over protonated zeotype catalysts. Chemical Society Reviews, 44(20), 7155-7176. doi:10.1039/c5cs00304k

Abate, S., Barbera, K., Centi, G., Lanzafame, P., & Perathoner, S. (2016). Disruptive catalysis by zeolites. Catalysis Science & Technology, 6(8), 2485-2501. doi:10.1039/c5cy02184g

Rabo, J. A., & Gajda, G. J. (1990). Acid Function in Zeolites: Recent Progress. NATO ASI Series, 273-297. doi:10.1007/978-1-4684-5787-2_17

Sauer, J., Ugliengo, P., Garrone, E., & Saunders, V. R. (1994). Theoretical Study of van der Waals Complexes at Surface Sites in Comparison with the Experiment. Chemical Reviews, 94(7), 2095-2160. doi:10.1021/cr00031a014

Van Santen, R. A., & Kramer, G. J. (1995). Reactivity Theory of Zeolitic Broensted Acidic Sites. Chemical Reviews, 95(3), 637-660. doi:10.1021/cr00035a008

Gounder, R., & Iglesia, E. (2011). The Roles of Entropy and Enthalpy in Stabilizing Ion-Pairs at Transition States in Zeolite Acid Catalysis. Accounts of Chemical Research, 45(2), 229-238. doi:10.1021/ar200138n

Jones, A. J., & Iglesia, E. (2015). The Strength of Brønsted Acid Sites in Microporous Aluminosilicates. ACS Catalysis, 5(10), 5741-5755. doi:10.1021/acscatal.5b01133

Van Speybroeck, V., Hemelsoet, K., Joos, L., Waroquier, M., Bell, R. G., & Catlow, C. R. A. (2015). Advances in theory and their application within the field of zeolite chemistry. Chemical Society Reviews, 44(20), 7044-7111. doi:10.1039/c5cs00029g

Boronat, M., & Corma, A. (2014). Factors Controlling the Acidity of Zeolites. Catalysis Letters, 145(1), 162-172. doi:10.1007/s10562-014-1438-7

Farneth, W. E., & Gorte, R. J. (1995). Methods for Characterizing Zeolite Acidity. Chemical Reviews, 95(3), 615-635. doi:10.1021/cr00035a007

Lercher, J. A., Gründling, C., & Eder-Mirth, G. (1996). Infrared studies of the surface acidity of oxides and zeolites using adsorbed probe molecules. Catalysis Today, 27(3-4), 353-376. doi:10.1016/0920-5861(95)00248-0

SATO, H. (1997). Acidity Control and Catalysis of Pentasil Zeolites. Catalysis Reviews, 39(4), 395-424. doi:10.1080/01614949708007101

Garrone, E., & Otero Areán, C. (2005). Variable temperature infrared spectroscopy: A convenient tool for studying the thermodynamics of weak solid–gas interactions. Chemical Society Reviews, 34(10), 846. doi:10.1039/b407049f

Busca, G. (2007). Acid Catalysts in Industrial Hydrocarbon Chemistry. Chemical Reviews, 107(11), 5366-5410. doi:10.1021/cr068042e

Vimont, A., Thibault-Starzyk, F., & Daturi, M. (2010). Analysing and understanding the active site by IR spectroscopy. Chemical Society Reviews, 39(12), 4928. doi:10.1039/b919543m

Derouane, E. G., Védrine, J. C., Pinto, R. R., Borges, P. M., Costa, L., Lemos, M. A. N. D. A., … Ribeiro, F. R. (2013). The Acidity of Zeolites: Concepts, Measurements and Relation to Catalysis: A Review on Experimental and Theoretical Methods for the Study of Zeolite Acidity. Catalysis Reviews, 55(4), 454-515. doi:10.1080/01614940.2013.822266

Bordiga, S., Lamberti, C., Bonino, F., Travert, A., & Thibault-Starzyk, F. (2015). Probing zeolites by vibrational spectroscopies. Chemical Society Reviews, 44(20), 7262-7341. doi:10.1039/c5cs00396b

Gorte, R. J., & White, D. (1997). Topics in Catalysis, 4(1/2), 57-69. doi:10.1023/a:1019167601251

Zheng, A., Li, S., Liu, S.-B., & Deng, F. (2016). Acidic Properties and Structure–Activity Correlations of Solid Acid Catalysts Revealed by Solid-State NMR Spectroscopy. Accounts of Chemical Research, 49(4), 655-663. doi:10.1021/acs.accounts.6b00007

Brand, H. V., Curtiss, L. A., & Iton, L. E. (1992). Computational studies of acid sites in ZSM 5: dependence on cluster size. The Journal of Physical Chemistry, 96(19), 7725-7732. doi:10.1021/j100198a044

Brand, H. V., Curtiss, L. A., & Iton, L. E. (1993). Ab initio molecular orbital cluster studies of the zeolite ZSM-5. 1. Proton affinities. The Journal of Physical Chemistry, 97(49), 12773-12782. doi:10.1021/j100151a024

Eichler, U., Brändle, M., & Sauer, J. (1997). Predicting Absolute and Site Specific Acidities for Zeolite Catalysts by a Combined Quantum Mechanics/Interatomic Potential Function Approach. The Journal of Physical Chemistry B, 101(48), 10035-10050. doi:10.1021/jp971779a

Brändle, M., & Sauer, J. (1998). Acidity Differences between Inorganic Solids Induced by Their Framework Structure. A Combined Quantum Mechanics/Molecular Mechanics ab Initio Study on Zeolites. Journal of the American Chemical Society, 120(7), 1556-1570. doi:10.1021/ja9729037

Jones, A. J., Carr, R. T., Zones, S. I., & Iglesia, E. (2014). Acid strength and solvation in catalysis by MFI zeolites and effects of the identity, concentration and location of framework heteroatoms. Journal of Catalysis, 312, 58-68. doi:10.1016/j.jcat.2014.01.007

Grajciar, L., Areán, C. O., Pulido, A., & Nachtigall, P. (2010). Periodic DFT investigation of the effect of aluminium content on the properties of the acid zeolite H-FER. Physical Chemistry Chemical Physics, 12(7), 1497. doi:10.1039/b917969k

Sauer, J., & Sierka, M. (2000). Combining quantum mechanics and interatomic potential functions inab initio studies of extended systems. Journal of Computational Chemistry, 21(16), 1470-1493. doi:10.1002/1096-987x(200012)21:16<1470::aid-jcc5>3.0.co;2-l

Lesthaeghe, D., Van Speybroeck, V., & Waroquier, M. (2009). Theoretical evaluation of zeolite confinement effects on the reactivity of bulky intermediates. Physical Chemistry Chemical Physics, 11(26), 5222. doi:10.1039/b902364j

Gounder, R., & Iglesia, E. (2013). The catalytic diversity of zeolites: confinement and solvation effects within voids of molecular dimensions. Chemical Communications, 49(34), 3491. doi:10.1039/c3cc40731d

DEROUANE, E. (1988). Surface curvature effects in physisorption and catalysis by microporous solids and molecular sieves. Journal of Catalysis, 110(1), 58-73. doi:10.1016/0021-9517(88)90297-7

Derouane, E. G. (1998). Zeolites as solid solvents1Paper presented at the International Symposium `Organic Chemistry and Catalysis’ on the occasion of the 65th birthday of Prof. H. van Bekkum, Delft, Netherlands, 2–3 October 1997.1. Journal of Molecular Catalysis A: Chemical, 134(1-3), 29-45. doi:10.1016/s1381-1169(98)00021-1

Smit, B., & Maesen, T. L. M. (2008). Molecular Simulations of Zeolites: Adsorption, Diffusion, and Shape Selectivity. Chemical Reviews, 108(10), 4125-4184. doi:10.1021/cr8002642

Klimeš, J., & Michaelides, A. (2012). Perspective: Advances and challenges in treating van der Waals dispersion forces in density functional theory. The Journal of Chemical Physics, 137(12), 120901. doi:10.1063/1.4754130

Göltl, F., Grüneis, A., Bučko, T., & Hafner, J. (2012). Van der Waals interactions between hydrocarbon molecules and zeolites: Periodic calculations at different levels of theory, from density functional theory to the random phase approximation and Møller-Plesset perturbation theory. The Journal of Chemical Physics, 137(11), 114111. doi:10.1063/1.4750979

Gomes, J., Zimmerman, P. M., Head-Gordon, M., & Bell, A. T. (2012). Accurate Prediction of Hydrocarbon Interactions with Zeolites Utilizing Improved Exchange-Correlation Functionals and QM/MM Methods: Benchmark Calculations of Adsorption Enthalpies and Application to Ethene Methylation by Methanol. The Journal of Physical Chemistry C, 116(29), 15406-15414. doi:10.1021/jp303321s

Grimme, S. (2004). Accurate description of van der Waals complexes by density functional theory including empirical corrections. Journal of Computational Chemistry, 25(12), 1463-1473. doi:10.1002/jcc.20078

Grimme, S. (2006). Semiempirical GGA-type density functional constructed with a long-range dispersion correction. Journal of Computational Chemistry, 27(15), 1787-1799. doi:10.1002/jcc.20495

De Moor, B. A., Reyniers, M.-F., Gobin, O. C., Lercher, J. A., & Marin, G. B. (2010). Adsorption of C2−C8 n-Alkanes in Zeolites. The Journal of Physical Chemistry C, 115(4), 1204-1219. doi:10.1021/jp106536m

Wakabayashi, F., Kondo, J., Wada, A., Domen, K., & Hirose, C. (1993). FT-IR studies of the interaction between zeolitic hydroxyl groups and small molecules. 1. Adsorption of nitrogen on H-mordenite at low temperature. The Journal of Physical Chemistry, 97(41), 10761-10768. doi:10.1021/j100143a040

Bordiga, S., Regli, L., Cocina, D., Lamberti, C., Bjørgen, M., & Lillerud, K. P. (2005). Assessing the Acidity of High Silica Chabazite H−SSZ-13 by FTIR Using CO as Molecular Probe:  Comparison with H−SAPO-34. The Journal of Physical Chemistry B, 109(7), 2779-2784. doi:10.1021/jp045498w

Arean, C. O., Delgado, M. R., Nachtigall, P., Thang, H. V., Rubeš, M., Bulánek, R., & Chlubná-Eliášová, P. (2014). Measuring the Brønsted acid strength of zeolites – does it correlate with the O–H frequency shift probed by a weak base? Phys. Chem. Chem. Phys., 16(21), 10129-10141. doi:10.1039/c3cp54738h

Boscoboinik, J. A., Yu, X., Yang, B., Fischer, F. D., Włodarczyk, R., Sierka, M., … Freund, H.-J. (2012). Modeling Zeolites with Metal-Supported Two-Dimensional Aluminosilicate Films. Angewandte Chemie International Edition, 51(24), 6005-6008. doi:10.1002/anie.201201319

Boscoboinik, J. A., Yu, X., Emmez, E., Yang, B., Shaikhutdinov, S., Fischer, F. D., … Freund, H.-J. (2013). Interaction of Probe Molecules with Bridging Hydroxyls of Two-Dimensional Zeolites: A Surface Science Approach. The Journal of Physical Chemistry C, 117(26), 13547-13556. doi:10.1021/jp405533s

Nachtigall, P., Bludský, O., Grajciar, L., Nachtigallová, D., Delgado, M. R., & Areán, C. O. (2009). Computational and FTIR spectroscopic studies on carbon monoxide and dinitrogen adsorption on a high-silica H-FER zeolite. Phys. Chem. Chem. Phys., 11(5), 791-802. doi:10.1039/b812873a

Gorte, R. J. (1999). Catalysis Letters, 62(1), 1-13. doi:10.1023/a:1019010013989

SUZUKI, K., NODA, T., KATADA, N., & NIWA, M. (2007). IRMS-TPD of ammonia: Direct and individual measurement of Brønsted acidity in zeolites and its relationship with the catalytic cracking activity. Journal of Catalysis, 250(1), 151-160. doi:10.1016/j.jcat.2007.05.024

Niwa, M., & Katada, N. (2013). New Method for the Temperature- Programmed Desorption (TPD) of Ammonia Experiment for Characterization of Zeolite Acidity: A Review. The Chemical Record, 13(5), 432-455. doi:10.1002/tcr.201300009

Parrillo, D. J., Gorte, R. J., & Farneth, W. E. (1993). A calorimetric study of simple bases in H-ZSM-5: a comparison with gas-phase and solution-phase acidities. Journal of the American Chemical Society, 115(26), 12441-12445. doi:10.1021/ja00079a027

Lee, C., Parrillo, D. J., Gorte, R. J., & Farneth, W. E. (1996). Relationship between Differential Heats of Adsorption and Brønsted Acid Strengths of Acidic Zeolites:  H-ZSM-5 and H-Mordenite. Journal of the American Chemical Society, 118(13), 3262-3268. doi:10.1021/ja953452y

Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized Gradient Approximation Made Simple. Physical Review Letters, 77(18), 3865-3868. doi:10.1103/physrevlett.77.3865

Perdew, J. P., Burke, K., & Ernzerhof, M. (1997). Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)]. Physical Review Letters, 78(7), 1396-1396. doi:10.1103/physrevlett.78.1396

Kresse, G., & Furthmüller, J. (1996). Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set. Physical Review B, 54(16), 11169-11186. doi:10.1103/physrevb.54.11169

Blöchl, P. E. (1994). Projector augmented-wave method. Physical Review B, 50(24), 17953-17979. doi:10.1103/physrevb.50.17953




This item appears in the following Collection(s)

Show full item record