- -

Long-Term Phenotypic and Proteomic Changes Following Vitrified Embryo Transfer in the Rabbit Model

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Long-Term Phenotypic and Proteomic Changes Following Vitrified Embryo Transfer in the Rabbit Model

Show full item record

Garcia-Dominguez, X.; Marco-Jiménez, F.; Peñaranda, D.; Vicente Antón, JS. (2020). Long-Term Phenotypic and Proteomic Changes Following Vitrified Embryo Transfer in the Rabbit Model. Animals. 10(6):1-16. https://doi.org/10.3390/ani10061043

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/165476

Files in this item

Item Metadata

Title: Long-Term Phenotypic and Proteomic Changes Following Vitrified Embryo Transfer in the Rabbit Model
Author: Garcia-Dominguez, X Marco-Jiménez, Francisco Peñaranda, D.S. Vicente Antón, José Salvador
UPV Unit: Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal
Issued date:
Abstract:
[EN] This study was conducted to demonstrate how a vitrified embryo transfer procedure incurs phenotypic and molecular changes throughout life. This study reports the first evidence describing that embryonic manipulation ...[+]
Subjects: Assisted reproduction technology , Embryo vitrification , Embryo transfer , Postnatal outcomes , Proteome
Copyrigths: Reconocimiento (by)
Source:
Animals. (eissn: 2076-2615 )
DOI: 10.3390/ani10061043
Publisher:
MDPI AG
Publisher version: https://doi.org/10.3390/ani10061043
Project ID:
info:eu-repo/grantAgreement/MINECO//AGL2014-53405-C2-1-P/ES/MEJORA GENETICA DEL CONEJO DE CARNE:RESPUESTA A LA SELECCION Y SU EFECTO SOBRE LA REPRODUCCION, ALIMENTACION Y SALUD UTILIZANDO UNA POBLACION CONTROL CRIOCONSERVADA/
info:eu-repo/grantAgreement/MINECO//BES-2015-072429/ES/BES-2015-072429/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/AGL2017-85162-C2-1-R/ES/MEJORA GENETICA DEL CONEJO DE CARNE: ESTRATEGIAS PARA INCREMENTAR LA EFICACIA DE LA MEJORA, REPRODUCCION Y SALUD DE LINEAS PATERNALES/
Thanks:
Funding from the Ministry of Economy, Industry and Competitiveness (Research project: AGL2017-85162-C2-1-R and AGL2014-53405-C2-1-P) is acknowledged. X.G.D. was supported by a research grant from the Ministry of Economy, ...[+]
Type: Artículo

References

Crawford, G., & Ledger, W. (2018). In vitro fertilisation/intracytoplasmic sperm injection beyond 2020. BJOG: An International Journal of Obstetrics & Gynaecology, 126(2), 237-243. doi:10.1111/1471-0528.15526

Findlay, J. K., Holland, M. K., & Wong, B. B. M. (2019). Reproductive science and the future of the planet. Reproduction, 158(3), R91-R96. doi:10.1530/rep-18-0640

Vrooman, L. A., & Bartolomei, M. S. (2017). Can assisted reproductive technologies cause adult-onset disease? Evidence from human and mouse. Reproductive Toxicology, 68, 72-84. doi:10.1016/j.reprotox.2016.07.015 [+]
Crawford, G., & Ledger, W. (2018). In vitro fertilisation/intracytoplasmic sperm injection beyond 2020. BJOG: An International Journal of Obstetrics & Gynaecology, 126(2), 237-243. doi:10.1111/1471-0528.15526

Findlay, J. K., Holland, M. K., & Wong, B. B. M. (2019). Reproductive science and the future of the planet. Reproduction, 158(3), R91-R96. doi:10.1530/rep-18-0640

Vrooman, L. A., & Bartolomei, M. S. (2017). Can assisted reproductive technologies cause adult-onset disease? Evidence from human and mouse. Reproductive Toxicology, 68, 72-84. doi:10.1016/j.reprotox.2016.07.015

Roseboom, T. J. (2018). Developmental plasticity and its relevance to assisted human reproduction. Human Reproduction, 33(4), 546-552. doi:10.1093/humrep/dey034

Fleming, T. P., Watkins, A. J., Velazquez, M. A., Mathers, J. C., Prentice, A. M., Stephenson, J., … Godfrey, K. M. (2018). Origins of lifetime health around the time of conception: causes and consequences. The Lancet, 391(10132), 1842-1852. doi:10.1016/s0140-6736(18)30312-x

Feuer, S., & Rinaudo, P. (2016). From Embryos to Adults: A DOHaD Perspective on In Vitro Fertilization and Other Assisted Reproductive Technologies. Healthcare, 4(3), 51. doi:10.3390/healthcare4030051

Feuer, S. K., & Rinaudo, P. F. (2017). Physiological, metabolic and transcriptional postnatal phenotypes ofin vitrofertilization (IVF) in the mouse. Journal of Developmental Origins of Health and Disease, 8(4), 403-410. doi:10.1017/s204017441700023x

Duranthon, V., & Chavatte-Palmer, P. (2018). Long term effects of ART: What do animals tell us? Molecular Reproduction and Development, 85(4), 348-368. doi:10.1002/mrd.22970

Ramos‐Ibeas, P., Heras, S., Gómez‐Redondo, I., Planells, B., Fernández‐González, R., Pericuesta, E., … Gutiérrez‐Adán, A. (2019). Embryo responses to stress induced by assisted reproductive technologies. Molecular Reproduction and Development, 86(10), 1292-1306. doi:10.1002/mrd.23119

Chen, M., & Heilbronn, L. K. (2017). The health outcomes of human offspring conceived by assisted reproductive technologies (ART). Journal of Developmental Origins of Health and Disease, 8(4), 388-402. doi:10.1017/s2040174417000228

Novakovic, B., Lewis, S., Halliday, J., Kennedy, J., Burgner, D. P., Czajko, A., … Saffery, R. (2019). Assisted reproductive technologies are associated with limited epigenetic variation at birth that largely resolves by adulthood. Nature Communications, 10(1). doi:10.1038/s41467-019-11929-9

Belva, F., Bonduelle, M., Roelants, M., Michielsen, D., Van Steirteghem, A., Verheyen, G., & Tournaye, H. (2016). Semen quality of young adult ICSI offspring: the first results. Human Reproduction, 31(12), 2811-2820. doi:10.1093/humrep/dew245

Calle, A., Fernandez-Gonzalez, R., Ramos-Ibeas, P., Laguna-Barraza, R., Perez-Cerezales, S., Bermejo-Alvarez, P., … Gutierrez-Adan, A. (2012). Long-term and transgenerational effects of in vitro culture on mouse embryos. Theriogenology, 77(4), 785-793. doi:10.1016/j.theriogenology.2011.07.016

Feuer, S. K., Liu, X., Donjacour, A., Lin, W., Simbulan, R. K., Giritharan, G., … Rinaudo, P. F. (2014). Use of a Mouse In Vitro Fertilization Model to Understand the Developmental Origins of Health and Disease Hypothesis. Endocrinology, 155(5), 1956-1969. doi:10.1210/en.2013-2081

Garcia-Dominguez, X., Vicente, J. S., & Marco-Jiménez, F. (2020). Developmental Plasticity in Response to Embryo Cryopreservation: The Importance of the Vitrification Device in Rabbits. Animals, 10(5), 804. doi:10.3390/ani10050804

Dulioust, E., Toyama, K., Busnel, M. C., Moutier, R., Carlier, M., Marchaland, C., … Auroux, M. (1995). Long-term effects of embryo freezing in mice. Proceedings of the National Academy of Sciences, 92(2), 589-593. doi:10.1073/pnas.92.2.589

Fischer, B., Chavatte-Palmer, P., Viebahn, C., Navarrete Santos, A., & Duranthon, V. (2012). Rabbit as a reproductive model for human health. REPRODUCTION, 144(1), 1-10. doi:10.1530/rep-12-0091

Servick, K. (2014). Unsettled questions trail IVF’s success. Science, 345(6198), 744-746. doi:10.1126/science.345.6198.744

De Geyter, C., Calhaz-Jorge, C., Kupka, M. S., Wyns, C., Mocanu, E., Motrenko, T., … Goossens, V. (2020). ART in Europe, 2015: results generated from European registries by ESHRE†. Human Reproduction Open, 2020(1). doi:10.1093/hropen/hoz038

Sparks, A. (2015). Human Embryo Cryopreservation—Methods, Timing, and other Considerations for Optimizing an Embryo Cryopreservation Program. Seminars in Reproductive Medicine, 33(02), 128-144. doi:10.1055/s-0035-1546826

Vicente, J.-S., Viudes-de-Castro, M.-P., & García, M.-L. (1999). In vivo survival rate of rabbit morulae after vitrification in a medium without serum protein. Reproduction Nutrition Development, 39(5-6), 657-662. doi:10.1051/rnd:19990511

Garcia-Dominguez, X., Marco-Jimenez, F., Viudes-de-Castro, M. P., & Vicente, J. S. (2019). Minimally Invasive Embryo Transfer and Embryo Vitrification at the Optimal Embryo Stage in Rabbit Model. Journal of Visualized Experiments, (147). doi:10.3791/58055

Besenfelder, U., & Brem, G. (1993). Laparoscopic embryo transfer in rabbits. Reproduction, 99(1), 53-56. doi:10.1530/jrf.0.0990053

Zucker, I., & Beery, A. K. (2010). Males still dominate animal studies. Nature, 465(7299), 690-690. doi:10.1038/465690a

Kineman, R. D., del Rio-Moreno, M., & Sarmento-Cabral, A. (2018). 40 YEARS of IGF1: Understanding the tissue-specific roles of IGF1/IGF1R in regulating metabolism using the Cre/loxP system. Journal of Molecular Endocrinology, 61(1), T187-T198. doi:10.1530/jme-18-0076

Adamek, A., & Kasprzak, A. (2018). Insulin-Like Growth Factor (IGF) System in Liver Diseases. International Journal of Molecular Sciences, 19(5), 1308. doi:10.3390/ijms19051308

Lavara, R., Baselga, M., Marco-Jiménez, F., & Vicente, J. S. (2015). Embryo vitrification in rabbits: Consequences for progeny growth. Theriogenology, 84(5), 674-680. doi:10.1016/j.theriogenology.2015.04.025

Ding, C., Li, Y., Guo, F., Jiang, Y., Ying, W., Li, D., … He, F. (2016). A Cell-type-resolved Liver Proteome. Molecular & Cellular Proteomics, 15(10), 3190-3202. doi:10.1074/mcp.m116.060145

Shevchenko, A., Wilm, M., Vorm, O., & Mann, M. (1996). Mass Spectrometric Sequencing of Proteins from Silver-Stained Polyacrylamide Gels. Analytical Chemistry, 68(5), 850-858. doi:10.1021/ac950914h

Shilov, I. V., Seymour, S. L., Patel, A. A., Loboda, A., Tang, W. H., Keating, S. P., … Schaeffer, D. A. (2007). The Paragon Algorithm, a Next Generation Search Engine That Uses Sequence Temperature Values and Feature Probabilities to Identify Peptides from Tandem Mass Spectra. Molecular & Cellular Proteomics, 6(9), 1638-1655. doi:10.1074/mcp.t600050-mcp200

Perez-Riverol, Y., Csordas, A., Bai, J., Bernal-Llinares, M., Hewapathirana, S., Kundu, D. J., … Vizcaíno, J. A. (2018). The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Research, 47(D1), D442-D450. doi:10.1093/nar/gky1106

Moore, D. M., Zimmerman, K., & Smith, S. A. (2015). Hematological Assessment in Pet Rabbits. Clinics in Laboratory Medicine, 35(3), 617-627. doi:10.1016/j.cll.2015.05.010

MA Kamel, R. (2013). Assisted Reproductive Technology after the birth of Louise Brown. Gynecology & Obstetrics, 03(03). doi:10.4172/2161-0932.1000156

Auroux, M., Cerutti, I., Ducot, B., & Loeuillet, A. (2004). Is embryo-cryopreservation really neutral? Reproductive Toxicology, 18(6), 813-818. doi:10.1016/j.reprotox.2004.04.010

Cifre, J., Baselga, M., Gómez, E. A., & de la Luz, G. M. (1999). Effect of embryo cryopreservation techniques on reproductive and growth traits in rabbits. Annales de Zootechnie, 48(1), 15-24. doi:10.1051/animres:19990102

Saenz-de-Juano, M. D., Marco-Jimenez, F., Schmaltz-Panneau, B., Jimenez-Trigos, E., Viudes-de-Castro, M. P., Peñaranda, D. S., … Vicente, J. S. (2014). Vitrification alters rabbit foetal placenta at transcriptomic and proteomic level. REPRODUCTION, 147(6), 789-801. doi:10.1530/rep-14-0019

Spijkers, S., Lens, J. W., Schats, R., & Lambalk, C. B. (2017). Fresh and Frozen-Thawed Embryo Transfer Compared to Natural Conception: Differences in Perinatal Outcome. Gynecologic and Obstetric Investigation, 82(6), 538-546. doi:10.1159/000468935

Hann, M., Roberts, S. A., D’Souza, S. W., Clayton, P., Macklon, N., & Brison, D. R. (2018). The growth of assisted reproductive treatment-conceived children from birth to 5 years: a national cohort study. BMC Medicine, 16(1). doi:10.1186/s12916-018-1203-7

Chen, Z., Robbins, K. M., Wells, K. D., & Rivera, R. M. (2013). Large offspring syndrome. Epigenetics, 8(6), 591-601. doi:10.4161/epi.24655

Gidenne, T., Combes, S., Feugier, A., Jehl, N., Arveux, P., Boisot, P., … Verdelhan, S. (2009). Feed restriction strategy in the growing rabbit. 2. Impact on digestive health, growth and carcass characteristics. Animal, 3(4), 509-515. doi:10.1017/s1751731108003790

Velazquez, M. A., Sheth, B., Smith, S. J., Eckert, J. J., Osmond, C., & Fleming, T. P. (2018). Insulin and branched-chain amino acid depletion during mouse preimplantation embryo culture programmes body weight gain and raised blood pressure during early postnatal life. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1864(2), 590-600. doi:10.1016/j.bbadis.2017.11.020

Donjacour, A., Liu, X., Lin, W., Simbulan, R., & Rinaudo, P. F. (2014). In Vitro Fertilization Affects Growth and Glucose Metabolism in a Sex-Specific Manner in an Outbred Mouse Model1. Biology of Reproduction, 90(4). doi:10.1095/biolreprod.113.113134

Mahsoudi, B., Li, A., & O’Neill, C. (2007). Assessment of the Long-Term and Transgenerational Consequences of Perturbing Preimplantation Embryo Development in Mice1. Biology of Reproduction, 77(5), 889-896. doi:10.1095/biolreprod.106.057885

Feuer, S. K., Donjacour, A., Simbulan, R. K., Lin, W., Liu, X., Maltepe, E., & Rinaudo, P. F. (2014). Sexually Dimorphic Effect of In Vitro Fertilization (IVF) on Adult Mouse Fat and Liver Metabolomes. Endocrinology, 155(11), 4554-4567. doi:10.1210/en.2014-1465

Fernandez-Gonzalez, R., Moreira, P., Bilbao, A., Jimenez, A., Perez-Crespo, M., Ramirez, M. A., … Gutierrez-Adan, A. (2004). Long-term effect of in vitro culture of mouse embryos with serum on mRNA expression of imprinting genes, development, and behavior. Proceedings of the National Academy of Sciences, 101(16), 5880-5885. doi:10.1073/pnas.0308560101

Calle, A., Miranda, A., Fernandez-Gonzalez, R., Pericuesta, E., Laguna, R., & Gutierrez-Adan, A. (2012). Male Mice Produced by In Vitro Culture Have Reduced Fertility and Transmit Organomegaly and Glucose Intolerance to Their Male Offspring1. Biology of Reproduction, 87(2). doi:10.1095/biolreprod.112.100743

Riesche, L., & Bartolomei, M. (2018). Assisted Reproductive Technologies and the Placenta: Clinical, Morphological, and Molecular Outcomes. Seminars in Reproductive Medicine, 36(03/04), 240-248. doi:10.1055/s-0038-1676640

Hyatt, M. A., Budge, H., & Symonds, M. E. (2008). Early developmental influences on hepatic organogenesis. Organogenesis, 4(3), 170-175. doi:10.4161/org.4.3.6849

Møller, S., & Bernardi, M. (2013). Interactions of the heart and the liver. European Heart Journal, 34(36), 2804-2811. doi:10.1093/eurheartj/eht246

Peterside, I. E., Selak, M. A., & Simmons, R. A. (2003). Impaired oxidative phosphorylation in hepatic mitochondria in growth-retarded rats. American Journal of Physiology-Endocrinology and Metabolism, 285(6), E1258-E1266. doi:10.1152/ajpendo.00437.2002

Von Kleist-Retzow, J.-C., Cormier-Daire, V., Viot, G., Goldenberg, A., Mardach, B., Amiel, J., … De Lonlay, P. (2003). Antenatal manifestations of mitochondrial respiratory chain deficiency. The Journal of Pediatrics, 143(2), 208-212. doi:10.1067/s0022-3476(03)00130-6

Hüttemann, M., Lee, I., Samavati, L., Yu, H., & Doan, J. W. (2007). Regulation of mitochondrial oxidative phosphorylation through cell signaling. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1773(12), 1701-1720. doi:10.1016/j.bbamcr.2007.10.001

Gibson, K., Halliday, J. L., Kirby, D. M., Yaplito-Lee, J., Thorburn, D. R., & Boneh, A. (2008). Mitochondrial Oxidative Phosphorylation Disorders Presenting in Neonates: Clinical Manifestations and Enzymatic and Molecular Diagnoses. PEDIATRICS, 122(5), 1003-1008. doi:10.1542/peds.2007-3502

Abu-Libdeh, B., Douiev, L., Amro, S., Shahrour, M., Ta-Shma, A., Miller, C., … Saada, A. (2017). Mutation in the COX4I1 gene is associated with short stature, poor weight gain and increased chromosomal breaks, simulating Fanconi anemia. European Journal of Human Genetics, 25(10), 1142-1146. doi:10.1038/ejhg.2017.112

Hara, T., Kin, A., Aoki, S., Nakamura, S., Shirasuna, K., Kuwayama, T., & Iwata, H. (2018). Resveratrol enhances the clearance of mitochondrial damage by vitrification and improves the development of vitrified-warmed bovine embryos. PLOS ONE, 13(10), e0204571. doi:10.1371/journal.pone.0204571

Singh, A., Prasad, K. N., Singh, A. K., Singh, S. K., Gupta, K. K., Paliwal, V. K., … Gupta, R. K. (2016). Human Glutathione S-Transferase Enzyme Gene Polymorphisms and Their Association With Neurocysticercosis. Molecular Neurobiology, 54(4), 2843-2851. doi:10.1007/s12035-016-9779-4

Almazroo, O. A., Miah, M. K., & Venkataramanan, R. (2017). Drug Metabolism in the Liver. Clinics in Liver Disease, 21(1), 1-20. doi:10.1016/j.cld.2016.08.001

Bird, A. J. (2015). Cellular sensing and transport of metal ions: implications in micronutrient homeostasis. The Journal of Nutritional Biochemistry, 26(11), 1103-1115. doi:10.1016/j.jnutbio.2015.08.002

Xia, X., Jiang, S.-W., Zhang, Y., Hu, Y., Yi, H., Liu, J., … Liu, J. (2019). Serum levels of trace elements in children born after assisted reproductive technology. Clinica Chimica Acta, 495, 664-669. doi:10.1016/j.cca.2018.09.032

Li, B., Xiao, X., Chen, S., Huang, J., Ma, Y., Tang, N., … Wang, X. (2016). Changes of Phospholipids in Fetal Liver of Mice Conceived by In Vitro Fertilization1. Biology of Reproduction, 94(5). doi:10.1095/biolreprod.115.136325

Guo, X.-Y., Liu, X.-M., Jin, L., Wang, T.-T., Ullah, K., Sheng, J.-Z., & Huang, H.-F. (2017). Cardiovascular and metabolic profiles of offspring conceived by assisted reproductive technologies: a systematic review and meta-analysis. Fertility and Sterility, 107(3), 622-631.e5. doi:10.1016/j.fertnstert.2016.12.007

Miles, H. L., Hofman, P. L., Peek, J., Harris, M., Wilson, D., Robinson, E. M., … Cutfield, W. S. (2007). In Vitro Fertilization Improves Childhood Growth and Metabolism. The Journal of Clinical Endocrinology & Metabolism, 92(9), 3441-3445. doi:10.1210/jc.2006-2465

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record