- -

What Is Measured When Measuring Acidity in Zeolites with Probe Molecules?

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

What Is Measured When Measuring Acidity in Zeolites with Probe Molecules?

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Boronat Zaragoza, Mercedes es_ES
dc.contributor.author Corma Canós, Avelino es_ES
dc.date.accessioned 2021-04-22T03:31:08Z
dc.date.available 2021-04-22T03:31:08Z
dc.date.issued 2019-02 es_ES
dc.identifier.issn 2155-5435 es_ES
dc.identifier.uri http://hdl.handle.net/10251/165475
dc.description.abstract [EN] Based on theoretical calculations of CO, NH3, and pyridine adsorption at different sites in MOR and MFI zeolites, we analyze how confinement effects influence the measurement of acidity based on the interaction of probe molecules with Brönsted acid sites. Weak bases, such as CO, form neutral ZH¿CO adducts with a linear configuration that can be distorted by spatial restrictions associated with the dimensions of the pore, leading to weaker interaction, but can also be stabilized by dispersion forces if a tighter fitting with the channel void is allowed. Strong bases such as NH3 and pyridine are readily protonated on Brönsted acid sites, and the experimentally determined adsorption enthalpies include not only the thermochemistry associated with the proton transfer process itself, but also the stabilization of the Z¿¿BH+ ion pair formed upon protonation by multiple interactions with the surrounding framework oxygen atoms, leading in some cases to a heterogeneity of acidities within the same zeolite structure. es_ES
dc.description.sponsorship This work was supported by the European Union through No. ERC-AdG-2014-671093 (SynCatMatch), and by the Spanish Government-MINECO through "Severo Ochoa" (No. SEV-2016-0683) and No. MAT2017-82288-C2-1-P projects. Red Espanola de Supercomputacion (RES) and Centre de Calcul de la Universitat de Valencia are gratefully acknowledged for computational resources. es_ES
dc.language Inglés es_ES
dc.publisher American Chemical Society es_ES
dc.relation.ispartof ACS Catalysis es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Bronsted acid es_ES
dc.subject Confinement es_ES
dc.subject DFT es_ES
dc.subject Dispersion es_ES
dc.subject Microporous structure es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title What Is Measured When Measuring Acidity in Zeolites with Probe Molecules? es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1021/acscatal.8b04317 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/671093/EU/MATching zeolite SYNthesis with CATalytic activity/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-82288-C2-1-P/ES/MATERIALES HIBRIDOS MULTIFUNCIONALES BASADOS EN NANO-UNIDADES ESTRUCTURALES ACTIVAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Boronat Zaragoza, M.; Corma Canós, A. (2019). What Is Measured When Measuring Acidity in Zeolites with Probe Molecules?. ACS Catalysis. 9(2):1539-1548. https://doi.org/10.1021/acscatal.8b04317 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1021/acscatal.8b04317 es_ES
dc.description.upvformatpinicio 1539 es_ES
dc.description.upvformatpfin 1548 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 2 es_ES
dc.identifier.pmid 30775068 es_ES
dc.identifier.pmcid PMC6369611 es_ES
dc.relation.pasarela S\385408 es_ES
dc.contributor.funder European Research Council es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Chen, H.Y. In Urea–SCR Technology for deNOx After Treatment of Diesel Exhausts; Nova, I., Tronconi, E., Eds. Springer: New York, 2014; pp 123–147. es_ES
dc.description.references Corma, A. (1995). Inorganic Solid Acids and Their Use in Acid-Catalyzed Hydrocarbon Reactions. Chemical Reviews, 95(3), 559-614. doi:10.1021/cr00035a006 es_ES
dc.description.references Corma, A. (1997). From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis. Chemical Reviews, 97(6), 2373-2420. doi:10.1021/cr960406n es_ES
dc.description.references Clerici, M. G. (2000). Topics in Catalysis, 13(4), 373-386. doi:10.1023/a:1009063106954 es_ES
dc.description.references Haw, J. F., Song, W., Marcus, D. M., & Nicholas, J. B. (2003). The Mechanism of Methanol to Hydrocarbon Catalysis. Accounts of Chemical Research, 36(5), 317-326. doi:10.1021/ar020006o es_ES
dc.description.references Corma, A. (2003). State of the art and future challenges of zeolites as catalysts. Journal of Catalysis, 216(1-2), 298-312. doi:10.1016/s0021-9517(02)00132-x es_ES
dc.description.references Bhan, A., & Iglesia, E. (2008). A Link between Reactivity and Local Structure in Acid Catalysis on Zeolites. Accounts of Chemical Research, 41(4), 559-567. doi:10.1021/ar700181t es_ES
dc.description.references Wang, W., & Hunger, M. (2008). Reactivity of Surface Alkoxy Species on Acidic Zeolite Catalysts. Accounts of Chemical Research, 41(8), 895-904. doi:10.1021/ar700210f es_ES
dc.description.references Martínez, C., & Corma, A. (2011). Inorganic molecular sieves: Preparation, modification and industrial application in catalytic processes. Coordination Chemistry Reviews, 255(13-14), 1558-1580. doi:10.1016/j.ccr.2011.03.014 es_ES
dc.description.references Vermeiren, W., & Gilson, J.-P. (2009). Impact of Zeolites on the Petroleum and Petrochemical Industry. Topics in Catalysis, 52(9), 1131-1161. doi:10.1007/s11244-009-9271-8 es_ES
dc.description.references Yilmaz, B., & Müller, U. (2009). Catalytic Applications of Zeolites in Chemical Industry. Topics in Catalysis, 52(6-7), 888-895. doi:10.1007/s11244-009-9226-0 es_ES
dc.description.references Rinaldi, R., & Schüth, F. (2009). Design of solid catalysts for the conversion of biomass. Energy & Environmental Science, 2(6), 610. doi:10.1039/b902668a es_ES
dc.description.references Olsbye, U., Svelle, S., Lillerud, K. P., Wei, Z. H., Chen, Y. Y., Li, J. F., … Fan, W. B. (2015). The formation and degradation of active species during methanol conversion over protonated zeotype catalysts. Chemical Society Reviews, 44(20), 7155-7176. doi:10.1039/c5cs00304k es_ES
dc.description.references Abate, S., Barbera, K., Centi, G., Lanzafame, P., & Perathoner, S. (2016). Disruptive catalysis by zeolites. Catalysis Science & Technology, 6(8), 2485-2501. doi:10.1039/c5cy02184g es_ES
dc.description.references Rabo, J. A., & Gajda, G. J. (1990). Acid Function in Zeolites: Recent Progress. NATO ASI Series, 273-297. doi:10.1007/978-1-4684-5787-2_17 es_ES
dc.description.references Sauer, J., Ugliengo, P., Garrone, E., & Saunders, V. R. (1994). Theoretical Study of van der Waals Complexes at Surface Sites in Comparison with the Experiment. Chemical Reviews, 94(7), 2095-2160. doi:10.1021/cr00031a014 es_ES
dc.description.references Van Santen, R. A., & Kramer, G. J. (1995). Reactivity Theory of Zeolitic Broensted Acidic Sites. Chemical Reviews, 95(3), 637-660. doi:10.1021/cr00035a008 es_ES
dc.description.references Gounder, R., & Iglesia, E. (2011). The Roles of Entropy and Enthalpy in Stabilizing Ion-Pairs at Transition States in Zeolite Acid Catalysis. Accounts of Chemical Research, 45(2), 229-238. doi:10.1021/ar200138n es_ES
dc.description.references Jones, A. J., & Iglesia, E. (2015). The Strength of Brønsted Acid Sites in Microporous Aluminosilicates. ACS Catalysis, 5(10), 5741-5755. doi:10.1021/acscatal.5b01133 es_ES
dc.description.references Van Speybroeck, V., Hemelsoet, K., Joos, L., Waroquier, M., Bell, R. G., & Catlow, C. R. A. (2015). Advances in theory and their application within the field of zeolite chemistry. Chemical Society Reviews, 44(20), 7044-7111. doi:10.1039/c5cs00029g es_ES
dc.description.references Boronat, M., & Corma, A. (2014). Factors Controlling the Acidity of Zeolites. Catalysis Letters, 145(1), 162-172. doi:10.1007/s10562-014-1438-7 es_ES
dc.description.references Farneth, W. E., & Gorte, R. J. (1995). Methods for Characterizing Zeolite Acidity. Chemical Reviews, 95(3), 615-635. doi:10.1021/cr00035a007 es_ES
dc.description.references Lercher, J. A., Gründling, C., & Eder-Mirth, G. (1996). Infrared studies of the surface acidity of oxides and zeolites using adsorbed probe molecules. Catalysis Today, 27(3-4), 353-376. doi:10.1016/0920-5861(95)00248-0 es_ES
dc.description.references SATO, H. (1997). Acidity Control and Catalysis of Pentasil Zeolites. Catalysis Reviews, 39(4), 395-424. doi:10.1080/01614949708007101 es_ES
dc.description.references Garrone, E., & Otero Areán, C. (2005). Variable temperature infrared spectroscopy: A convenient tool for studying the thermodynamics of weak solid–gas interactions. Chemical Society Reviews, 34(10), 846. doi:10.1039/b407049f es_ES
dc.description.references Busca, G. (2007). Acid Catalysts in Industrial Hydrocarbon Chemistry. Chemical Reviews, 107(11), 5366-5410. doi:10.1021/cr068042e es_ES
dc.description.references Vimont, A., Thibault-Starzyk, F., & Daturi, M. (2010). Analysing and understanding the active site by IR spectroscopy. Chemical Society Reviews, 39(12), 4928. doi:10.1039/b919543m es_ES
dc.description.references Derouane, E. G., Védrine, J. C., Pinto, R. R., Borges, P. M., Costa, L., Lemos, M. A. N. D. A., … Ribeiro, F. R. (2013). The Acidity of Zeolites: Concepts, Measurements and Relation to Catalysis: A Review on Experimental and Theoretical Methods for the Study of Zeolite Acidity. Catalysis Reviews, 55(4), 454-515. doi:10.1080/01614940.2013.822266 es_ES
dc.description.references Bordiga, S., Lamberti, C., Bonino, F., Travert, A., & Thibault-Starzyk, F. (2015). Probing zeolites by vibrational spectroscopies. Chemical Society Reviews, 44(20), 7262-7341. doi:10.1039/c5cs00396b es_ES
dc.description.references Gorte, R. J., & White, D. (1997). Topics in Catalysis, 4(1/2), 57-69. doi:10.1023/a:1019167601251 es_ES
dc.description.references Zheng, A., Li, S., Liu, S.-B., & Deng, F. (2016). Acidic Properties and Structure–Activity Correlations of Solid Acid Catalysts Revealed by Solid-State NMR Spectroscopy. Accounts of Chemical Research, 49(4), 655-663. doi:10.1021/acs.accounts.6b00007 es_ES
dc.description.references Brand, H. V., Curtiss, L. A., & Iton, L. E. (1992). Computational studies of acid sites in ZSM 5: dependence on cluster size. The Journal of Physical Chemistry, 96(19), 7725-7732. doi:10.1021/j100198a044 es_ES
dc.description.references Brand, H. V., Curtiss, L. A., & Iton, L. E. (1993). Ab initio molecular orbital cluster studies of the zeolite ZSM-5. 1. Proton affinities. The Journal of Physical Chemistry, 97(49), 12773-12782. doi:10.1021/j100151a024 es_ES
dc.description.references Eichler, U., Brändle, M., & Sauer, J. (1997). Predicting Absolute and Site Specific Acidities for Zeolite Catalysts by a Combined Quantum Mechanics/Interatomic Potential Function Approach. The Journal of Physical Chemistry B, 101(48), 10035-10050. doi:10.1021/jp971779a es_ES
dc.description.references Brändle, M., & Sauer, J. (1998). Acidity Differences between Inorganic Solids Induced by Their Framework Structure. A Combined Quantum Mechanics/Molecular Mechanics ab Initio Study on Zeolites. Journal of the American Chemical Society, 120(7), 1556-1570. doi:10.1021/ja9729037 es_ES
dc.description.references Jones, A. J., Carr, R. T., Zones, S. I., & Iglesia, E. (2014). Acid strength and solvation in catalysis by MFI zeolites and effects of the identity, concentration and location of framework heteroatoms. Journal of Catalysis, 312, 58-68. doi:10.1016/j.jcat.2014.01.007 es_ES
dc.description.references Grajciar, L., Areán, C. O., Pulido, A., & Nachtigall, P. (2010). Periodic DFT investigation of the effect of aluminium content on the properties of the acid zeolite H-FER. Physical Chemistry Chemical Physics, 12(7), 1497. doi:10.1039/b917969k es_ES
dc.description.references Sauer, J., & Sierka, M. (2000). Combining quantum mechanics and interatomic potential functions inab initio studies of extended systems. Journal of Computational Chemistry, 21(16), 1470-1493. doi:10.1002/1096-987x(200012)21:16<1470::aid-jcc5>3.0.co;2-l es_ES
dc.description.references Lesthaeghe, D., Van Speybroeck, V., & Waroquier, M. (2009). Theoretical evaluation of zeolite confinement effects on the reactivity of bulky intermediates. Physical Chemistry Chemical Physics, 11(26), 5222. doi:10.1039/b902364j es_ES
dc.description.references Gounder, R., & Iglesia, E. (2013). The catalytic diversity of zeolites: confinement and solvation effects within voids of molecular dimensions. Chemical Communications, 49(34), 3491. doi:10.1039/c3cc40731d es_ES
dc.description.references DEROUANE, E. (1988). Surface curvature effects in physisorption and catalysis by microporous solids and molecular sieves. Journal of Catalysis, 110(1), 58-73. doi:10.1016/0021-9517(88)90297-7 es_ES
dc.description.references Derouane, E. G. (1998). Zeolites as solid solvents1Paper presented at the International Symposium `Organic Chemistry and Catalysis’ on the occasion of the 65th birthday of Prof. H. van Bekkum, Delft, Netherlands, 2–3 October 1997.1. Journal of Molecular Catalysis A: Chemical, 134(1-3), 29-45. doi:10.1016/s1381-1169(98)00021-1 es_ES
dc.description.references Smit, B., & Maesen, T. L. M. (2008). Molecular Simulations of Zeolites: Adsorption, Diffusion, and Shape Selectivity. Chemical Reviews, 108(10), 4125-4184. doi:10.1021/cr8002642 es_ES
dc.description.references Klimeš, J., & Michaelides, A. (2012). Perspective: Advances and challenges in treating van der Waals dispersion forces in density functional theory. The Journal of Chemical Physics, 137(12), 120901. doi:10.1063/1.4754130 es_ES
dc.description.references Göltl, F., Grüneis, A., Bučko, T., & Hafner, J. (2012). Van der Waals interactions between hydrocarbon molecules and zeolites: Periodic calculations at different levels of theory, from density functional theory to the random phase approximation and Møller-Plesset perturbation theory. The Journal of Chemical Physics, 137(11), 114111. doi:10.1063/1.4750979 es_ES
dc.description.references Gomes, J., Zimmerman, P. M., Head-Gordon, M., & Bell, A. T. (2012). Accurate Prediction of Hydrocarbon Interactions with Zeolites Utilizing Improved Exchange-Correlation Functionals and QM/MM Methods: Benchmark Calculations of Adsorption Enthalpies and Application to Ethene Methylation by Methanol. The Journal of Physical Chemistry C, 116(29), 15406-15414. doi:10.1021/jp303321s es_ES
dc.description.references Grimme, S. (2004). Accurate description of van der Waals complexes by density functional theory including empirical corrections. Journal of Computational Chemistry, 25(12), 1463-1473. doi:10.1002/jcc.20078 es_ES
dc.description.references Grimme, S. (2006). Semiempirical GGA-type density functional constructed with a long-range dispersion correction. Journal of Computational Chemistry, 27(15), 1787-1799. doi:10.1002/jcc.20495 es_ES
dc.description.references De Moor, B. A., Reyniers, M.-F., Gobin, O. C., Lercher, J. A., & Marin, G. B. (2010). Adsorption of C2−C8 n-Alkanes in Zeolites. The Journal of Physical Chemistry C, 115(4), 1204-1219. doi:10.1021/jp106536m es_ES
dc.description.references Wakabayashi, F., Kondo, J., Wada, A., Domen, K., & Hirose, C. (1993). FT-IR studies of the interaction between zeolitic hydroxyl groups and small molecules. 1. Adsorption of nitrogen on H-mordenite at low temperature. The Journal of Physical Chemistry, 97(41), 10761-10768. doi:10.1021/j100143a040 es_ES
dc.description.references Bordiga, S., Regli, L., Cocina, D., Lamberti, C., Bjørgen, M., & Lillerud, K. P. (2005). Assessing the Acidity of High Silica Chabazite H−SSZ-13 by FTIR Using CO as Molecular Probe:  Comparison with H−SAPO-34. The Journal of Physical Chemistry B, 109(7), 2779-2784. doi:10.1021/jp045498w es_ES
dc.description.references Arean, C. O., Delgado, M. R., Nachtigall, P., Thang, H. V., Rubeš, M., Bulánek, R., & Chlubná-Eliášová, P. (2014). Measuring the Brønsted acid strength of zeolites – does it correlate with the O–H frequency shift probed by a weak base? Phys. Chem. Chem. Phys., 16(21), 10129-10141. doi:10.1039/c3cp54738h es_ES
dc.description.references Boscoboinik, J. A., Yu, X., Yang, B., Fischer, F. D., Włodarczyk, R., Sierka, M., … Freund, H.-J. (2012). Modeling Zeolites with Metal-Supported Two-Dimensional Aluminosilicate Films. Angewandte Chemie International Edition, 51(24), 6005-6008. doi:10.1002/anie.201201319 es_ES
dc.description.references Boscoboinik, J. A., Yu, X., Emmez, E., Yang, B., Shaikhutdinov, S., Fischer, F. D., … Freund, H.-J. (2013). Interaction of Probe Molecules with Bridging Hydroxyls of Two-Dimensional Zeolites: A Surface Science Approach. The Journal of Physical Chemistry C, 117(26), 13547-13556. doi:10.1021/jp405533s es_ES
dc.description.references Nachtigall, P., Bludský, O., Grajciar, L., Nachtigallová, D., Delgado, M. R., & Areán, C. O. (2009). Computational and FTIR spectroscopic studies on carbon monoxide and dinitrogen adsorption on a high-silica H-FER zeolite. Phys. Chem. Chem. Phys., 11(5), 791-802. doi:10.1039/b812873a es_ES
dc.description.references Gorte, R. J. (1999). Catalysis Letters, 62(1), 1-13. doi:10.1023/a:1019010013989 es_ES
dc.description.references SUZUKI, K., NODA, T., KATADA, N., & NIWA, M. (2007). IRMS-TPD of ammonia: Direct and individual measurement of Brønsted acidity in zeolites and its relationship with the catalytic cracking activity. Journal of Catalysis, 250(1), 151-160. doi:10.1016/j.jcat.2007.05.024 es_ES
dc.description.references Niwa, M., & Katada, N. (2013). New Method for the Temperature- Programmed Desorption (TPD) of Ammonia Experiment for Characterization of Zeolite Acidity: A Review. The Chemical Record, 13(5), 432-455. doi:10.1002/tcr.201300009 es_ES
dc.description.references Parrillo, D. J., Gorte, R. J., & Farneth, W. E. (1993). A calorimetric study of simple bases in H-ZSM-5: a comparison with gas-phase and solution-phase acidities. Journal of the American Chemical Society, 115(26), 12441-12445. doi:10.1021/ja00079a027 es_ES
dc.description.references Lee, C., Parrillo, D. J., Gorte, R. J., & Farneth, W. E. (1996). Relationship between Differential Heats of Adsorption and Brønsted Acid Strengths of Acidic Zeolites:  H-ZSM-5 and H-Mordenite. Journal of the American Chemical Society, 118(13), 3262-3268. doi:10.1021/ja953452y es_ES
dc.description.references Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized Gradient Approximation Made Simple. Physical Review Letters, 77(18), 3865-3868. doi:10.1103/physrevlett.77.3865 es_ES
dc.description.references Perdew, J. P., Burke, K., & Ernzerhof, M. (1997). Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)]. Physical Review Letters, 78(7), 1396-1396. doi:10.1103/physrevlett.78.1396 es_ES
dc.description.references Kresse, G., & Furthmüller, J. (1996). Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set. Physical Review B, 54(16), 11169-11186. doi:10.1103/physrevb.54.11169 es_ES
dc.description.references Blöchl, P. E. (1994). Projector augmented-wave method. Physical Review B, 50(24), 17953-17979. doi:10.1103/physrevb.50.17953 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem