- -

Unraveling the Reaction Mechanism and Active Sites of Metal-Organic Frameworks for Glucose Transformations in Water: Experimental and Theoretical Studies

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Unraveling the Reaction Mechanism and Active Sites of Metal-Organic Frameworks for Glucose Transformations in Water: Experimental and Theoretical Studies

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Rojas-Buzo, Sergio es_ES
dc.contributor.author Corma Canós, Avelino es_ES
dc.contributor.author Boronat Zaragoza, Mercedes es_ES
dc.contributor.author Moliner Marin, Manuel es_ES
dc.date.accessioned 2021-04-22T03:31:30Z
dc.date.available 2021-04-22T03:31:30Z
dc.date.issued 2020-11-02 es_ES
dc.identifier.issn 2168-0485 es_ES
dc.identifier.uri http://hdl.handle.net/10251/165482
dc.description This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Sustainable Chemistry & Engineering, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acssuschemeng.0c04398 es_ES
dc.description.abstract [EN] The catalytic performance of two different MOFs, UiO-66 and MOF-808, containing Lewis acid active sites has been evaluated for the transformation of glucose in water and compared with that of analogous Lewis acid Zr-beta zeolite. While fructose is the main product obtained on Zr-beta, mannose production increases when using Zr-MOFs as catalysts. Kinetic studies reveal a lower activation energy barrier for glucose epimerization to mannose when using Zr-MOF catalysts (similar to 83-88 and similar to 100 kJ/mol for glucose epimerization and isomerization, respectively). A C-13 NMR study using (13)C1-labeled glucose allows confirming that on Zr-MOF catalysts, mannose is exclusively formed following the glucose epimerization route through a 1,2-intramolecular carbon shift, whereas the two-step glucose -> fructose -> mannose isomerization via 1,2-intramolecular proton shifts is the preferred pathway on Zr-beta. A computational study reveals a different mode of adsorption of deprotonated glucose on Zr-MOFs that allows decreasing the activation barrier for the 1,2-intramolecular carbon shift. The combination of spectroscopic, kinetic, and theoretical studies allows unraveling the nature of the metal sites in Zr-MOFs and Zr-beta catalysts and to propose a structure-activity relationship between the different Lewis acid sites and the glucose transformation reactions. The results presented here could permit new rationalized MOF catalyst designs with the specific active sites to facilitate particular reaction mechanisms. es_ES
dc.description.sponsorship This work was supported by the Spanish Government through "Severo Ochoa"(SEV-2016-0683, MINECO), MAT2017-82288-C2-1-P (AEI/FEDER, UE), and RTI2018-101033-BI00 (MCIU/AEI/FEDER, UE); and by Generalitat Valenciana through AICO/2019/060. The Electron Microscopy Service of the UPV is also acknowledged for their help in sample characterization. es_ES
dc.language Inglés es_ES
dc.publisher American Chemical Society es_ES
dc.relation.ispartof ACS Sustainable Chemistry & Engineering es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject MOFs es_ES
dc.subject Lewis acids es_ES
dc.subject Glucose es_ES
dc.subject Mannose es_ES
dc.subject Epimerization es_ES
dc.subject Structure-activity es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Unraveling the Reaction Mechanism and Active Sites of Metal-Organic Frameworks for Glucose Transformations in Water: Experimental and Theoretical Studies es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1021/acssuschemeng.0c04398 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-82288-C2-1-P/ES/MATERIALES HIBRIDOS MULTIFUNCIONALES BASADOS EN NANO-UNIDADES ESTRUCTURALES ACTIVAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-101033-B-I00/ES/DISEÑO DE CATALIZADORES MULTIFUNCIONALES PARA LA CONVERSION EFICIENTE DE BIOGAS Y GAS NATURAL A HIDROCARBUROS DE INTERES INDUSTRIAL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//AICO%2F2019%2F060/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Rojas-Buzo, S.; Corma Canós, A.; Boronat Zaragoza, M.; Moliner Marin, M. (2020). Unraveling the Reaction Mechanism and Active Sites of Metal-Organic Frameworks for Glucose Transformations in Water: Experimental and Theoretical Studies. ACS Sustainable Chemistry & Engineering. 8(43):16143-16155. https://doi.org/10.1021/acssuschemeng.0c04398 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1021/acssuschemeng.0c04398 es_ES
dc.description.upvformatpinicio 16143 es_ES
dc.description.upvformatpfin 16155 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 43 es_ES
dc.relation.pasarela S\433308 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Gallezot, P. (2012). Conversion of biomass to selected chemical products. Chem. Soc. Rev., 41(4), 1538-1558. doi:10.1039/c1cs15147a es_ES
dc.description.references Corma, A., Iborra, S., & Velty, A. (2007). Chemical Routes for the Transformation of Biomass into Chemicals. Chemical Reviews, 107(6), 2411-2502. doi:10.1021/cr050989d es_ES
dc.description.references Isikgor, F. H., & Becer, C. R. (2015). Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polymer Chemistry, 6(25), 4497-4559. doi:10.1039/c5py00263j es_ES
dc.description.references Román-Leshkov, Y., & Davis, M. E. (2011). Activation of Carbonyl-Containing Molecules with Solid Lewis Acids in Aqueous Media. ACS Catalysis, 1(11), 1566-1580. doi:10.1021/cs200411d es_ES
dc.description.references Moliner, M. (2014). State of the art of Lewis acid-containing zeolites: lessons from fine chemistry to new biomass transformation processes. Dalton Trans., 43(11), 4197-4208. doi:10.1039/c3dt52293h es_ES
dc.description.references Belščak-Cvitanović, A., Komes, D., Dujmović, M., Karlović, S., Biškić, M., Brnčić, M., & Ježek, D. (2015). Physical, bioactive and sensory quality parameters of reduced sugar chocolates formulated with natural sweeteners as sucrose alternatives. Food Chemistry, 167, 61-70. doi:10.1016/j.foodchem.2014.06.064 es_ES
dc.description.references Nikolla, E., Román-Leshkov, Y., Moliner, M., & Davis, M. E. (2011). «One-Pot» Synthesis of 5-(Hydroxymethyl)furfural from Carbohydrates using Tin-Beta Zeolite. ACS Catalysis, 1(4), 408-410. doi:10.1021/cs2000544 es_ES
dc.description.references Kovalevsky, A. Y., Hanson, L., Fisher, S. Z., Mustyakimov, M., Mason, S. A., Trevor Forsyth, V., … Langan, P. (2010). Metal Ion Roles and the Movement of Hydrogen during Reaction Catalyzed by D-Xylose Isomerase: A Joint X-Ray and Neutron Diffraction Study. Structure, 18(6), 688-699. doi:10.1016/j.str.2010.03.011 es_ES
dc.description.references Corma, A., Nemeth, L. T., Renz, M., & Valencia, S. (2001). Sn-zeolite beta as a heterogeneous chemoselective catalyst for Baeyer–Villiger oxidations. Nature, 412(6845), 423-425. doi:10.1038/35086546 es_ES
dc.description.references Corma, A. (2003). Water-resistant solid Lewis acid catalysts: Meerwein–Ponndorf–Verley and Oppenauer reactions catalyzed by tin-beta zeolite. Journal of Catalysis, 215(2), 294-304. doi:10.1016/s0021-9517(03)00014-9 es_ES
dc.description.references Moliner, M., Roman-Leshkov, Y., & Davis, M. E. (2010). Tin-containing zeolites are highly active catalysts for the isomerization of glucose in water. Proceedings of the National Academy of Sciences, 107(14), 6164-6168. doi:10.1073/pnas.1002358107 es_ES
dc.description.references Román-Leshkov, Y., Moliner, M., Labinger, J. A., & Davis, M. E. (2010). Mechanism of Glucose Isomerization Using a Solid Lewis Acid Catalyst in Water. Angewandte Chemie International Edition, 49(47), 8954-8957. doi:10.1002/anie.201004689 es_ES
dc.description.references Gunther, W. R., Wang, Y., Ji, Y., Michaelis, V. K., Hunt, S. T., Griffin, R. G., & Román-Leshkov, Y. (2012). Sn-Beta zeolites with borate salts catalyse the epimerization of carbohydrates via an intramolecular carbon shift. Nature Communications, 3(1). doi:10.1038/ncomms2122 es_ES
dc.description.references Park, C.-S., Kim, J.-E., Choi, J.-G., & Oh, D.-K. (2011). Characterization of a recombinant cellobiose 2-epimerase from Caldicellulosiruptor saccharolyticus and its application in the production of mannose from glucose. Applied Microbiology and Biotechnology, 92(6), 1187-1196. doi:10.1007/s00253-011-3403-3 es_ES
dc.description.references Bermejo-Deval, R., Gounder, R., & Davis, M. E. (2012). Framework and Extraframework Tin Sites in Zeolite Beta React Glucose Differently. ACS Catalysis, 2(12), 2705-2713. doi:10.1021/cs300474x es_ES
dc.description.references Zhang, Y., Chen, H., Gao, Y., Yao, Z., Wang, J., Zhang, B., … Zhang, J. (2019). MoOx Nanoparticle Catalysts for d-Glucose Epimerization and Their Electrical Immobilization in a Continuous Flow Reactor. ACS Applied Materials & Interfaces, 11(47), 44118-44123. doi:10.1021/acsami.9b13848 es_ES
dc.description.references Hu, H., Liu, S., Zhang, W., An, J., & Xia, H. (2020). Efficient Epimerization of Glucose to Mannose over Molybdenum‐Based Catalyst in Aqueous Media. ChemistrySelect, 5(5), 1728-1733. doi:10.1002/slct.201903417 es_ES
dc.description.references Megías-Sayago, C., Álvarez, E., Ivanova, S., & Odriozola, J. A. (2018). Epimerization of glucose over ionic liquid/phosphomolybdate hybrids: structure–activity relationship. Green Chemistry, 20(5), 1042-1049. doi:10.1039/c7gc03738d es_ES
dc.description.references Ventura, M., Cecilia, J. A., Rodríguez-Castellón, E., & Domine, M. E. (2020). Tuning Ca–Al-based catalysts’ composition to isomerize or epimerize glucose and other sugars. Green Chemistry, 22(4), 1393-1405. doi:10.1039/c9gc02823d es_ES
dc.description.references Delidovich, I., & Palkovits, R. (2016). Catalytic Isomerization of Biomass-Derived Aldoses: A Review. ChemSusChem, 9(6), 547-561. doi:10.1002/cssc.201501577 es_ES
dc.description.references Bermejo-Deval, R., Orazov, M., Gounder, R., Hwang, S.-J., & Davis, M. E. (2014). Active Sites in Sn-Beta for Glucose Isomerization to Fructose and Epimerization to Mannose. ACS Catalysis, 4(7), 2288-2297. doi:10.1021/cs500466j es_ES
dc.description.references Li, S., Josephson, T., Vlachos, D. G., & Caratzoulas, S. (2017). The origin of selectivity in the conversion of glucose to fructose and mannose in Sn-BEA and Na-exchanged Sn-BEA zeolites. Journal of Catalysis, 355, 11-16. doi:10.1016/j.jcat.2017.09.001 es_ES
dc.description.references Furukawa, H., Cordova, K. E., O’Keeffe, M., & Yaghi, O. M. (2013). The Chemistry and Applications of Metal-Organic Frameworks. Science, 341(6149). doi:10.1126/science.1230444 es_ES
dc.description.references Gascon, J., Corma, A., Kapteijn, F., & Llabrés i Xamena, F. X. (2013). Metal Organic Framework Catalysis: Quo vadis? ACS Catalysis, 4(2), 361-378. doi:10.1021/cs400959k es_ES
dc.description.references Cirujano, F. G. (2017). MOFs vs. zeolites: carbonyl activation with M(iv) catalytic sites. Catalysis Science & Technology, 7(23), 5482-5494. doi:10.1039/c7cy01811h es_ES
dc.description.references Rojas-Buzo, S., García-García, P., & Corma, A. (2018). Hf-based metal–organic frameworks as acid–base catalysts for the transformation of biomass-derived furanic compounds into chemicals. Green Chemistry, 20(13), 3081-3091. doi:10.1039/c8gc00806j es_ES
dc.description.references Guo, Q., Ren, L., Kumar, P., Cybulskis, V. J., Mkhoyan, K. A., Davis, M. E., & Tsapatsis, M. (2018). A Chromium Hydroxide/MIL‐101(Cr) MOF Composite Catalyst and Its Use for the Selective Isomerization of Glucose to Fructose. Angewandte Chemie International Edition, 57(18), 4926-4930. doi:10.1002/anie.201712818 es_ES
dc.description.references Oozeerally, R., Ramkhelawan, S. D. K., Burnett, D. L., Tempelman, C. H. L., & Degirmenci, V. (2019). ZIF-8 Metal Organic Framework for the Conversion of Glucose to Fructose and 5-Hydroxymethyl Furfural. Catalysts, 9(10), 812. doi:10.3390/catal9100812 es_ES
dc.description.references Yabushita, M., Li, P., Islamoglu, T., Kobayashi, H., Fukuoka, A., Farha, O. K., & Katz, A. (2017). Selective Metal–Organic Framework Catalysis of Glucose to 5-Hydroxymethylfurfural Using Phosphate-Modified NU-1000. Industrial & Engineering Chemistry Research, 56(25), 7141-7148. doi:10.1021/acs.iecr.7b01164 es_ES
dc.description.references Yan, C., Zhang, Y., Da, Z., Wie, Y., Li, B., Meng, M., … Yan, Y. (2019). Synthesis and Evaluation of Acid‐base Bi‐functional MOFs Catalyst Supported on PVDF Membrane for Glucose Dehydration to 5‐HMF. ChemistrySelect, 4(45), 13182-13190. doi:10.1002/slct.201903356 es_ES
dc.description.references Oozeerally, R., Burnett, D. L., Chamberlain, T. W., Walton, R. I., & Degirmenci, V. (2018). Exceptionally Efficient and Recyclable Heterogeneous Metal-Organic Framework Catalyst for Glucose Isomerization in Water. ChemCatChem, 10(4), 706-709. doi:10.1002/cctc.201701825 es_ES
dc.description.references Gong, J., Katz, M. J., & Kerton, F. M. (2018). Catalytic conversion of glucose to 5-hydroxymethylfurfural using zirconium-containing metal–organic frameworks using microwave heating. RSC Advances, 8(55), 31618-31627. doi:10.1039/c8ra06021e es_ES
dc.description.references Rojas-Buzo, S., García-García, P., & Corma, A. (2017). Catalytic Transfer Hydrogenation of Biomass-Derived Carbonyls over Hafnium-Based Metal-Organic Frameworks. ChemSusChem, 11(2), 432-438. doi:10.1002/cssc.201701708 es_ES
dc.description.references Luo, Q., Zhang, Y., Qi, L., & Scott, S. L. (2019). Glucose Isomerization and Epimerization over Metal‐Organic Frameworks with Single‐Site Active Centers. ChemCatChem, 11(7), 1903-1909. doi:10.1002/cctc.201801889 es_ES
dc.description.references Cavka, J. H., Jakobsen, S., Olsbye, U., Guillou, N., Lamberti, C., Bordiga, S., & Lillerud, K. P. (2008). A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. Journal of the American Chemical Society, 130(42), 13850-13851. doi:10.1021/ja8057953 es_ES
dc.description.references Moon, S.-Y., Liu, Y., Hupp, J. T., & Farha, O. K. (2015). Instantaneous Hydrolysis of Nerve-Agent Simulants with a Six-Connected Zirconium-Based Metal-Organic Framework. Angewandte Chemie International Edition, 54(23), 6795-6799. doi:10.1002/anie.201502155 es_ES
dc.description.references Furukawa, H., Gándara, F., Zhang, Y.-B., Jiang, J., Queen, W. L., Hudson, M. R., & Yaghi, O. M. (2014). Water Adsorption in Porous Metal–Organic Frameworks and Related Materials. Journal of the American Chemical Society, 136(11), 4369-4381. doi:10.1021/ja500330a es_ES
dc.description.references Cliffe, M. J., Wan, W., Zou, X., Chater, P. A., Kleppe, A. K., Tucker, M. G., … Goodwin, A. L. (2014). Correlated defect nanoregions in a metal–organic framework. Nature Communications, 5(1). doi:10.1038/ncomms5176 es_ES
dc.description.references Liu, Y., Klet, R. C., Hupp, J. T., & Farha, O. (2016). Probing the correlations between the defects in metal–organic frameworks and their catalytic activity by an epoxide ring-opening reaction. Chemical Communications, 52(50), 7806-7809. doi:10.1039/c6cc03727e es_ES
dc.description.references Cybulski, A., Kuster, B. F. M., & Marin, G. B. (1991). The kinetics of the molybdate-catalysed epimerization of D-glucose and D-mannose in aqueous solutions. Journal of Molecular Catalysis, 68(1), 87-103. doi:10.1016/0304-5102(91)80063-9 es_ES
dc.description.references Ju, F., VanderVelde, D., & Nikolla, E. (2014). Molybdenum-Based Polyoxometalates as Highly Active and Selective Catalysts for the Epimerization of Aldoses. ACS Catalysis, 4(5), 1358-1364. doi:10.1021/cs401253z es_ES
dc.description.references Rajabbeigi, N., Torres, A. I., Lew, C. M., Elyassi, B., Ren, L., Wang, Z., … Tsapatsis, M. (2014). On the kinetics of the isomerization of glucose to fructose using Sn-Beta. Chemical Engineering Science, 116, 235-242. doi:10.1016/j.ces.2014.04.031 es_ES
dc.description.references Bermejo-Deval, R., Assary, R. S., Nikolla, E., Moliner, M., Roman-Leshkov, Y., Hwang, S.-J., … Davis, M. E. (2012). Metalloenzyme-like catalyzed isomerizations of sugars by Lewis acid zeolites. Proceedings of the National Academy of Sciences, 109(25), 9727-9732. doi:10.1073/pnas.1206708109 es_ES
dc.description.references Hayes, M. L., Pennings, N. J., Serianni, A. S., & Barker, R. (1982). Epimerization of aldoses by molybdate involving a novel rearrangement of the carbon skeleton. Journal of the American Chemical Society, 104(24), 6764-6769. doi:10.1021/ja00388a047 es_ES
dc.description.references Zheng, A., Liu, S.-B., & Deng, F. (2017). 31P NMR Chemical Shifts of Phosphorus Probes as Reliable and Practical Acidity Scales for Solid and Liquid Catalysts. Chemical Reviews, 117(19), 12475-12531. doi:10.1021/acs.chemrev.7b00289 es_ES
dc.description.references Lewis, J. D., Ha, M., Luo, H., Faucher, A., Michaelis, V. K., & Román-Leshkov, Y. (2018). Distinguishing Active Site Identity in Sn-Beta Zeolites Using 31P MAS NMR of Adsorbed Trimethylphosphine Oxide. ACS Catalysis, 8(4), 3076-3086. doi:10.1021/acscatal.7b03533 es_ES
dc.description.references Caratelli, C., Hajek, J., Cirujano, F. G., Waroquier, M., Llabrés i Xamena, F. X., & Van Speybroeck, V. (2017). Nature of active sites on UiO-66 and beneficial influence of water in the catalysis of Fischer esterification. Journal of Catalysis, 352, 401-414. doi:10.1016/j.jcat.2017.06.014 es_ES
dc.description.references Panchenko, V. N., Timofeeva, M. N., & Jhung, S. H. (2016). Acid-base properties and catalytic activity of metal-organic frameworks: A view from spectroscopic and semiempirical methods. Catalysis Reviews, 58(2), 209-307. doi:10.1080/01614940.2016.1128193 es_ES
dc.description.references Hajek, J., Caratelli, C., Demuynck, R., De Wispelaere, K., Vanduyfhuys, L., Waroquier, M., & Van Speybroeck, V. (2018). On the intrinsic dynamic nature of the rigid UiO-66 metal–organic framework. Chemical Science, 9(10), 2723-2732. doi:10.1039/c7sc04947a es_ES
dc.description.references Caratelli, C., Hajek, J., Meijer, E. J., Waroquier, M., & Van Speybroeck, V. (2019). Dynamic Interplay between Defective UiO‐66 and Protic Solvents in Activated Processes. Chemistry – A European Journal, 25(67), 15315-15325. doi:10.1002/chem.201903178 es_ES
dc.description.references ZHU, Y., CHUAH, G., & JAENICKE, S. (2004). Chemo- and regioselective Meerwein–Ponndorf–Verley and Oppenauer reactions catalyzed by Al-free Zr-zeolite beta. Journal of Catalysis, 227(1), 1-10. doi:10.1016/j.jcat.2004.05.037 es_ES
dc.description.references Zhao, Y., & Truhlar, D. G. (2008). The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06 functionals and 12 other functionals. Theoretical Chemistry Accounts, 119(5-6), 525-525. doi:10.1007/s00214-007-0401-8 es_ES
dc.description.references Ditchfield, R., Hehre, W. J., & Pople, J. A. (1971). Self‐Consistent Molecular‐Orbital Methods. IX. An Extended Gaussian‐Type Basis for Molecular‐Orbital Studies of Organic Molecules. The Journal of Chemical Physics, 54(2), 724-728. doi:10.1063/1.1674902 es_ES
dc.description.references Hehre, W. J., Ditchfield, R., & Pople, J. A. (1972). Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules. The Journal of Chemical Physics, 56(5), 2257-2261. doi:10.1063/1.1677527 es_ES
dc.description.references Hay, P. J., & Wadt, W. R. (1985). Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. The Journal of Chemical Physics, 82(1), 270-283. doi:10.1063/1.448799 es_ES
dc.description.references Hay, P. J., & Wadt, W. R. (1985). Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. The Journal of Chemical Physics, 82(1), 299-310. doi:10.1063/1.448975 es_ES
dc.description.references Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Had, M.; Fox, D. J. Gaussian 09; Gaussian, Inc.: Wallingford CT, 2009. es_ES
dc.description.references Ditchfield, R. (1974). Self-consistent perturbation theory of diamagnetism. Molecular Physics, 27(4), 789-807. doi:10.1080/00268977400100711 es_ES
dc.description.references Wolinski, K., Hinton, J. F., & Pulay, P. (1990). Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. Journal of the American Chemical Society, 112(23), 8251-8260. doi:10.1021/ja00179a005 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem