Gallezot, P. (2012). Conversion of biomass to selected chemical products. Chem. Soc. Rev., 41(4), 1538-1558. doi:10.1039/c1cs15147a
Corma, A., Iborra, S., & Velty, A. (2007). Chemical Routes for the Transformation of Biomass into Chemicals. Chemical Reviews, 107(6), 2411-2502. doi:10.1021/cr050989d
Isikgor, F. H., & Becer, C. R. (2015). Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polymer Chemistry, 6(25), 4497-4559. doi:10.1039/c5py00263j
[+]
Gallezot, P. (2012). Conversion of biomass to selected chemical products. Chem. Soc. Rev., 41(4), 1538-1558. doi:10.1039/c1cs15147a
Corma, A., Iborra, S., & Velty, A. (2007). Chemical Routes for the Transformation of Biomass into Chemicals. Chemical Reviews, 107(6), 2411-2502. doi:10.1021/cr050989d
Isikgor, F. H., & Becer, C. R. (2015). Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polymer Chemistry, 6(25), 4497-4559. doi:10.1039/c5py00263j
Román-Leshkov, Y., & Davis, M. E. (2011). Activation of Carbonyl-Containing Molecules with Solid Lewis Acids in Aqueous Media. ACS Catalysis, 1(11), 1566-1580. doi:10.1021/cs200411d
Moliner, M. (2014). State of the art of Lewis acid-containing zeolites: lessons from fine chemistry to new biomass transformation processes. Dalton Trans., 43(11), 4197-4208. doi:10.1039/c3dt52293h
Belščak-Cvitanović, A., Komes, D., Dujmović, M., Karlović, S., Biškić, M., Brnčić, M., & Ježek, D. (2015). Physical, bioactive and sensory quality parameters of reduced sugar chocolates formulated with natural sweeteners as sucrose alternatives. Food Chemistry, 167, 61-70. doi:10.1016/j.foodchem.2014.06.064
Nikolla, E., Román-Leshkov, Y., Moliner, M., & Davis, M. E. (2011). «One-Pot» Synthesis of 5-(Hydroxymethyl)furfural from Carbohydrates using Tin-Beta Zeolite. ACS Catalysis, 1(4), 408-410. doi:10.1021/cs2000544
Kovalevsky, A. Y., Hanson, L., Fisher, S. Z., Mustyakimov, M., Mason, S. A., Trevor Forsyth, V., … Langan, P. (2010). Metal Ion Roles and the Movement of Hydrogen during Reaction Catalyzed by D-Xylose Isomerase: A Joint X-Ray and Neutron Diffraction Study. Structure, 18(6), 688-699. doi:10.1016/j.str.2010.03.011
Corma, A., Nemeth, L. T., Renz, M., & Valencia, S. (2001). Sn-zeolite beta as a heterogeneous chemoselective catalyst for Baeyer–Villiger oxidations. Nature, 412(6845), 423-425. doi:10.1038/35086546
Corma, A. (2003). Water-resistant solid Lewis acid catalysts: Meerwein–Ponndorf–Verley and Oppenauer reactions catalyzed by tin-beta zeolite. Journal of Catalysis, 215(2), 294-304. doi:10.1016/s0021-9517(03)00014-9
Moliner, M., Roman-Leshkov, Y., & Davis, M. E. (2010). Tin-containing zeolites are highly active catalysts for the isomerization of glucose in water. Proceedings of the National Academy of Sciences, 107(14), 6164-6168. doi:10.1073/pnas.1002358107
Román-Leshkov, Y., Moliner, M., Labinger, J. A., & Davis, M. E. (2010). Mechanism of Glucose Isomerization Using a Solid Lewis Acid Catalyst in Water. Angewandte Chemie International Edition, 49(47), 8954-8957. doi:10.1002/anie.201004689
Gunther, W. R., Wang, Y., Ji, Y., Michaelis, V. K., Hunt, S. T., Griffin, R. G., & Román-Leshkov, Y. (2012). Sn-Beta zeolites with borate salts catalyse the epimerization of carbohydrates via an intramolecular carbon shift. Nature Communications, 3(1). doi:10.1038/ncomms2122
Park, C.-S., Kim, J.-E., Choi, J.-G., & Oh, D.-K. (2011). Characterization of a recombinant cellobiose 2-epimerase from Caldicellulosiruptor saccharolyticus and its application in the production of mannose from glucose. Applied Microbiology and Biotechnology, 92(6), 1187-1196. doi:10.1007/s00253-011-3403-3
Bermejo-Deval, R., Gounder, R., & Davis, M. E. (2012). Framework and Extraframework Tin Sites in Zeolite Beta React Glucose Differently. ACS Catalysis, 2(12), 2705-2713. doi:10.1021/cs300474x
Zhang, Y., Chen, H., Gao, Y., Yao, Z., Wang, J., Zhang, B., … Zhang, J. (2019). MoOx Nanoparticle Catalysts for d-Glucose Epimerization and Their Electrical Immobilization in a Continuous Flow Reactor. ACS Applied Materials & Interfaces, 11(47), 44118-44123. doi:10.1021/acsami.9b13848
Hu, H., Liu, S., Zhang, W., An, J., & Xia, H. (2020). Efficient Epimerization of Glucose to Mannose over Molybdenum‐Based Catalyst in Aqueous Media. ChemistrySelect, 5(5), 1728-1733. doi:10.1002/slct.201903417
Megías-Sayago, C., Álvarez, E., Ivanova, S., & Odriozola, J. A. (2018). Epimerization of glucose over ionic liquid/phosphomolybdate hybrids: structure–activity relationship. Green Chemistry, 20(5), 1042-1049. doi:10.1039/c7gc03738d
Ventura, M., Cecilia, J. A., Rodríguez-Castellón, E., & Domine, M. E. (2020). Tuning Ca–Al-based catalysts’ composition to isomerize or epimerize glucose and other sugars. Green Chemistry, 22(4), 1393-1405. doi:10.1039/c9gc02823d
Delidovich, I., & Palkovits, R. (2016). Catalytic Isomerization of Biomass-Derived Aldoses: A Review. ChemSusChem, 9(6), 547-561. doi:10.1002/cssc.201501577
Bermejo-Deval, R., Orazov, M., Gounder, R., Hwang, S.-J., & Davis, M. E. (2014). Active Sites in Sn-Beta for Glucose Isomerization to Fructose and Epimerization to Mannose. ACS Catalysis, 4(7), 2288-2297. doi:10.1021/cs500466j
Li, S., Josephson, T., Vlachos, D. G., & Caratzoulas, S. (2017). The origin of selectivity in the conversion of glucose to fructose and mannose in Sn-BEA and Na-exchanged Sn-BEA zeolites. Journal of Catalysis, 355, 11-16. doi:10.1016/j.jcat.2017.09.001
Furukawa, H., Cordova, K. E., O’Keeffe, M., & Yaghi, O. M. (2013). The Chemistry and Applications of Metal-Organic Frameworks. Science, 341(6149). doi:10.1126/science.1230444
Gascon, J., Corma, A., Kapteijn, F., & Llabrés i Xamena, F. X. (2013). Metal Organic Framework Catalysis: Quo vadis? ACS Catalysis, 4(2), 361-378. doi:10.1021/cs400959k
Cirujano, F. G. (2017). MOFs vs. zeolites: carbonyl activation with M(iv) catalytic sites. Catalysis Science & Technology, 7(23), 5482-5494. doi:10.1039/c7cy01811h
Rojas-Buzo, S., García-García, P., & Corma, A. (2018). Hf-based metal–organic frameworks as acid–base catalysts for the transformation of biomass-derived furanic compounds into chemicals. Green Chemistry, 20(13), 3081-3091. doi:10.1039/c8gc00806j
Guo, Q., Ren, L., Kumar, P., Cybulskis, V. J., Mkhoyan, K. A., Davis, M. E., & Tsapatsis, M. (2018). A Chromium Hydroxide/MIL‐101(Cr) MOF Composite Catalyst and Its Use for the Selective Isomerization of Glucose to Fructose. Angewandte Chemie International Edition, 57(18), 4926-4930. doi:10.1002/anie.201712818
Oozeerally, R., Ramkhelawan, S. D. K., Burnett, D. L., Tempelman, C. H. L., & Degirmenci, V. (2019). ZIF-8 Metal Organic Framework for the Conversion of Glucose to Fructose and 5-Hydroxymethyl Furfural. Catalysts, 9(10), 812. doi:10.3390/catal9100812
Yabushita, M., Li, P., Islamoglu, T., Kobayashi, H., Fukuoka, A., Farha, O. K., & Katz, A. (2017). Selective Metal–Organic Framework Catalysis of Glucose to 5-Hydroxymethylfurfural Using Phosphate-Modified NU-1000. Industrial & Engineering Chemistry Research, 56(25), 7141-7148. doi:10.1021/acs.iecr.7b01164
Yan, C., Zhang, Y., Da, Z., Wie, Y., Li, B., Meng, M., … Yan, Y. (2019). Synthesis and Evaluation of Acid‐base Bi‐functional MOFs Catalyst Supported on PVDF Membrane for Glucose Dehydration to 5‐HMF. ChemistrySelect, 4(45), 13182-13190. doi:10.1002/slct.201903356
Oozeerally, R., Burnett, D. L., Chamberlain, T. W., Walton, R. I., & Degirmenci, V. (2018). Exceptionally Efficient and Recyclable Heterogeneous Metal-Organic Framework Catalyst for Glucose Isomerization in Water. ChemCatChem, 10(4), 706-709. doi:10.1002/cctc.201701825
Gong, J., Katz, M. J., & Kerton, F. M. (2018). Catalytic conversion of glucose to 5-hydroxymethylfurfural using zirconium-containing metal–organic frameworks using microwave heating. RSC Advances, 8(55), 31618-31627. doi:10.1039/c8ra06021e
Rojas-Buzo, S., García-García, P., & Corma, A. (2017). Catalytic Transfer Hydrogenation of Biomass-Derived Carbonyls over Hafnium-Based Metal-Organic Frameworks. ChemSusChem, 11(2), 432-438. doi:10.1002/cssc.201701708
Luo, Q., Zhang, Y., Qi, L., & Scott, S. L. (2019). Glucose Isomerization and Epimerization over Metal‐Organic Frameworks with Single‐Site Active Centers. ChemCatChem, 11(7), 1903-1909. doi:10.1002/cctc.201801889
Cavka, J. H., Jakobsen, S., Olsbye, U., Guillou, N., Lamberti, C., Bordiga, S., & Lillerud, K. P. (2008). A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. Journal of the American Chemical Society, 130(42), 13850-13851. doi:10.1021/ja8057953
Moon, S.-Y., Liu, Y., Hupp, J. T., & Farha, O. K. (2015). Instantaneous Hydrolysis of Nerve-Agent Simulants with a Six-Connected Zirconium-Based Metal-Organic Framework. Angewandte Chemie International Edition, 54(23), 6795-6799. doi:10.1002/anie.201502155
Furukawa, H., Gándara, F., Zhang, Y.-B., Jiang, J., Queen, W. L., Hudson, M. R., & Yaghi, O. M. (2014). Water Adsorption in Porous Metal–Organic Frameworks and Related Materials. Journal of the American Chemical Society, 136(11), 4369-4381. doi:10.1021/ja500330a
Cliffe, M. J., Wan, W., Zou, X., Chater, P. A., Kleppe, A. K., Tucker, M. G., … Goodwin, A. L. (2014). Correlated defect nanoregions in a metal–organic framework. Nature Communications, 5(1). doi:10.1038/ncomms5176
Liu, Y., Klet, R. C., Hupp, J. T., & Farha, O. (2016). Probing the correlations between the defects in metal–organic frameworks and their catalytic activity by an epoxide ring-opening reaction. Chemical Communications, 52(50), 7806-7809. doi:10.1039/c6cc03727e
Cybulski, A., Kuster, B. F. M., & Marin, G. B. (1991). The kinetics of the molybdate-catalysed epimerization of D-glucose and D-mannose in aqueous solutions. Journal of Molecular Catalysis, 68(1), 87-103. doi:10.1016/0304-5102(91)80063-9
Ju, F., VanderVelde, D., & Nikolla, E. (2014). Molybdenum-Based Polyoxometalates as Highly Active and Selective Catalysts for the Epimerization of Aldoses. ACS Catalysis, 4(5), 1358-1364. doi:10.1021/cs401253z
Rajabbeigi, N., Torres, A. I., Lew, C. M., Elyassi, B., Ren, L., Wang, Z., … Tsapatsis, M. (2014). On the kinetics of the isomerization of glucose to fructose using Sn-Beta. Chemical Engineering Science, 116, 235-242. doi:10.1016/j.ces.2014.04.031
Bermejo-Deval, R., Assary, R. S., Nikolla, E., Moliner, M., Roman-Leshkov, Y., Hwang, S.-J., … Davis, M. E. (2012). Metalloenzyme-like catalyzed isomerizations of sugars by Lewis acid zeolites. Proceedings of the National Academy of Sciences, 109(25), 9727-9732. doi:10.1073/pnas.1206708109
Hayes, M. L., Pennings, N. J., Serianni, A. S., & Barker, R. (1982). Epimerization of aldoses by molybdate involving a novel rearrangement of the carbon skeleton. Journal of the American Chemical Society, 104(24), 6764-6769. doi:10.1021/ja00388a047
Zheng, A., Liu, S.-B., & Deng, F. (2017). 31P NMR Chemical Shifts of Phosphorus Probes as Reliable and Practical Acidity Scales for Solid and Liquid Catalysts. Chemical Reviews, 117(19), 12475-12531. doi:10.1021/acs.chemrev.7b00289
Lewis, J. D., Ha, M., Luo, H., Faucher, A., Michaelis, V. K., & Román-Leshkov, Y. (2018). Distinguishing Active Site Identity in Sn-Beta Zeolites Using 31P MAS NMR of Adsorbed Trimethylphosphine Oxide. ACS Catalysis, 8(4), 3076-3086. doi:10.1021/acscatal.7b03533
Caratelli, C., Hajek, J., Cirujano, F. G., Waroquier, M., Llabrés i Xamena, F. X., & Van Speybroeck, V. (2017). Nature of active sites on UiO-66 and beneficial influence of water in the catalysis of Fischer esterification. Journal of Catalysis, 352, 401-414. doi:10.1016/j.jcat.2017.06.014
Panchenko, V. N., Timofeeva, M. N., & Jhung, S. H. (2016). Acid-base properties and catalytic activity of metal-organic frameworks: A view from spectroscopic and semiempirical methods. Catalysis Reviews, 58(2), 209-307. doi:10.1080/01614940.2016.1128193
Hajek, J., Caratelli, C., Demuynck, R., De Wispelaere, K., Vanduyfhuys, L., Waroquier, M., & Van Speybroeck, V. (2018). On the intrinsic dynamic nature of the rigid UiO-66 metal–organic framework. Chemical Science, 9(10), 2723-2732. doi:10.1039/c7sc04947a
Caratelli, C., Hajek, J., Meijer, E. J., Waroquier, M., & Van Speybroeck, V. (2019). Dynamic Interplay between Defective UiO‐66 and Protic Solvents in Activated Processes. Chemistry – A European Journal, 25(67), 15315-15325. doi:10.1002/chem.201903178
ZHU, Y., CHUAH, G., & JAENICKE, S. (2004). Chemo- and regioselective Meerwein–Ponndorf–Verley and Oppenauer reactions catalyzed by Al-free Zr-zeolite beta. Journal of Catalysis, 227(1), 1-10. doi:10.1016/j.jcat.2004.05.037
Zhao, Y., & Truhlar, D. G. (2008). The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06 functionals and 12 other functionals. Theoretical Chemistry Accounts, 119(5-6), 525-525. doi:10.1007/s00214-007-0401-8
Ditchfield, R., Hehre, W. J., & Pople, J. A. (1971). Self‐Consistent Molecular‐Orbital Methods. IX. An Extended Gaussian‐Type Basis for Molecular‐Orbital Studies of Organic Molecules. The Journal of Chemical Physics, 54(2), 724-728. doi:10.1063/1.1674902
Hehre, W. J., Ditchfield, R., & Pople, J. A. (1972). Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules. The Journal of Chemical Physics, 56(5), 2257-2261. doi:10.1063/1.1677527
Hay, P. J., & Wadt, W. R. (1985). Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. The Journal of Chemical Physics, 82(1), 270-283. doi:10.1063/1.448799
Hay, P. J., & Wadt, W. R. (1985). Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. The Journal of Chemical Physics, 82(1), 299-310. doi:10.1063/1.448975
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Had, M.; Fox, D. J. Gaussian 09; Gaussian, Inc.: Wallingford CT, 2009.
Ditchfield, R. (1974). Self-consistent perturbation theory of diamagnetism. Molecular Physics, 27(4), 789-807. doi:10.1080/00268977400100711
Wolinski, K., Hinton, J. F., & Pulay, P. (1990). Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. Journal of the American Chemical Society, 112(23), 8251-8260. doi:10.1021/ja00179a005
[-]