- -

Novel Genomic Regions Associated with Intramuscular Fatty Acid Composition in Rabbits

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Novel Genomic Regions Associated with Intramuscular Fatty Acid Composition in Rabbits

Mostrar el registro completo del ítem

Laghouaouta, H.; Sosa-Madrid, BS.; Zubiri-Gaitán, A.; Hernández, P.; Blasco Mateu, A. (2020). Novel Genomic Regions Associated with Intramuscular Fatty Acid Composition in Rabbits. Animals. 10(11):1-17. https://doi.org/10.3390/ani10112090

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/165486

Ficheros en el ítem

Metadatos del ítem

Título: Novel Genomic Regions Associated with Intramuscular Fatty Acid Composition in Rabbits
Autor: Laghouaouta, Houda Sosa-Madrid, Bolivar Samuel Zubiri-Gaitán, Agostina Hernández, Pilar Blasco Mateu, Agustín
Entidad UPV: Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal
Fecha difusión:
Resumen:
[EN] A divergent selection experiment on intramuscular fat (IMF) content was carried out during nine generations in rabbits. The IMF content was successfully improved through generations. Besides, selection for IMF content ...[+]
Palabras clave: Intramuscular fat , Fatty acids , Divergent selection , Genome-wide association study , Rabbits
Derechos de uso: Reconocimiento (by)
Fuente:
Animals. (eissn: 2076-2615 )
DOI: 10.3390/ani10112090
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/ani10112090
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//AGL2014-55921-C2-1-P/ES/ESTUDIO GENOMICO Y METABOLOMICO DE VARIAS LINEAS DE SELECCION DIVERGENTE EN CONEJO: EL CONEJO COMO MODELO EXPERIMENTAL/
info:eu-repo/grantAgreement/MINECO//BES-2015-074194/ES/BES-2015-074194/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/AGL2017-86083-C2-1-P/ES/ESTUDIO MULTIOMICO SOBRE SENSIBILIDAD AMBIENTAL, LONGEVIDAD Y DEPOSICION GRASA EN LINEAS SELECCIONADAS DE CONEJO/
Agradecimientos:
The work was funded by project AGL2014-55921-C2-1-P and AGL2017-86083-C2-P1 from Plan Nacional de Investigacion Cientifica of Spain-Project I+D. B. Samuel Sosa-Madrid was supported by a FPI grant from Ministerio de Ciencia ...[+]
Tipo: Artículo

References

Martins, T. da S., Lemos, M. V. A. de, Mueller, L. F., Baldi, F., Amorim, T. R. de, Ferrinho, A. M., … Pereira, A. S. C. (2018). Fat Deposition, Fatty Acid Composition, and Its Relationship with Meat Quality and Human Health. Meat Science and Nutrition. doi:10.5772/intechopen.77994

Das, U. N. (2006). Essential fatty acids: biochemistry, physiology and pathology. Biotechnology Journal, 1(4), 420-439. doi:10.1002/biot.200600012

Nettleton, J. A., Brouwer, I. A., Geleijnse, J. M., & Hornstra, G. (2017). Saturated Fat Consumption and Risk of Coronary Heart Disease and Ischemic Stroke: A Science Update. Annals of Nutrition and Metabolism, 70(1), 26-33. doi:10.1159/000455681 [+]
Martins, T. da S., Lemos, M. V. A. de, Mueller, L. F., Baldi, F., Amorim, T. R. de, Ferrinho, A. M., … Pereira, A. S. C. (2018). Fat Deposition, Fatty Acid Composition, and Its Relationship with Meat Quality and Human Health. Meat Science and Nutrition. doi:10.5772/intechopen.77994

Das, U. N. (2006). Essential fatty acids: biochemistry, physiology and pathology. Biotechnology Journal, 1(4), 420-439. doi:10.1002/biot.200600012

Nettleton, J. A., Brouwer, I. A., Geleijnse, J. M., & Hornstra, G. (2017). Saturated Fat Consumption and Risk of Coronary Heart Disease and Ischemic Stroke: A Science Update. Annals of Nutrition and Metabolism, 70(1), 26-33. doi:10.1159/000455681

Sapp, R. L., Bertrand, J. K., Pringle, T. D., & Wilson, D. E. (2002). Effects of selection for ultrasound intramuscular fat percentage in Angus bulls on carcass traits of progeny. Journal of Animal Science, 80(8), 2017. doi:10.2527/2002.8082017x

Liu, L., Cui, H., Xing, S., Zhao, G., & Wen, J. (2019). Effect of Divergent Selection for Intramuscular Fat Content on Muscle Lipid Metabolism in Chickens. Animals, 10(1), 4. doi:10.3390/ani10010004

Zhao, G. P., Chen, J. L., Zheng, M. Q., Wen, J., & Zhang, Y. (2007). Correlated Responses to Selection for Increased Intramuscular Fat in a Chinese Quality Chicken Line. Poultry Science, 86(11), 2309-2314. doi:10.1093/ps/86.11.2309

Schwab, C. R., Baas, T. J., Stalder, K. J., & Nettleton, D. (2009). Results from six generations of selection for intramuscular fat in Duroc swine using real-time ultrasound. I. Direct and correlated phenotypic responses to selection1. Journal of Animal Science, 87(9), 2774-2780. doi:10.2527/jas.2008-1335

Martínez-Álvaro, M., Blasco, A., & Hernández, P. (2018). Effect of selection for intramuscular fat on the fatty acid composition of rabbit meat. Animal, 12(10), 2002-2008. doi:10.1017/s1751731117003494

Sosa‐Madrid, B. S., Hernández, P., Blasco, A., Haley, C. S., Fontanesi, L., Santacreu, M. A., … Ibáñez‐Escriche, N. (2019). Genomic regions influencing intramuscular fat in divergently selected rabbit lines. Animal Genetics, 51(1), 58-69. doi:10.1111/age.12873

Ros-Freixedes, R., Gol, S., Pena, R. N., Tor, M., Ibáñez-Escriche, N., Dekkers, J. C. M., & Estany, J. (2016). Genome-Wide Association Study Singles Out SCD and LEPR as the Two Main Loci Influencing Intramuscular Fat Content and Fatty Acid Composition in Duroc Pigs. PLOS ONE, 11(3), e0152496. doi:10.1371/journal.pone.0152496

Zhang, W., Zhang, J., Cui, L., Ma, J., Chen, C., Ai, H., … Yang, B. (2016). Genetic architecture of fatty acid composition in the longissimus dorsi muscle revealed by genome-wide association studies on diverse pig populations. Genetics Selection Evolution, 48(1). doi:10.1186/s12711-016-0184-2

Pena, R. N., Noguera, J. L., García-Santana, M. J., González, E., Tejeda, J. F., Ros-Freixedes, R., & Ibáñez-Escriche, N. (2019). Five genomic regions have a major impact on fat composition in Iberian pigs. Scientific Reports, 9(1). doi:10.1038/s41598-019-38622-7

Cesar, A. S., Regitano, L. C., Mourão, G. B., Tullio, R. R., Lanna, D. P., Nassu, R. T., … Coutinho, L. L. (2014). Genome-wide association study for intramuscular fat deposition and composition in Nellore cattle. BMC Genetics, 15(1). doi:10.1186/1471-2156-15-39

Sasago, N., Abe, T., Sakuma, H., Kojima, T., & Uemoto, Y. (2016). Genome-wide association study for carcass traits, fatty acid composition, chemical composition, sugar, and the effects of related candidate genes in Japanese Black cattle. Animal Science Journal, 88(1), 33-44. doi:10.1111/asj.12595

Wang, Z., Zhu, B., Niu, H., Zhang, W., Xu, L., Xu, L., … Li, J. (2019). Genome wide association study identifies SNPs associated with fatty acid composition in Chinese Wagyu cattle. Journal of Animal Science and Biotechnology, 10(1). doi:10.1186/s40104-019-0322-0

Zomeño, C., Hernández, P., & Blasco, A. (2013). Divergent selection for intramuscular fat content in rabbits. I. Direct response to selection1. Journal of Animal Science, 91(9), 4526-4531. doi:10.2527/jas.2013-6361

Zomeño, C., Juste, V., & Hernández, P. (2012). Application of NIRS for predicting fatty acids in intramuscular fat of rabbit. Meat Science, 91(2), 155-159. doi:10.1016/j.meatsci.2012.01.009

O’Fallon, J. V., Busboom, J. R., Nelson, M. L., & Gaskins, C. T. (2007). A direct method for fatty acid methyl ester synthesis: Application to wet meat tissues, oils, and feedstuffs. Journal of Animal Science, 85(6), 1511-1521. doi:10.2527/jas.2006-491

Browning, B. L., & Browning, S. R. (2016). Genotype Imputation with Millions of Reference Samples. The American Journal of Human Genetics, 98(1), 116-126. doi:10.1016/j.ajhg.2015.11.020

Bouwman, A. C., Janss, L. L., & Heuven, H. C. (2011). A Bayesian approach to detect QTL affecting a simulated binary and quantitative trait. BMC Proceedings, 5(S3). doi:10.1186/1753-6561-5-s3-s4

Kass, R. E., & Raftery, A. E. (1995). Bayes Factors. Journal of the American Statistical Association, 90(430), 773-795. doi:10.1080/01621459.1995.10476572

Cunningham, F., Achuthan, P., Akanni, W., Allen, J., Amode, M. R., Armean, I. M., … Boddu, S. (2018). Ensembl 2019. Nucleic Acids Research, 47(D1), D745-D751. doi:10.1093/nar/gky1113

Jiao, X., Sherman, B. T., Huang, D. W., Stephens, R., Baseler, M. W., Lane, H. C., & Lempicki, R. A. (2012). DAVID-WS: a stateful web service to facilitate gene/protein list analysis. Bioinformatics, 28(13), 1805-1806. doi:10.1093/bioinformatics/bts251

Binns, D., Dimmer, E., Huntley, R., Barrell, D., O’Donovan, C., & Apweiler, R. (2009). QuickGO: a web-based tool for Gene Ontology searching. Bioinformatics, 25(22), 3045-3046. doi:10.1093/bioinformatics/btp536

Chang, C. C., Chow, C. C., Tellier, L. C., Vattikuti, S., Purcell, S. M., & Lee, J. J. (2015). Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScience, 4(1). doi:10.1186/s13742-015-0047-8

Shin, J.-H., Blay, S., Graham, J., & McNeney, B. (2006). LDheatmap: AnRFunction for Graphical Display of Pairwise Linkage Disequilibria Between Single Nucleotide Polymorphisms. Journal of Statistical Software, 16(Code Snippet 3). doi:10.18637/jss.v016.c03

Casto-Rebollo, C., Argente, M. J., García, M. L., Pena, R., & Ibáñez-Escriche, N. (2020). Identification of functional mutations associated with environmental variance of litter size in rabbits. Genetics Selection Evolution, 52(1). doi:10.1186/s12711-020-00542-w

Kessner, D., & Novembre, J. (2015). Power Analysis of Artificial Selection Experiments Using Efficient Whole Genome Simulation of Quantitative Traits. Genetics, 199(4), 991-1005. doi:10.1534/genetics.115.175075

Lou, R. N., Therkildsen, N. O., & Messer, P. W. (2020). The Effects of Quantitative Trait Architecture on Detection Power in Short-Term Artificial Selection Experiments. G3 Genes|Genomes|Genetics, 10(9), 3213-3227. doi:10.1534/g3.120.401287

Spiegel, S., & Milstien, S. (2003). Sphingosine-1-phosphate: an enigmatic signalling lipid. Nature Reviews Molecular Cell Biology, 4(5), 397-407. doi:10.1038/nrm1103

Xu, R., Jin, J., Hu, W., Sun, W., Bielawski, J., Szulc, Z., … Mao, C. (2006). Golgi alkaline ceramidase regulates cell proliferation and survival by controlling levels of sphingosine and S1P. The FASEB Journal, 20(11), 1813-1825. doi:10.1096/fj.05-5689com

Xu, S., Zou, F., Diao, Z., Zhang, S., Deng, Y., Zhu, X., … Liu, P. (2019). Perilipin 2 and lipid droplets provide reciprocal stabilization. Biophysics Reports, 5(3), 145-160. doi:10.1007/s41048-019-0091-5

Gandolfi, G., Mazzoni, M., Zambonelli, P., Lalatta-Costerbosa, G., Tronca, A., Russo, V., & Davoli, R. (2011). Perilipin 1 and perilipin 2 protein localization and gene expression study in skeletal muscles of European cross-breed pigs with different intramuscular fat contents. Meat Science, 88(4), 631-637. doi:10.1016/j.meatsci.2011.02.020

Gol, S., Ros-Freixedes, R., Zambonelli, P., Tor, M., Pena, R. N., Braglia, S., … Davoli, R. (2015). Relationship between perilipin genes polymorphisms and growth, carcass and meat quality traits in pigs. Journal of Animal Breeding and Genetics, 133(1), 24-30. doi:10.1111/jbg.12159

Sosa-Madrid, B. S., Varona, L., Blasco, A., Hernández, P., Casto-Rebollo, C., & Ibáñez-Escriche, N. (2020). The effect of divergent selection for intramuscular fat on the domestic rabbit genome. Animal, 14(11), 2225-2235. doi:10.1017/s1751731120001263

Kim, E.-S., Ros-Freixedes, R., Pena, R. N., Baas, T. J., Estany, J., & Rothschild, M. F. (2015). Identification of signatures of selection for intramuscular fat and backfat thickness in two Duroc populations1. Journal of Animal Science, 93(7), 3292-3302. doi:10.2527/jas.2015-8879

Ye, Y., Lin, S., Mu, H., Tang, X., Ou, Y., Chen, J., … Li, Y. (2014). Analysis of Differentially Expressed Genes and Signaling Pathways Related to Intramuscular Fat Deposition in Skeletal Muscle of Sex-Linked Dwarf Chickens. BioMed Research International, 2014, 1-7. doi:10.1155/2014/724274

Ballester, M., Ramayo-Caldas, Y., Revilla, M., Corominas, J., Castelló, A., Estellé, J., … Folch, J. M. (2017). Integration of liver gene co-expression networks and eGWAs analyses highlighted candidate regulators implicated in lipid metabolism in pigs. Scientific Reports, 7(1). doi:10.1038/srep46539

DONG, Q., LIU, H., LI, X., WEI, W., ZHAO, S., & CAO, J. (2014). A genome-wide association study of five meat quality traits in Yorkshire pigs. Frontiers of Agricultural Science and Engineering, 1(2), 137. doi:10.15302/j-fase-2014014

Aung, H. W., Henry, S. A., & Walker, L. P. (2013). Revising the Representation of Fatty Acid, Glycerolipid, and Glycerophospholipid Metabolism in the Consensus Model of Yeast Metabolism. Industrial Biotechnology, 9(4), 215-228. doi:10.1089/ind.2013.0013

Janani, C., & Ranjitha Kumari, B. D. (2015). PPAR gamma gene – A review. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 9(1), 46-50. doi:10.1016/j.dsx.2014.09.015

Guo, B., Kongsuwan, K., Greenwood, P. L., Zhou, G., Zhang, W., & Dalrymple, B. P. (2014). A gene expression estimator of intramuscular fat percentage for use in both cattle and sheep. Journal of Animal Science and Biotechnology, 5(1). doi:10.1186/2049-1891-5-35

Wang, H., Xiong, K., Sun, W., Fu, Y., Jiang, Z., Yu, D., … Chen, J. (2013). Two completely linked polymorphisms in thePPARGtranscriptional regulatory region significantly affect gene expression and intramuscular fat deposition in the longissimus dorsi muscle of Erhualian pigs. Animal Genetics, 44(4), 458-462. doi:10.1111/age.12025

Jeong, J. Y., Kim, J. S., Nguyen, T. H., Lee, H.-J., & Baik, M. (2013). Wnt/β-catenin signaling and adipogenic genes are associated with intramuscular fat content in the longissimus dorsi muscle of Korean cattle. Animal Genetics, 44(6), 627-635. doi:10.1111/age.12061

Sleat, D. E., Wiseman, J. A., El-Banna, M., Price, S. M., Verot, L., Shen, M. M., … Lobel, P. (2004). Genetic evidence for nonredundant functional cooperativity between NPC1 and NPC2 in lipid transport. Proceedings of the National Academy of Sciences, 101(16), 5886-5891. doi:10.1073/pnas.0308456101

Nguyen, L. N., Ma, D., Shui, G., Wong, P., Cazenave-Gassiot, A., Zhang, X., … Silver, D. L. (2014). Mfsd2a is a transporter for the essential omega-3 fatty acid docosahexaenoic acid. Nature, 509(7501), 503-506. doi:10.1038/nature13241

Barendse, W. (2011). Haplotype Analysis Improved Evidence for Candidate Genes for Intramuscular Fat Percentage from a Genome Wide Association Study of Cattle. PLoS ONE, 6(12), e29601. doi:10.1371/journal.pone.0029601

Wang, Y. H., Bower, N. I., Reverter, A., Tan, S. H., De Jager, N., Wang, R., … Lehnert, S. A. (2009). Gene expression patterns during intramuscular fat development in cattle1. Journal of Animal Science, 87(1), 119-130. doi:10.2527/jas.2008-1082

Goldstein, J. L., DeBose-Boyd, R. A., & Brown, M. S. (2006). Protein Sensors for Membrane Sterols. Cell, 124(1), 35-46. doi:10.1016/j.cell.2005.12.022

Horton, J. D., Goldstein, J. L., & Brown, M. S. (2002). SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. Journal of Clinical Investigation, 109(9), 1125-1131. doi:10.1172/jci0215593

Zhang, F., Wang, Y., Mukiibi, R., Chen, L., Vinsky, M., Plastow, G., … Li, C. (2020). Genetic architecture of quantitative traits in beef cattle revealed by genome wide association studies of imputed whole genome sequence variants: I: feed efficiency and component traits. BMC Genomics, 21(1). doi:10.1186/s12864-019-6362-1

Maharani, D., Park, H.-B., Lee, J.-B., Yoo, C.-K., Lim, H.-T., Han, S.-H., … Lee, J.-H. (2012). Association of the gene encoding stearoyl-CoA desaturase (SCD) with fatty acid composition in an intercross population between Landrace and Korean native pigs. Molecular Biology Reports, 40(1), 73-80. doi:10.1007/s11033-012-2014-0

Avilés, C., Horcada, A., Polvillo, O., Membrillo, A., Anaya, G., Molina, A., … Panea, B. (2016). Association study between variability in the SCD gene and the fatty acid profile in perirenal and intramuscular fat deposits from Spanish goat populations. Small Ruminant Research, 136, 127-131. doi:10.1016/j.smallrumres.2016.01.008

Puig-Oliveras, A., Revilla, M., Castelló, A., Fernández, A. I., Folch, J. M., & Ballester, M. (2016). Expression-based GWAS identifies variants, gene interactions and key regulators affecting intramuscular fatty acid content and composition in porcine meat. Scientific Reports, 6(1). doi:10.1038/srep31803

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem