Mostrar el registro sencillo del ítem
dc.contributor.author | Rojas-Buzo, Sergio | es_ES |
dc.contributor.author | Corma Canós, Avelino | es_ES |
dc.contributor.author | Boronat Zaragoza, Mercedes | es_ES |
dc.contributor.author | Moliner Marin, Manuel | es_ES |
dc.date.accessioned | 2021-04-22T03:31:30Z | |
dc.date.available | 2021-04-22T03:31:30Z | |
dc.date.issued | 2020-11-02 | es_ES |
dc.identifier.issn | 2168-0485 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/165482 | |
dc.description | This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Sustainable Chemistry & Engineering, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acssuschemeng.0c04398 | es_ES |
dc.description.abstract | [EN] The catalytic performance of two different MOFs, UiO-66 and MOF-808, containing Lewis acid active sites has been evaluated for the transformation of glucose in water and compared with that of analogous Lewis acid Zr-beta zeolite. While fructose is the main product obtained on Zr-beta, mannose production increases when using Zr-MOFs as catalysts. Kinetic studies reveal a lower activation energy barrier for glucose epimerization to mannose when using Zr-MOF catalysts (similar to 83-88 and similar to 100 kJ/mol for glucose epimerization and isomerization, respectively). A C-13 NMR study using (13)C1-labeled glucose allows confirming that on Zr-MOF catalysts, mannose is exclusively formed following the glucose epimerization route through a 1,2-intramolecular carbon shift, whereas the two-step glucose -> fructose -> mannose isomerization via 1,2-intramolecular proton shifts is the preferred pathway on Zr-beta. A computational study reveals a different mode of adsorption of deprotonated glucose on Zr-MOFs that allows decreasing the activation barrier for the 1,2-intramolecular carbon shift. The combination of spectroscopic, kinetic, and theoretical studies allows unraveling the nature of the metal sites in Zr-MOFs and Zr-beta catalysts and to propose a structure-activity relationship between the different Lewis acid sites and the glucose transformation reactions. The results presented here could permit new rationalized MOF catalyst designs with the specific active sites to facilitate particular reaction mechanisms. | es_ES |
dc.description.sponsorship | This work was supported by the Spanish Government through "Severo Ochoa"(SEV-2016-0683, MINECO), MAT2017-82288-C2-1-P (AEI/FEDER, UE), and RTI2018-101033-BI00 (MCIU/AEI/FEDER, UE); and by Generalitat Valenciana through AICO/2019/060. The Electron Microscopy Service of the UPV is also acknowledged for their help in sample characterization. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | American Chemical Society | es_ES |
dc.relation.ispartof | ACS Sustainable Chemistry & Engineering | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | MOFs | es_ES |
dc.subject | Lewis acids | es_ES |
dc.subject | Glucose | es_ES |
dc.subject | Mannose | es_ES |
dc.subject | Epimerization | es_ES |
dc.subject | Structure-activity | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Unraveling the Reaction Mechanism and Active Sites of Metal-Organic Frameworks for Glucose Transformations in Water: Experimental and Theoretical Studies | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1021/acssuschemeng.0c04398 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-82288-C2-1-P/ES/MATERIALES HIBRIDOS MULTIFUNCIONALES BASADOS EN NANO-UNIDADES ESTRUCTURALES ACTIVAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-101033-B-I00/ES/DISEÑO DE CATALIZADORES MULTIFUNCIONALES PARA LA CONVERSION EFICIENTE DE BIOGAS Y GAS NATURAL A HIDROCARBUROS DE INTERES INDUSTRIAL/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//AICO%2F2019%2F060/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.description.bibliographicCitation | Rojas-Buzo, S.; Corma Canós, A.; Boronat Zaragoza, M.; Moliner Marin, M. (2020). Unraveling the Reaction Mechanism and Active Sites of Metal-Organic Frameworks for Glucose Transformations in Water: Experimental and Theoretical Studies. ACS Sustainable Chemistry & Engineering. 8(43):16143-16155. https://doi.org/10.1021/acssuschemeng.0c04398 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1021/acssuschemeng.0c04398 | es_ES |
dc.description.upvformatpinicio | 16143 | es_ES |
dc.description.upvformatpfin | 16155 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 8 | es_ES |
dc.description.issue | 43 | es_ES |
dc.relation.pasarela | S\433308 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Gallezot, P. (2012). Conversion of biomass to selected chemical products. Chem. Soc. Rev., 41(4), 1538-1558. doi:10.1039/c1cs15147a | es_ES |
dc.description.references | Corma, A., Iborra, S., & Velty, A. (2007). Chemical Routes for the Transformation of Biomass into Chemicals. Chemical Reviews, 107(6), 2411-2502. doi:10.1021/cr050989d | es_ES |
dc.description.references | Isikgor, F. H., & Becer, C. R. (2015). Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polymer Chemistry, 6(25), 4497-4559. doi:10.1039/c5py00263j | es_ES |
dc.description.references | Román-Leshkov, Y., & Davis, M. E. (2011). Activation of Carbonyl-Containing Molecules with Solid Lewis Acids in Aqueous Media. ACS Catalysis, 1(11), 1566-1580. doi:10.1021/cs200411d | es_ES |
dc.description.references | Moliner, M. (2014). State of the art of Lewis acid-containing zeolites: lessons from fine chemistry to new biomass transformation processes. Dalton Trans., 43(11), 4197-4208. doi:10.1039/c3dt52293h | es_ES |
dc.description.references | Belščak-Cvitanović, A., Komes, D., Dujmović, M., Karlović, S., Biškić, M., Brnčić, M., & Ježek, D. (2015). Physical, bioactive and sensory quality parameters of reduced sugar chocolates formulated with natural sweeteners as sucrose alternatives. Food Chemistry, 167, 61-70. doi:10.1016/j.foodchem.2014.06.064 | es_ES |
dc.description.references | Nikolla, E., Román-Leshkov, Y., Moliner, M., & Davis, M. E. (2011). «One-Pot» Synthesis of 5-(Hydroxymethyl)furfural from Carbohydrates using Tin-Beta Zeolite. ACS Catalysis, 1(4), 408-410. doi:10.1021/cs2000544 | es_ES |
dc.description.references | Kovalevsky, A. Y., Hanson, L., Fisher, S. Z., Mustyakimov, M., Mason, S. A., Trevor Forsyth, V., … Langan, P. (2010). Metal Ion Roles and the Movement of Hydrogen during Reaction Catalyzed by D-Xylose Isomerase: A Joint X-Ray and Neutron Diffraction Study. Structure, 18(6), 688-699. doi:10.1016/j.str.2010.03.011 | es_ES |
dc.description.references | Corma, A., Nemeth, L. T., Renz, M., & Valencia, S. (2001). Sn-zeolite beta as a heterogeneous chemoselective catalyst for Baeyer–Villiger oxidations. Nature, 412(6845), 423-425. doi:10.1038/35086546 | es_ES |
dc.description.references | Corma, A. (2003). Water-resistant solid Lewis acid catalysts: Meerwein–Ponndorf–Verley and Oppenauer reactions catalyzed by tin-beta zeolite. Journal of Catalysis, 215(2), 294-304. doi:10.1016/s0021-9517(03)00014-9 | es_ES |
dc.description.references | Moliner, M., Roman-Leshkov, Y., & Davis, M. E. (2010). Tin-containing zeolites are highly active catalysts for the isomerization of glucose in water. Proceedings of the National Academy of Sciences, 107(14), 6164-6168. doi:10.1073/pnas.1002358107 | es_ES |
dc.description.references | Román-Leshkov, Y., Moliner, M., Labinger, J. A., & Davis, M. E. (2010). Mechanism of Glucose Isomerization Using a Solid Lewis Acid Catalyst in Water. Angewandte Chemie International Edition, 49(47), 8954-8957. doi:10.1002/anie.201004689 | es_ES |
dc.description.references | Gunther, W. R., Wang, Y., Ji, Y., Michaelis, V. K., Hunt, S. T., Griffin, R. G., & Román-Leshkov, Y. (2012). Sn-Beta zeolites with borate salts catalyse the epimerization of carbohydrates via an intramolecular carbon shift. Nature Communications, 3(1). doi:10.1038/ncomms2122 | es_ES |
dc.description.references | Park, C.-S., Kim, J.-E., Choi, J.-G., & Oh, D.-K. (2011). Characterization of a recombinant cellobiose 2-epimerase from Caldicellulosiruptor saccharolyticus and its application in the production of mannose from glucose. Applied Microbiology and Biotechnology, 92(6), 1187-1196. doi:10.1007/s00253-011-3403-3 | es_ES |
dc.description.references | Bermejo-Deval, R., Gounder, R., & Davis, M. E. (2012). Framework and Extraframework Tin Sites in Zeolite Beta React Glucose Differently. ACS Catalysis, 2(12), 2705-2713. doi:10.1021/cs300474x | es_ES |
dc.description.references | Zhang, Y., Chen, H., Gao, Y., Yao, Z., Wang, J., Zhang, B., … Zhang, J. (2019). MoOx Nanoparticle Catalysts for d-Glucose Epimerization and Their Electrical Immobilization in a Continuous Flow Reactor. ACS Applied Materials & Interfaces, 11(47), 44118-44123. doi:10.1021/acsami.9b13848 | es_ES |
dc.description.references | Hu, H., Liu, S., Zhang, W., An, J., & Xia, H. (2020). Efficient Epimerization of Glucose to Mannose over Molybdenum‐Based Catalyst in Aqueous Media. ChemistrySelect, 5(5), 1728-1733. doi:10.1002/slct.201903417 | es_ES |
dc.description.references | Megías-Sayago, C., Álvarez, E., Ivanova, S., & Odriozola, J. A. (2018). Epimerization of glucose over ionic liquid/phosphomolybdate hybrids: structure–activity relationship. Green Chemistry, 20(5), 1042-1049. doi:10.1039/c7gc03738d | es_ES |
dc.description.references | Ventura, M., Cecilia, J. A., Rodríguez-Castellón, E., & Domine, M. E. (2020). Tuning Ca–Al-based catalysts’ composition to isomerize or epimerize glucose and other sugars. Green Chemistry, 22(4), 1393-1405. doi:10.1039/c9gc02823d | es_ES |
dc.description.references | Delidovich, I., & Palkovits, R. (2016). Catalytic Isomerization of Biomass-Derived Aldoses: A Review. ChemSusChem, 9(6), 547-561. doi:10.1002/cssc.201501577 | es_ES |
dc.description.references | Bermejo-Deval, R., Orazov, M., Gounder, R., Hwang, S.-J., & Davis, M. E. (2014). Active Sites in Sn-Beta for Glucose Isomerization to Fructose and Epimerization to Mannose. ACS Catalysis, 4(7), 2288-2297. doi:10.1021/cs500466j | es_ES |
dc.description.references | Li, S., Josephson, T., Vlachos, D. G., & Caratzoulas, S. (2017). The origin of selectivity in the conversion of glucose to fructose and mannose in Sn-BEA and Na-exchanged Sn-BEA zeolites. Journal of Catalysis, 355, 11-16. doi:10.1016/j.jcat.2017.09.001 | es_ES |
dc.description.references | Furukawa, H., Cordova, K. E., O’Keeffe, M., & Yaghi, O. M. (2013). The Chemistry and Applications of Metal-Organic Frameworks. Science, 341(6149). doi:10.1126/science.1230444 | es_ES |
dc.description.references | Gascon, J., Corma, A., Kapteijn, F., & Llabrés i Xamena, F. X. (2013). Metal Organic Framework Catalysis: Quo vadis? ACS Catalysis, 4(2), 361-378. doi:10.1021/cs400959k | es_ES |
dc.description.references | Cirujano, F. G. (2017). MOFs vs. zeolites: carbonyl activation with M(iv) catalytic sites. Catalysis Science & Technology, 7(23), 5482-5494. doi:10.1039/c7cy01811h | es_ES |
dc.description.references | Rojas-Buzo, S., García-García, P., & Corma, A. (2018). Hf-based metal–organic frameworks as acid–base catalysts for the transformation of biomass-derived furanic compounds into chemicals. Green Chemistry, 20(13), 3081-3091. doi:10.1039/c8gc00806j | es_ES |
dc.description.references | Guo, Q., Ren, L., Kumar, P., Cybulskis, V. J., Mkhoyan, K. A., Davis, M. E., & Tsapatsis, M. (2018). A Chromium Hydroxide/MIL‐101(Cr) MOF Composite Catalyst and Its Use for the Selective Isomerization of Glucose to Fructose. Angewandte Chemie International Edition, 57(18), 4926-4930. doi:10.1002/anie.201712818 | es_ES |
dc.description.references | Oozeerally, R., Ramkhelawan, S. D. K., Burnett, D. L., Tempelman, C. H. L., & Degirmenci, V. (2019). ZIF-8 Metal Organic Framework for the Conversion of Glucose to Fructose and 5-Hydroxymethyl Furfural. Catalysts, 9(10), 812. doi:10.3390/catal9100812 | es_ES |
dc.description.references | Yabushita, M., Li, P., Islamoglu, T., Kobayashi, H., Fukuoka, A., Farha, O. K., & Katz, A. (2017). Selective Metal–Organic Framework Catalysis of Glucose to 5-Hydroxymethylfurfural Using Phosphate-Modified NU-1000. Industrial & Engineering Chemistry Research, 56(25), 7141-7148. doi:10.1021/acs.iecr.7b01164 | es_ES |
dc.description.references | Yan, C., Zhang, Y., Da, Z., Wie, Y., Li, B., Meng, M., … Yan, Y. (2019). Synthesis and Evaluation of Acid‐base Bi‐functional MOFs Catalyst Supported on PVDF Membrane for Glucose Dehydration to 5‐HMF. ChemistrySelect, 4(45), 13182-13190. doi:10.1002/slct.201903356 | es_ES |
dc.description.references | Oozeerally, R., Burnett, D. L., Chamberlain, T. W., Walton, R. I., & Degirmenci, V. (2018). Exceptionally Efficient and Recyclable Heterogeneous Metal-Organic Framework Catalyst for Glucose Isomerization in Water. ChemCatChem, 10(4), 706-709. doi:10.1002/cctc.201701825 | es_ES |
dc.description.references | Gong, J., Katz, M. J., & Kerton, F. M. (2018). Catalytic conversion of glucose to 5-hydroxymethylfurfural using zirconium-containing metal–organic frameworks using microwave heating. RSC Advances, 8(55), 31618-31627. doi:10.1039/c8ra06021e | es_ES |
dc.description.references | Rojas-Buzo, S., García-García, P., & Corma, A. (2017). Catalytic Transfer Hydrogenation of Biomass-Derived Carbonyls over Hafnium-Based Metal-Organic Frameworks. ChemSusChem, 11(2), 432-438. doi:10.1002/cssc.201701708 | es_ES |
dc.description.references | Luo, Q., Zhang, Y., Qi, L., & Scott, S. L. (2019). Glucose Isomerization and Epimerization over Metal‐Organic Frameworks with Single‐Site Active Centers. ChemCatChem, 11(7), 1903-1909. doi:10.1002/cctc.201801889 | es_ES |
dc.description.references | Cavka, J. H., Jakobsen, S., Olsbye, U., Guillou, N., Lamberti, C., Bordiga, S., & Lillerud, K. P. (2008). A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. Journal of the American Chemical Society, 130(42), 13850-13851. doi:10.1021/ja8057953 | es_ES |
dc.description.references | Moon, S.-Y., Liu, Y., Hupp, J. T., & Farha, O. K. (2015). Instantaneous Hydrolysis of Nerve-Agent Simulants with a Six-Connected Zirconium-Based Metal-Organic Framework. Angewandte Chemie International Edition, 54(23), 6795-6799. doi:10.1002/anie.201502155 | es_ES |
dc.description.references | Furukawa, H., Gándara, F., Zhang, Y.-B., Jiang, J., Queen, W. L., Hudson, M. R., & Yaghi, O. M. (2014). Water Adsorption in Porous Metal–Organic Frameworks and Related Materials. Journal of the American Chemical Society, 136(11), 4369-4381. doi:10.1021/ja500330a | es_ES |
dc.description.references | Cliffe, M. J., Wan, W., Zou, X., Chater, P. A., Kleppe, A. K., Tucker, M. G., … Goodwin, A. L. (2014). Correlated defect nanoregions in a metal–organic framework. Nature Communications, 5(1). doi:10.1038/ncomms5176 | es_ES |
dc.description.references | Liu, Y., Klet, R. C., Hupp, J. T., & Farha, O. (2016). Probing the correlations between the defects in metal–organic frameworks and their catalytic activity by an epoxide ring-opening reaction. Chemical Communications, 52(50), 7806-7809. doi:10.1039/c6cc03727e | es_ES |
dc.description.references | Cybulski, A., Kuster, B. F. M., & Marin, G. B. (1991). The kinetics of the molybdate-catalysed epimerization of D-glucose and D-mannose in aqueous solutions. Journal of Molecular Catalysis, 68(1), 87-103. doi:10.1016/0304-5102(91)80063-9 | es_ES |
dc.description.references | Ju, F., VanderVelde, D., & Nikolla, E. (2014). Molybdenum-Based Polyoxometalates as Highly Active and Selective Catalysts for the Epimerization of Aldoses. ACS Catalysis, 4(5), 1358-1364. doi:10.1021/cs401253z | es_ES |
dc.description.references | Rajabbeigi, N., Torres, A. I., Lew, C. M., Elyassi, B., Ren, L., Wang, Z., … Tsapatsis, M. (2014). On the kinetics of the isomerization of glucose to fructose using Sn-Beta. Chemical Engineering Science, 116, 235-242. doi:10.1016/j.ces.2014.04.031 | es_ES |
dc.description.references | Bermejo-Deval, R., Assary, R. S., Nikolla, E., Moliner, M., Roman-Leshkov, Y., Hwang, S.-J., … Davis, M. E. (2012). Metalloenzyme-like catalyzed isomerizations of sugars by Lewis acid zeolites. Proceedings of the National Academy of Sciences, 109(25), 9727-9732. doi:10.1073/pnas.1206708109 | es_ES |
dc.description.references | Hayes, M. L., Pennings, N. J., Serianni, A. S., & Barker, R. (1982). Epimerization of aldoses by molybdate involving a novel rearrangement of the carbon skeleton. Journal of the American Chemical Society, 104(24), 6764-6769. doi:10.1021/ja00388a047 | es_ES |
dc.description.references | Zheng, A., Liu, S.-B., & Deng, F. (2017). 31P NMR Chemical Shifts of Phosphorus Probes as Reliable and Practical Acidity Scales for Solid and Liquid Catalysts. Chemical Reviews, 117(19), 12475-12531. doi:10.1021/acs.chemrev.7b00289 | es_ES |
dc.description.references | Lewis, J. D., Ha, M., Luo, H., Faucher, A., Michaelis, V. K., & Román-Leshkov, Y. (2018). Distinguishing Active Site Identity in Sn-Beta Zeolites Using 31P MAS NMR of Adsorbed Trimethylphosphine Oxide. ACS Catalysis, 8(4), 3076-3086. doi:10.1021/acscatal.7b03533 | es_ES |
dc.description.references | Caratelli, C., Hajek, J., Cirujano, F. G., Waroquier, M., Llabrés i Xamena, F. X., & Van Speybroeck, V. (2017). Nature of active sites on UiO-66 and beneficial influence of water in the catalysis of Fischer esterification. Journal of Catalysis, 352, 401-414. doi:10.1016/j.jcat.2017.06.014 | es_ES |
dc.description.references | Panchenko, V. N., Timofeeva, M. N., & Jhung, S. H. (2016). Acid-base properties and catalytic activity of metal-organic frameworks: A view from spectroscopic and semiempirical methods. Catalysis Reviews, 58(2), 209-307. doi:10.1080/01614940.2016.1128193 | es_ES |
dc.description.references | Hajek, J., Caratelli, C., Demuynck, R., De Wispelaere, K., Vanduyfhuys, L., Waroquier, M., & Van Speybroeck, V. (2018). On the intrinsic dynamic nature of the rigid UiO-66 metal–organic framework. Chemical Science, 9(10), 2723-2732. doi:10.1039/c7sc04947a | es_ES |
dc.description.references | Caratelli, C., Hajek, J., Meijer, E. J., Waroquier, M., & Van Speybroeck, V. (2019). Dynamic Interplay between Defective UiO‐66 and Protic Solvents in Activated Processes. Chemistry – A European Journal, 25(67), 15315-15325. doi:10.1002/chem.201903178 | es_ES |
dc.description.references | ZHU, Y., CHUAH, G., & JAENICKE, S. (2004). Chemo- and regioselective Meerwein–Ponndorf–Verley and Oppenauer reactions catalyzed by Al-free Zr-zeolite beta. Journal of Catalysis, 227(1), 1-10. doi:10.1016/j.jcat.2004.05.037 | es_ES |
dc.description.references | Zhao, Y., & Truhlar, D. G. (2008). The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06 functionals and 12 other functionals. Theoretical Chemistry Accounts, 119(5-6), 525-525. doi:10.1007/s00214-007-0401-8 | es_ES |
dc.description.references | Ditchfield, R., Hehre, W. J., & Pople, J. A. (1971). Self‐Consistent Molecular‐Orbital Methods. IX. An Extended Gaussian‐Type Basis for Molecular‐Orbital Studies of Organic Molecules. The Journal of Chemical Physics, 54(2), 724-728. doi:10.1063/1.1674902 | es_ES |
dc.description.references | Hehre, W. J., Ditchfield, R., & Pople, J. A. (1972). Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules. The Journal of Chemical Physics, 56(5), 2257-2261. doi:10.1063/1.1677527 | es_ES |
dc.description.references | Hay, P. J., & Wadt, W. R. (1985). Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. The Journal of Chemical Physics, 82(1), 270-283. doi:10.1063/1.448799 | es_ES |
dc.description.references | Hay, P. J., & Wadt, W. R. (1985). Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. The Journal of Chemical Physics, 82(1), 299-310. doi:10.1063/1.448975 | es_ES |
dc.description.references | Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Had, M.; Fox, D. J. Gaussian 09; Gaussian, Inc.: Wallingford CT, 2009. | es_ES |
dc.description.references | Ditchfield, R. (1974). Self-consistent perturbation theory of diamagnetism. Molecular Physics, 27(4), 789-807. doi:10.1080/00268977400100711 | es_ES |
dc.description.references | Wolinski, K., Hinton, J. F., & Pulay, P. (1990). Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. Journal of the American Chemical Society, 112(23), 8251-8260. doi:10.1021/ja00179a005 | es_ES |