Mostrar el registro sencillo del ítem
dc.contributor.author | Laghouaouta, Houda | es_ES |
dc.contributor.author | Sosa-Madrid, Bolivar Samuel | es_ES |
dc.contributor.author | Zubiri-Gaitán, Agostina | es_ES |
dc.contributor.author | Hernández, Pilar | es_ES |
dc.contributor.author | Blasco Mateu, Agustín | es_ES |
dc.date.accessioned | 2021-04-22T03:31:40Z | |
dc.date.available | 2021-04-22T03:31:40Z | |
dc.date.issued | 2020-11 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/165486 | |
dc.description.abstract | [EN] A divergent selection experiment on intramuscular fat (IMF) content was carried out during nine generations in rabbits. The IMF content was successfully improved through generations. Besides, selection for IMF content generated a correlated response on its composition. Association analyses were performed to understand the genetic background of IMF composition using two rabbit lines divergently selected for IMF content. Several genomic regions and genes were identified, revealing the polygenic nature of the intramuscular fatty acid composition in rabbits. Intramuscular fat (IMF) content and its composition affect the quality of meat. Selection for IMF generated a correlated response on its fatty acid composition. The increase of IMF content is associated with an increase of its saturated (SFA) and monounsaturated (MUFA) fatty acids, and consequently a decrease of polyunsaturated fatty acids (PUFA). We carried out a genome wide association study (GWAS) for IMF composition on two rabbit lines divergently selected for IMF content, using a Bayes B procedure. Association analyses were performed using 475 individuals and 90,235 Single Nucleotide Polymorphisms (SNPs). The main objectives were to identify genomic regions associated with the IMF composition and to generate a list of candidate genes. Genomic regions associated with the intramuscular fatty acid composition were spread across different rabbit chromosomes (OCU). An important region at 34.0-37.9 Mb on OCU1 was associated with C14:0, C16:0, SFA, and C18:2n6, explaining 3.5%, 11.2%, 11.3%, and 3.2% of the genomic variance, respectively. Another relevant genomic region was found to be associated at 46.0-48.9 Mb on OCU18, explaining up to 8% of the genomic variance of MUFA/SFA. The associated regions harbor several genes related to lipid metabolism, such as SCD, PLIN2, and ERLIN1. The main genomic regions associated with the fatty acids were not previously associated with IMF content in rabbits. Nonetheless, MTMR2 is the only gene that was associated with both the IMF content and composition in rabbits. Our study highlighted the polygenic nature of the fatty acids in rabbits and elucidated its genetic background. | es_ES |
dc.description.sponsorship | The work was funded by project AGL2014-55921-C2-1-P and AGL2017-86083-C2-P1 from Plan Nacional de Investigacion Cientifica of Spain-Project I+D. B. Samuel Sosa-Madrid was supported by a FPI grant from Ministerio de Ciencia e Innovacion of Spain (BES-2015-074194). Houda Laghouaouta was supported by a scholarship from the Mediterranean Agronomic Institute of Zaragoza. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Animals | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Intramuscular fat | es_ES |
dc.subject | Fatty acids | es_ES |
dc.subject | Divergent selection | es_ES |
dc.subject | Genome-wide association study | es_ES |
dc.subject | Rabbits | es_ES |
dc.subject.classification | PRODUCCION ANIMAL | es_ES |
dc.title | Novel Genomic Regions Associated with Intramuscular Fatty Acid Composition in Rabbits | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/ani10112090 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//AGL2014-55921-C2-1-P/ES/ESTUDIO GENOMICO Y METABOLOMICO DE VARIAS LINEAS DE SELECCION DIVERGENTE EN CONEJO: EL CONEJO COMO MODELO EXPERIMENTAL/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BES-2015-074194/ES/BES-2015-074194/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/AGL2017-86083-C2-1-P/ES/ESTUDIO MULTIOMICO SOBRE SENSIBILIDAD AMBIENTAL, LONGEVIDAD Y DEPOSICION GRASA EN LINEAS SELECCIONADAS DE CONEJO/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal | es_ES |
dc.description.bibliographicCitation | Laghouaouta, H.; Sosa-Madrid, BS.; Zubiri-Gaitán, A.; Hernández, P.; Blasco Mateu, A. (2020). Novel Genomic Regions Associated with Intramuscular Fatty Acid Composition in Rabbits. Animals. 10(11):1-17. https://doi.org/10.3390/ani10112090 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/ani10112090 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 17 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 10 | es_ES |
dc.description.issue | 11 | es_ES |
dc.identifier.eissn | 2076-2615 | es_ES |
dc.identifier.pmid | 33187110 | es_ES |
dc.identifier.pmcid | PMC7697864 | es_ES |
dc.relation.pasarela | S\434537 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Instituto Agronómico Mediterráneo de Zaragoza | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Martins, T. da S., Lemos, M. V. A. de, Mueller, L. F., Baldi, F., Amorim, T. R. de, Ferrinho, A. M., … Pereira, A. S. C. (2018). Fat Deposition, Fatty Acid Composition, and Its Relationship with Meat Quality and Human Health. Meat Science and Nutrition. doi:10.5772/intechopen.77994 | es_ES |
dc.description.references | Das, U. N. (2006). Essential fatty acids: biochemistry, physiology and pathology. Biotechnology Journal, 1(4), 420-439. doi:10.1002/biot.200600012 | es_ES |
dc.description.references | Nettleton, J. A., Brouwer, I. A., Geleijnse, J. M., & Hornstra, G. (2017). Saturated Fat Consumption and Risk of Coronary Heart Disease and Ischemic Stroke: A Science Update. Annals of Nutrition and Metabolism, 70(1), 26-33. doi:10.1159/000455681 | es_ES |
dc.description.references | Sapp, R. L., Bertrand, J. K., Pringle, T. D., & Wilson, D. E. (2002). Effects of selection for ultrasound intramuscular fat percentage in Angus bulls on carcass traits of progeny. Journal of Animal Science, 80(8), 2017. doi:10.2527/2002.8082017x | es_ES |
dc.description.references | Liu, L., Cui, H., Xing, S., Zhao, G., & Wen, J. (2019). Effect of Divergent Selection for Intramuscular Fat Content on Muscle Lipid Metabolism in Chickens. Animals, 10(1), 4. doi:10.3390/ani10010004 | es_ES |
dc.description.references | Zhao, G. P., Chen, J. L., Zheng, M. Q., Wen, J., & Zhang, Y. (2007). Correlated Responses to Selection for Increased Intramuscular Fat in a Chinese Quality Chicken Line. Poultry Science, 86(11), 2309-2314. doi:10.1093/ps/86.11.2309 | es_ES |
dc.description.references | Schwab, C. R., Baas, T. J., Stalder, K. J., & Nettleton, D. (2009). Results from six generations of selection for intramuscular fat in Duroc swine using real-time ultrasound. I. Direct and correlated phenotypic responses to selection1. Journal of Animal Science, 87(9), 2774-2780. doi:10.2527/jas.2008-1335 | es_ES |
dc.description.references | Martínez-Álvaro, M., Blasco, A., & Hernández, P. (2018). Effect of selection for intramuscular fat on the fatty acid composition of rabbit meat. Animal, 12(10), 2002-2008. doi:10.1017/s1751731117003494 | es_ES |
dc.description.references | Sosa‐Madrid, B. S., Hernández, P., Blasco, A., Haley, C. S., Fontanesi, L., Santacreu, M. A., … Ibáñez‐Escriche, N. (2019). Genomic regions influencing intramuscular fat in divergently selected rabbit lines. Animal Genetics, 51(1), 58-69. doi:10.1111/age.12873 | es_ES |
dc.description.references | Ros-Freixedes, R., Gol, S., Pena, R. N., Tor, M., Ibáñez-Escriche, N., Dekkers, J. C. M., & Estany, J. (2016). Genome-Wide Association Study Singles Out SCD and LEPR as the Two Main Loci Influencing Intramuscular Fat Content and Fatty Acid Composition in Duroc Pigs. PLOS ONE, 11(3), e0152496. doi:10.1371/journal.pone.0152496 | es_ES |
dc.description.references | Zhang, W., Zhang, J., Cui, L., Ma, J., Chen, C., Ai, H., … Yang, B. (2016). Genetic architecture of fatty acid composition in the longissimus dorsi muscle revealed by genome-wide association studies on diverse pig populations. Genetics Selection Evolution, 48(1). doi:10.1186/s12711-016-0184-2 | es_ES |
dc.description.references | Pena, R. N., Noguera, J. L., García-Santana, M. J., González, E., Tejeda, J. F., Ros-Freixedes, R., & Ibáñez-Escriche, N. (2019). Five genomic regions have a major impact on fat composition in Iberian pigs. Scientific Reports, 9(1). doi:10.1038/s41598-019-38622-7 | es_ES |
dc.description.references | Cesar, A. S., Regitano, L. C., Mourão, G. B., Tullio, R. R., Lanna, D. P., Nassu, R. T., … Coutinho, L. L. (2014). Genome-wide association study for intramuscular fat deposition and composition in Nellore cattle. BMC Genetics, 15(1). doi:10.1186/1471-2156-15-39 | es_ES |
dc.description.references | Sasago, N., Abe, T., Sakuma, H., Kojima, T., & Uemoto, Y. (2016). Genome-wide association study for carcass traits, fatty acid composition, chemical composition, sugar, and the effects of related candidate genes in Japanese Black cattle. Animal Science Journal, 88(1), 33-44. doi:10.1111/asj.12595 | es_ES |
dc.description.references | Wang, Z., Zhu, B., Niu, H., Zhang, W., Xu, L., Xu, L., … Li, J. (2019). Genome wide association study identifies SNPs associated with fatty acid composition in Chinese Wagyu cattle. Journal of Animal Science and Biotechnology, 10(1). doi:10.1186/s40104-019-0322-0 | es_ES |
dc.description.references | Zomeño, C., Hernández, P., & Blasco, A. (2013). Divergent selection for intramuscular fat content in rabbits. I. Direct response to selection1. Journal of Animal Science, 91(9), 4526-4531. doi:10.2527/jas.2013-6361 | es_ES |
dc.description.references | Zomeño, C., Juste, V., & Hernández, P. (2012). Application of NIRS for predicting fatty acids in intramuscular fat of rabbit. Meat Science, 91(2), 155-159. doi:10.1016/j.meatsci.2012.01.009 | es_ES |
dc.description.references | O’Fallon, J. V., Busboom, J. R., Nelson, M. L., & Gaskins, C. T. (2007). A direct method for fatty acid methyl ester synthesis: Application to wet meat tissues, oils, and feedstuffs. Journal of Animal Science, 85(6), 1511-1521. doi:10.2527/jas.2006-491 | es_ES |
dc.description.references | Browning, B. L., & Browning, S. R. (2016). Genotype Imputation with Millions of Reference Samples. The American Journal of Human Genetics, 98(1), 116-126. doi:10.1016/j.ajhg.2015.11.020 | es_ES |
dc.description.references | Bouwman, A. C., Janss, L. L., & Heuven, H. C. (2011). A Bayesian approach to detect QTL affecting a simulated binary and quantitative trait. BMC Proceedings, 5(S3). doi:10.1186/1753-6561-5-s3-s4 | es_ES |
dc.description.references | Kass, R. E., & Raftery, A. E. (1995). Bayes Factors. Journal of the American Statistical Association, 90(430), 773-795. doi:10.1080/01621459.1995.10476572 | es_ES |
dc.description.references | Cunningham, F., Achuthan, P., Akanni, W., Allen, J., Amode, M. R., Armean, I. M., … Boddu, S. (2018). Ensembl 2019. Nucleic Acids Research, 47(D1), D745-D751. doi:10.1093/nar/gky1113 | es_ES |
dc.description.references | Jiao, X., Sherman, B. T., Huang, D. W., Stephens, R., Baseler, M. W., Lane, H. C., & Lempicki, R. A. (2012). DAVID-WS: a stateful web service to facilitate gene/protein list analysis. Bioinformatics, 28(13), 1805-1806. doi:10.1093/bioinformatics/bts251 | es_ES |
dc.description.references | Binns, D., Dimmer, E., Huntley, R., Barrell, D., O’Donovan, C., & Apweiler, R. (2009). QuickGO: a web-based tool for Gene Ontology searching. Bioinformatics, 25(22), 3045-3046. doi:10.1093/bioinformatics/btp536 | es_ES |
dc.description.references | Chang, C. C., Chow, C. C., Tellier, L. C., Vattikuti, S., Purcell, S. M., & Lee, J. J. (2015). Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScience, 4(1). doi:10.1186/s13742-015-0047-8 | es_ES |
dc.description.references | Shin, J.-H., Blay, S., Graham, J., & McNeney, B. (2006). LDheatmap: AnRFunction for Graphical Display of Pairwise Linkage Disequilibria Between Single Nucleotide Polymorphisms. Journal of Statistical Software, 16(Code Snippet 3). doi:10.18637/jss.v016.c03 | es_ES |
dc.description.references | Casto-Rebollo, C., Argente, M. J., García, M. L., Pena, R., & Ibáñez-Escriche, N. (2020). Identification of functional mutations associated with environmental variance of litter size in rabbits. Genetics Selection Evolution, 52(1). doi:10.1186/s12711-020-00542-w | es_ES |
dc.description.references | Kessner, D., & Novembre, J. (2015). Power Analysis of Artificial Selection Experiments Using Efficient Whole Genome Simulation of Quantitative Traits. Genetics, 199(4), 991-1005. doi:10.1534/genetics.115.175075 | es_ES |
dc.description.references | Lou, R. N., Therkildsen, N. O., & Messer, P. W. (2020). The Effects of Quantitative Trait Architecture on Detection Power in Short-Term Artificial Selection Experiments. G3 Genes|Genomes|Genetics, 10(9), 3213-3227. doi:10.1534/g3.120.401287 | es_ES |
dc.description.references | Spiegel, S., & Milstien, S. (2003). Sphingosine-1-phosphate: an enigmatic signalling lipid. Nature Reviews Molecular Cell Biology, 4(5), 397-407. doi:10.1038/nrm1103 | es_ES |
dc.description.references | Xu, R., Jin, J., Hu, W., Sun, W., Bielawski, J., Szulc, Z., … Mao, C. (2006). Golgi alkaline ceramidase regulates cell proliferation and survival by controlling levels of sphingosine and S1P. The FASEB Journal, 20(11), 1813-1825. doi:10.1096/fj.05-5689com | es_ES |
dc.description.references | Xu, S., Zou, F., Diao, Z., Zhang, S., Deng, Y., Zhu, X., … Liu, P. (2019). Perilipin 2 and lipid droplets provide reciprocal stabilization. Biophysics Reports, 5(3), 145-160. doi:10.1007/s41048-019-0091-5 | es_ES |
dc.description.references | Gandolfi, G., Mazzoni, M., Zambonelli, P., Lalatta-Costerbosa, G., Tronca, A., Russo, V., & Davoli, R. (2011). Perilipin 1 and perilipin 2 protein localization and gene expression study in skeletal muscles of European cross-breed pigs with different intramuscular fat contents. Meat Science, 88(4), 631-637. doi:10.1016/j.meatsci.2011.02.020 | es_ES |
dc.description.references | Gol, S., Ros-Freixedes, R., Zambonelli, P., Tor, M., Pena, R. N., Braglia, S., … Davoli, R. (2015). Relationship between perilipin genes polymorphisms and growth, carcass and meat quality traits in pigs. Journal of Animal Breeding and Genetics, 133(1), 24-30. doi:10.1111/jbg.12159 | es_ES |
dc.description.references | Sosa-Madrid, B. S., Varona, L., Blasco, A., Hernández, P., Casto-Rebollo, C., & Ibáñez-Escriche, N. (2020). The effect of divergent selection for intramuscular fat on the domestic rabbit genome. Animal, 14(11), 2225-2235. doi:10.1017/s1751731120001263 | es_ES |
dc.description.references | Kim, E.-S., Ros-Freixedes, R., Pena, R. N., Baas, T. J., Estany, J., & Rothschild, M. F. (2015). Identification of signatures of selection for intramuscular fat and backfat thickness in two Duroc populations1. Journal of Animal Science, 93(7), 3292-3302. doi:10.2527/jas.2015-8879 | es_ES |
dc.description.references | Ye, Y., Lin, S., Mu, H., Tang, X., Ou, Y., Chen, J., … Li, Y. (2014). Analysis of Differentially Expressed Genes and Signaling Pathways Related to Intramuscular Fat Deposition in Skeletal Muscle of Sex-Linked Dwarf Chickens. BioMed Research International, 2014, 1-7. doi:10.1155/2014/724274 | es_ES |
dc.description.references | Ballester, M., Ramayo-Caldas, Y., Revilla, M., Corominas, J., Castelló, A., Estellé, J., … Folch, J. M. (2017). Integration of liver gene co-expression networks and eGWAs analyses highlighted candidate regulators implicated in lipid metabolism in pigs. Scientific Reports, 7(1). doi:10.1038/srep46539 | es_ES |
dc.description.references | DONG, Q., LIU, H., LI, X., WEI, W., ZHAO, S., & CAO, J. (2014). A genome-wide association study of five meat quality traits in Yorkshire pigs. Frontiers of Agricultural Science and Engineering, 1(2), 137. doi:10.15302/j-fase-2014014 | es_ES |
dc.description.references | Aung, H. W., Henry, S. A., & Walker, L. P. (2013). Revising the Representation of Fatty Acid, Glycerolipid, and Glycerophospholipid Metabolism in the Consensus Model of Yeast Metabolism. Industrial Biotechnology, 9(4), 215-228. doi:10.1089/ind.2013.0013 | es_ES |
dc.description.references | Janani, C., & Ranjitha Kumari, B. D. (2015). PPAR gamma gene – A review. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 9(1), 46-50. doi:10.1016/j.dsx.2014.09.015 | es_ES |
dc.description.references | Guo, B., Kongsuwan, K., Greenwood, P. L., Zhou, G., Zhang, W., & Dalrymple, B. P. (2014). A gene expression estimator of intramuscular fat percentage for use in both cattle and sheep. Journal of Animal Science and Biotechnology, 5(1). doi:10.1186/2049-1891-5-35 | es_ES |
dc.description.references | Wang, H., Xiong, K., Sun, W., Fu, Y., Jiang, Z., Yu, D., … Chen, J. (2013). Two completely linked polymorphisms in thePPARGtranscriptional regulatory region significantly affect gene expression and intramuscular fat deposition in the longissimus dorsi muscle of Erhualian pigs. Animal Genetics, 44(4), 458-462. doi:10.1111/age.12025 | es_ES |
dc.description.references | Jeong, J. Y., Kim, J. S., Nguyen, T. H., Lee, H.-J., & Baik, M. (2013). Wnt/β-catenin signaling and adipogenic genes are associated with intramuscular fat content in the longissimus dorsi muscle of Korean cattle. Animal Genetics, 44(6), 627-635. doi:10.1111/age.12061 | es_ES |
dc.description.references | Sleat, D. E., Wiseman, J. A., El-Banna, M., Price, S. M., Verot, L., Shen, M. M., … Lobel, P. (2004). Genetic evidence for nonredundant functional cooperativity between NPC1 and NPC2 in lipid transport. Proceedings of the National Academy of Sciences, 101(16), 5886-5891. doi:10.1073/pnas.0308456101 | es_ES |
dc.description.references | Nguyen, L. N., Ma, D., Shui, G., Wong, P., Cazenave-Gassiot, A., Zhang, X., … Silver, D. L. (2014). Mfsd2a is a transporter for the essential omega-3 fatty acid docosahexaenoic acid. Nature, 509(7501), 503-506. doi:10.1038/nature13241 | es_ES |
dc.description.references | Barendse, W. (2011). Haplotype Analysis Improved Evidence for Candidate Genes for Intramuscular Fat Percentage from a Genome Wide Association Study of Cattle. PLoS ONE, 6(12), e29601. doi:10.1371/journal.pone.0029601 | es_ES |
dc.description.references | Wang, Y. H., Bower, N. I., Reverter, A., Tan, S. H., De Jager, N., Wang, R., … Lehnert, S. A. (2009). Gene expression patterns during intramuscular fat development in cattle1. Journal of Animal Science, 87(1), 119-130. doi:10.2527/jas.2008-1082 | es_ES |
dc.description.references | Goldstein, J. L., DeBose-Boyd, R. A., & Brown, M. S. (2006). Protein Sensors for Membrane Sterols. Cell, 124(1), 35-46. doi:10.1016/j.cell.2005.12.022 | es_ES |
dc.description.references | Horton, J. D., Goldstein, J. L., & Brown, M. S. (2002). SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. Journal of Clinical Investigation, 109(9), 1125-1131. doi:10.1172/jci0215593 | es_ES |
dc.description.references | Zhang, F., Wang, Y., Mukiibi, R., Chen, L., Vinsky, M., Plastow, G., … Li, C. (2020). Genetic architecture of quantitative traits in beef cattle revealed by genome wide association studies of imputed whole genome sequence variants: I: feed efficiency and component traits. BMC Genomics, 21(1). doi:10.1186/s12864-019-6362-1 | es_ES |
dc.description.references | Maharani, D., Park, H.-B., Lee, J.-B., Yoo, C.-K., Lim, H.-T., Han, S.-H., … Lee, J.-H. (2012). Association of the gene encoding stearoyl-CoA desaturase (SCD) with fatty acid composition in an intercross population between Landrace and Korean native pigs. Molecular Biology Reports, 40(1), 73-80. doi:10.1007/s11033-012-2014-0 | es_ES |
dc.description.references | Avilés, C., Horcada, A., Polvillo, O., Membrillo, A., Anaya, G., Molina, A., … Panea, B. (2016). Association study between variability in the SCD gene and the fatty acid profile in perirenal and intramuscular fat deposits from Spanish goat populations. Small Ruminant Research, 136, 127-131. doi:10.1016/j.smallrumres.2016.01.008 | es_ES |
dc.description.references | Puig-Oliveras, A., Revilla, M., Castelló, A., Fernández, A. I., Folch, J. M., & Ballester, M. (2016). Expression-based GWAS identifies variants, gene interactions and key regulators affecting intramuscular fatty acid content and composition in porcine meat. Scientific Reports, 6(1). doi:10.1038/srep31803 | es_ES |