- -

Novel Genomic Regions Associated with Intramuscular Fatty Acid Composition in Rabbits

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Novel Genomic Regions Associated with Intramuscular Fatty Acid Composition in Rabbits

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Laghouaouta, Houda es_ES
dc.contributor.author Sosa-Madrid, Bolivar Samuel es_ES
dc.contributor.author Zubiri-Gaitán, Agostina es_ES
dc.contributor.author Hernández, Pilar es_ES
dc.contributor.author Blasco Mateu, Agustín es_ES
dc.date.accessioned 2021-04-22T03:31:40Z
dc.date.available 2021-04-22T03:31:40Z
dc.date.issued 2020-11 es_ES
dc.identifier.uri http://hdl.handle.net/10251/165486
dc.description.abstract [EN] A divergent selection experiment on intramuscular fat (IMF) content was carried out during nine generations in rabbits. The IMF content was successfully improved through generations. Besides, selection for IMF content generated a correlated response on its composition. Association analyses were performed to understand the genetic background of IMF composition using two rabbit lines divergently selected for IMF content. Several genomic regions and genes were identified, revealing the polygenic nature of the intramuscular fatty acid composition in rabbits. Intramuscular fat (IMF) content and its composition affect the quality of meat. Selection for IMF generated a correlated response on its fatty acid composition. The increase of IMF content is associated with an increase of its saturated (SFA) and monounsaturated (MUFA) fatty acids, and consequently a decrease of polyunsaturated fatty acids (PUFA). We carried out a genome wide association study (GWAS) for IMF composition on two rabbit lines divergently selected for IMF content, using a Bayes B procedure. Association analyses were performed using 475 individuals and 90,235 Single Nucleotide Polymorphisms (SNPs). The main objectives were to identify genomic regions associated with the IMF composition and to generate a list of candidate genes. Genomic regions associated with the intramuscular fatty acid composition were spread across different rabbit chromosomes (OCU). An important region at 34.0-37.9 Mb on OCU1 was associated with C14:0, C16:0, SFA, and C18:2n6, explaining 3.5%, 11.2%, 11.3%, and 3.2% of the genomic variance, respectively. Another relevant genomic region was found to be associated at 46.0-48.9 Mb on OCU18, explaining up to 8% of the genomic variance of MUFA/SFA. The associated regions harbor several genes related to lipid metabolism, such as SCD, PLIN2, and ERLIN1. The main genomic regions associated with the fatty acids were not previously associated with IMF content in rabbits. Nonetheless, MTMR2 is the only gene that was associated with both the IMF content and composition in rabbits. Our study highlighted the polygenic nature of the fatty acids in rabbits and elucidated its genetic background. es_ES
dc.description.sponsorship The work was funded by project AGL2014-55921-C2-1-P and AGL2017-86083-C2-P1 from Plan Nacional de Investigacion Cientifica of Spain-Project I+D. B. Samuel Sosa-Madrid was supported by a FPI grant from Ministerio de Ciencia e Innovacion of Spain (BES-2015-074194). Houda Laghouaouta was supported by a scholarship from the Mediterranean Agronomic Institute of Zaragoza. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Animals es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Intramuscular fat es_ES
dc.subject Fatty acids es_ES
dc.subject Divergent selection es_ES
dc.subject Genome-wide association study es_ES
dc.subject Rabbits es_ES
dc.subject.classification PRODUCCION ANIMAL es_ES
dc.title Novel Genomic Regions Associated with Intramuscular Fatty Acid Composition in Rabbits es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/ani10112090 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2014-55921-C2-1-P/ES/ESTUDIO GENOMICO Y METABOLOMICO DE VARIAS LINEAS DE SELECCION DIVERGENTE EN CONEJO: EL CONEJO COMO MODELO EXPERIMENTAL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BES-2015-074194/ES/BES-2015-074194/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/AGL2017-86083-C2-1-P/ES/ESTUDIO MULTIOMICO SOBRE SENSIBILIDAD AMBIENTAL, LONGEVIDAD Y DEPOSICION GRASA EN LINEAS SELECCIONADAS DE CONEJO/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal es_ES
dc.description.bibliographicCitation Laghouaouta, H.; Sosa-Madrid, BS.; Zubiri-Gaitán, A.; Hernández, P.; Blasco Mateu, A. (2020). Novel Genomic Regions Associated with Intramuscular Fatty Acid Composition in Rabbits. Animals. 10(11):1-17. https://doi.org/10.3390/ani10112090 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/ani10112090 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 17 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 11 es_ES
dc.identifier.eissn 2076-2615 es_ES
dc.identifier.pmid 33187110 es_ES
dc.identifier.pmcid PMC7697864 es_ES
dc.relation.pasarela S\434537 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Instituto Agronómico Mediterráneo de Zaragoza es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Martins, T. da S., Lemos, M. V. A. de, Mueller, L. F., Baldi, F., Amorim, T. R. de, Ferrinho, A. M., … Pereira, A. S. C. (2018). Fat Deposition, Fatty Acid Composition, and Its Relationship with Meat Quality and Human Health. Meat Science and Nutrition. doi:10.5772/intechopen.77994 es_ES
dc.description.references Das, U. N. (2006). Essential fatty acids: biochemistry, physiology and pathology. Biotechnology Journal, 1(4), 420-439. doi:10.1002/biot.200600012 es_ES
dc.description.references Nettleton, J. A., Brouwer, I. A., Geleijnse, J. M., & Hornstra, G. (2017). Saturated Fat Consumption and Risk of Coronary Heart Disease and Ischemic Stroke: A Science Update. Annals of Nutrition and Metabolism, 70(1), 26-33. doi:10.1159/000455681 es_ES
dc.description.references Sapp, R. L., Bertrand, J. K., Pringle, T. D., & Wilson, D. E. (2002). Effects of selection for ultrasound intramuscular fat percentage in Angus bulls on carcass traits of progeny. Journal of Animal Science, 80(8), 2017. doi:10.2527/2002.8082017x es_ES
dc.description.references Liu, L., Cui, H., Xing, S., Zhao, G., & Wen, J. (2019). Effect of Divergent Selection for Intramuscular Fat Content on Muscle Lipid Metabolism in Chickens. Animals, 10(1), 4. doi:10.3390/ani10010004 es_ES
dc.description.references Zhao, G. P., Chen, J. L., Zheng, M. Q., Wen, J., & Zhang, Y. (2007). Correlated Responses to Selection for Increased Intramuscular Fat in a Chinese Quality Chicken Line. Poultry Science, 86(11), 2309-2314. doi:10.1093/ps/86.11.2309 es_ES
dc.description.references Schwab, C. R., Baas, T. J., Stalder, K. J., & Nettleton, D. (2009). Results from six generations of selection for intramuscular fat in Duroc swine using real-time ultrasound. I. Direct and correlated phenotypic responses to selection1. Journal of Animal Science, 87(9), 2774-2780. doi:10.2527/jas.2008-1335 es_ES
dc.description.references Martínez-Álvaro, M., Blasco, A., & Hernández, P. (2018). Effect of selection for intramuscular fat on the fatty acid composition of rabbit meat. Animal, 12(10), 2002-2008. doi:10.1017/s1751731117003494 es_ES
dc.description.references Sosa‐Madrid, B. S., Hernández, P., Blasco, A., Haley, C. S., Fontanesi, L., Santacreu, M. A., … Ibáñez‐Escriche, N. (2019). Genomic regions influencing intramuscular fat in divergently selected rabbit lines. Animal Genetics, 51(1), 58-69. doi:10.1111/age.12873 es_ES
dc.description.references Ros-Freixedes, R., Gol, S., Pena, R. N., Tor, M., Ibáñez-Escriche, N., Dekkers, J. C. M., & Estany, J. (2016). Genome-Wide Association Study Singles Out SCD and LEPR as the Two Main Loci Influencing Intramuscular Fat Content and Fatty Acid Composition in Duroc Pigs. PLOS ONE, 11(3), e0152496. doi:10.1371/journal.pone.0152496 es_ES
dc.description.references Zhang, W., Zhang, J., Cui, L., Ma, J., Chen, C., Ai, H., … Yang, B. (2016). Genetic architecture of fatty acid composition in the longissimus dorsi muscle revealed by genome-wide association studies on diverse pig populations. Genetics Selection Evolution, 48(1). doi:10.1186/s12711-016-0184-2 es_ES
dc.description.references Pena, R. N., Noguera, J. L., García-Santana, M. J., González, E., Tejeda, J. F., Ros-Freixedes, R., & Ibáñez-Escriche, N. (2019). Five genomic regions have a major impact on fat composition in Iberian pigs. Scientific Reports, 9(1). doi:10.1038/s41598-019-38622-7 es_ES
dc.description.references Cesar, A. S., Regitano, L. C., Mourão, G. B., Tullio, R. R., Lanna, D. P., Nassu, R. T., … Coutinho, L. L. (2014). Genome-wide association study for intramuscular fat deposition and composition in Nellore cattle. BMC Genetics, 15(1). doi:10.1186/1471-2156-15-39 es_ES
dc.description.references Sasago, N., Abe, T., Sakuma, H., Kojima, T., & Uemoto, Y. (2016). Genome-wide association study for carcass traits, fatty acid composition, chemical composition, sugar, and the effects of related candidate genes in Japanese Black cattle. Animal Science Journal, 88(1), 33-44. doi:10.1111/asj.12595 es_ES
dc.description.references Wang, Z., Zhu, B., Niu, H., Zhang, W., Xu, L., Xu, L., … Li, J. (2019). Genome wide association study identifies SNPs associated with fatty acid composition in Chinese Wagyu cattle. Journal of Animal Science and Biotechnology, 10(1). doi:10.1186/s40104-019-0322-0 es_ES
dc.description.references Zomeño, C., Hernández, P., & Blasco, A. (2013). Divergent selection for intramuscular fat content in rabbits. I. Direct response to selection1. Journal of Animal Science, 91(9), 4526-4531. doi:10.2527/jas.2013-6361 es_ES
dc.description.references Zomeño, C., Juste, V., & Hernández, P. (2012). Application of NIRS for predicting fatty acids in intramuscular fat of rabbit. Meat Science, 91(2), 155-159. doi:10.1016/j.meatsci.2012.01.009 es_ES
dc.description.references O’Fallon, J. V., Busboom, J. R., Nelson, M. L., & Gaskins, C. T. (2007). A direct method for fatty acid methyl ester synthesis: Application to wet meat tissues, oils, and feedstuffs. Journal of Animal Science, 85(6), 1511-1521. doi:10.2527/jas.2006-491 es_ES
dc.description.references Browning, B. L., & Browning, S. R. (2016). Genotype Imputation with Millions of Reference Samples. The American Journal of Human Genetics, 98(1), 116-126. doi:10.1016/j.ajhg.2015.11.020 es_ES
dc.description.references Bouwman, A. C., Janss, L. L., & Heuven, H. C. (2011). A Bayesian approach to detect QTL affecting a simulated binary and quantitative trait. BMC Proceedings, 5(S3). doi:10.1186/1753-6561-5-s3-s4 es_ES
dc.description.references Kass, R. E., & Raftery, A. E. (1995). Bayes Factors. Journal of the American Statistical Association, 90(430), 773-795. doi:10.1080/01621459.1995.10476572 es_ES
dc.description.references Cunningham, F., Achuthan, P., Akanni, W., Allen, J., Amode, M. R., Armean, I. M., … Boddu, S. (2018). Ensembl 2019. Nucleic Acids Research, 47(D1), D745-D751. doi:10.1093/nar/gky1113 es_ES
dc.description.references Jiao, X., Sherman, B. T., Huang, D. W., Stephens, R., Baseler, M. W., Lane, H. C., & Lempicki, R. A. (2012). DAVID-WS: a stateful web service to facilitate gene/protein list analysis. Bioinformatics, 28(13), 1805-1806. doi:10.1093/bioinformatics/bts251 es_ES
dc.description.references Binns, D., Dimmer, E., Huntley, R., Barrell, D., O’Donovan, C., & Apweiler, R. (2009). QuickGO: a web-based tool for Gene Ontology searching. Bioinformatics, 25(22), 3045-3046. doi:10.1093/bioinformatics/btp536 es_ES
dc.description.references Chang, C. C., Chow, C. C., Tellier, L. C., Vattikuti, S., Purcell, S. M., & Lee, J. J. (2015). Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScience, 4(1). doi:10.1186/s13742-015-0047-8 es_ES
dc.description.references Shin, J.-H., Blay, S., Graham, J., & McNeney, B. (2006). LDheatmap: AnRFunction for Graphical Display of Pairwise Linkage Disequilibria Between Single Nucleotide Polymorphisms. Journal of Statistical Software, 16(Code Snippet 3). doi:10.18637/jss.v016.c03 es_ES
dc.description.references Casto-Rebollo, C., Argente, M. J., García, M. L., Pena, R., & Ibáñez-Escriche, N. (2020). Identification of functional mutations associated with environmental variance of litter size in rabbits. Genetics Selection Evolution, 52(1). doi:10.1186/s12711-020-00542-w es_ES
dc.description.references Kessner, D., & Novembre, J. (2015). Power Analysis of Artificial Selection Experiments Using Efficient Whole Genome Simulation of Quantitative Traits. Genetics, 199(4), 991-1005. doi:10.1534/genetics.115.175075 es_ES
dc.description.references Lou, R. N., Therkildsen, N. O., & Messer, P. W. (2020). The Effects of Quantitative Trait Architecture on Detection Power in Short-Term Artificial Selection Experiments. G3 Genes|Genomes|Genetics, 10(9), 3213-3227. doi:10.1534/g3.120.401287 es_ES
dc.description.references Spiegel, S., & Milstien, S. (2003). Sphingosine-1-phosphate: an enigmatic signalling lipid. Nature Reviews Molecular Cell Biology, 4(5), 397-407. doi:10.1038/nrm1103 es_ES
dc.description.references Xu, R., Jin, J., Hu, W., Sun, W., Bielawski, J., Szulc, Z., … Mao, C. (2006). Golgi alkaline ceramidase regulates cell proliferation and survival by controlling levels of sphingosine and S1P. The FASEB Journal, 20(11), 1813-1825. doi:10.1096/fj.05-5689com es_ES
dc.description.references Xu, S., Zou, F., Diao, Z., Zhang, S., Deng, Y., Zhu, X., … Liu, P. (2019). Perilipin 2 and lipid droplets provide reciprocal stabilization. Biophysics Reports, 5(3), 145-160. doi:10.1007/s41048-019-0091-5 es_ES
dc.description.references Gandolfi, G., Mazzoni, M., Zambonelli, P., Lalatta-Costerbosa, G., Tronca, A., Russo, V., & Davoli, R. (2011). Perilipin 1 and perilipin 2 protein localization and gene expression study in skeletal muscles of European cross-breed pigs with different intramuscular fat contents. Meat Science, 88(4), 631-637. doi:10.1016/j.meatsci.2011.02.020 es_ES
dc.description.references Gol, S., Ros-Freixedes, R., Zambonelli, P., Tor, M., Pena, R. N., Braglia, S., … Davoli, R. (2015). Relationship between perilipin genes polymorphisms and growth, carcass and meat quality traits in pigs. Journal of Animal Breeding and Genetics, 133(1), 24-30. doi:10.1111/jbg.12159 es_ES
dc.description.references Sosa-Madrid, B. S., Varona, L., Blasco, A., Hernández, P., Casto-Rebollo, C., & Ibáñez-Escriche, N. (2020). The effect of divergent selection for intramuscular fat on the domestic rabbit genome. Animal, 14(11), 2225-2235. doi:10.1017/s1751731120001263 es_ES
dc.description.references Kim, E.-S., Ros-Freixedes, R., Pena, R. N., Baas, T. J., Estany, J., & Rothschild, M. F. (2015). Identification of signatures of selection for intramuscular fat and backfat thickness in two Duroc populations1. Journal of Animal Science, 93(7), 3292-3302. doi:10.2527/jas.2015-8879 es_ES
dc.description.references Ye, Y., Lin, S., Mu, H., Tang, X., Ou, Y., Chen, J., … Li, Y. (2014). Analysis of Differentially Expressed Genes and Signaling Pathways Related to Intramuscular Fat Deposition in Skeletal Muscle of Sex-Linked Dwarf Chickens. BioMed Research International, 2014, 1-7. doi:10.1155/2014/724274 es_ES
dc.description.references Ballester, M., Ramayo-Caldas, Y., Revilla, M., Corominas, J., Castelló, A., Estellé, J., … Folch, J. M. (2017). Integration of liver gene co-expression networks and eGWAs analyses highlighted candidate regulators implicated in lipid metabolism in pigs. Scientific Reports, 7(1). doi:10.1038/srep46539 es_ES
dc.description.references DONG, Q., LIU, H., LI, X., WEI, W., ZHAO, S., & CAO, J. (2014). A genome-wide association study of five meat quality traits in Yorkshire pigs. Frontiers of Agricultural Science and Engineering, 1(2), 137. doi:10.15302/j-fase-2014014 es_ES
dc.description.references Aung, H. W., Henry, S. A., & Walker, L. P. (2013). Revising the Representation of Fatty Acid, Glycerolipid, and Glycerophospholipid Metabolism in the Consensus Model of Yeast Metabolism. Industrial Biotechnology, 9(4), 215-228. doi:10.1089/ind.2013.0013 es_ES
dc.description.references Janani, C., & Ranjitha Kumari, B. D. (2015). PPAR gamma gene – A review. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 9(1), 46-50. doi:10.1016/j.dsx.2014.09.015 es_ES
dc.description.references Guo, B., Kongsuwan, K., Greenwood, P. L., Zhou, G., Zhang, W., & Dalrymple, B. P. (2014). A gene expression estimator of intramuscular fat percentage for use in both cattle and sheep. Journal of Animal Science and Biotechnology, 5(1). doi:10.1186/2049-1891-5-35 es_ES
dc.description.references Wang, H., Xiong, K., Sun, W., Fu, Y., Jiang, Z., Yu, D., … Chen, J. (2013). Two completely linked polymorphisms in thePPARGtranscriptional regulatory region significantly affect gene expression and intramuscular fat deposition in the longissimus dorsi muscle of Erhualian pigs. Animal Genetics, 44(4), 458-462. doi:10.1111/age.12025 es_ES
dc.description.references Jeong, J. Y., Kim, J. S., Nguyen, T. H., Lee, H.-J., & Baik, M. (2013). Wnt/β-catenin signaling and adipogenic genes are associated with intramuscular fat content in the longissimus dorsi muscle of Korean cattle. Animal Genetics, 44(6), 627-635. doi:10.1111/age.12061 es_ES
dc.description.references Sleat, D. E., Wiseman, J. A., El-Banna, M., Price, S. M., Verot, L., Shen, M. M., … Lobel, P. (2004). Genetic evidence for nonredundant functional cooperativity between NPC1 and NPC2 in lipid transport. Proceedings of the National Academy of Sciences, 101(16), 5886-5891. doi:10.1073/pnas.0308456101 es_ES
dc.description.references Nguyen, L. N., Ma, D., Shui, G., Wong, P., Cazenave-Gassiot, A., Zhang, X., … Silver, D. L. (2014). Mfsd2a is a transporter for the essential omega-3 fatty acid docosahexaenoic acid. Nature, 509(7501), 503-506. doi:10.1038/nature13241 es_ES
dc.description.references Barendse, W. (2011). Haplotype Analysis Improved Evidence for Candidate Genes for Intramuscular Fat Percentage from a Genome Wide Association Study of Cattle. PLoS ONE, 6(12), e29601. doi:10.1371/journal.pone.0029601 es_ES
dc.description.references Wang, Y. H., Bower, N. I., Reverter, A., Tan, S. H., De Jager, N., Wang, R., … Lehnert, S. A. (2009). Gene expression patterns during intramuscular fat development in cattle1. Journal of Animal Science, 87(1), 119-130. doi:10.2527/jas.2008-1082 es_ES
dc.description.references Goldstein, J. L., DeBose-Boyd, R. A., & Brown, M. S. (2006). Protein Sensors for Membrane Sterols. Cell, 124(1), 35-46. doi:10.1016/j.cell.2005.12.022 es_ES
dc.description.references Horton, J. D., Goldstein, J. L., & Brown, M. S. (2002). SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. Journal of Clinical Investigation, 109(9), 1125-1131. doi:10.1172/jci0215593 es_ES
dc.description.references Zhang, F., Wang, Y., Mukiibi, R., Chen, L., Vinsky, M., Plastow, G., … Li, C. (2020). Genetic architecture of quantitative traits in beef cattle revealed by genome wide association studies of imputed whole genome sequence variants: I: feed efficiency and component traits. BMC Genomics, 21(1). doi:10.1186/s12864-019-6362-1 es_ES
dc.description.references Maharani, D., Park, H.-B., Lee, J.-B., Yoo, C.-K., Lim, H.-T., Han, S.-H., … Lee, J.-H. (2012). Association of the gene encoding stearoyl-CoA desaturase (SCD) with fatty acid composition in an intercross population between Landrace and Korean native pigs. Molecular Biology Reports, 40(1), 73-80. doi:10.1007/s11033-012-2014-0 es_ES
dc.description.references Avilés, C., Horcada, A., Polvillo, O., Membrillo, A., Anaya, G., Molina, A., … Panea, B. (2016). Association study between variability in the SCD gene and the fatty acid profile in perirenal and intramuscular fat deposits from Spanish goat populations. Small Ruminant Research, 136, 127-131. doi:10.1016/j.smallrumres.2016.01.008 es_ES
dc.description.references Puig-Oliveras, A., Revilla, M., Castelló, A., Fernández, A. I., Folch, J. M., & Ballester, M. (2016). Expression-based GWAS identifies variants, gene interactions and key regulators affecting intramuscular fatty acid content and composition in porcine meat. Scientific Reports, 6(1). doi:10.1038/srep31803 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem