- -

Transforming Methyl Levulinate into Biosurfactants and Biolubricants by Chemoselective Reductive Etherification with Fatty Alcohols

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Transforming Methyl Levulinate into Biosurfactants and Biolubricants by Chemoselective Reductive Etherification with Fatty Alcohols

Mostrar el registro completo del ítem

Garcia-Ortiz, A.; Arias-Carrascal, KS.; Climent Olmedo, MJ.; Corma Canós, A.; Iborra Chornet, S. (2020). Transforming Methyl Levulinate into Biosurfactants and Biolubricants by Chemoselective Reductive Etherification with Fatty Alcohols. ChemSusChem. 13(4):707-714. https://doi.org/10.1002/cssc.201903496

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/165487

Ficheros en el ítem

Metadatos del ítem

Título: Transforming Methyl Levulinate into Biosurfactants and Biolubricants by Chemoselective Reductive Etherification with Fatty Alcohols
Autor: Garcia-Ortiz, Andrea Arias-Carrascal, Karen Sulay Climent Olmedo, María José Corma Canós, Avelino Iborra Chornet, Sara
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
[EN] Biomass-derived surfactants with very good surfacetension and criticalmicellar concentration properties wereobtained by conversion of methyl levulinate into methyl 4-alkoxypenta- noates through reductive etherification ...[+]
Palabras clave: Biobased lubricants , Biobased surfactants , Fatty alcohols , Methyl levulinate , Reductive etherification
Derechos de uso: Reserva de todos los derechos
Fuente:
ChemSusChem. (issn: 1864-5631 )
DOI: 10.1002/cssc.201903496
Editorial:
John Wiley & Sons
Versión del editor: https://doi.org/10.1002/cssc.201903496
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-097277-B-I00/ES/MEJORA DEL CONCEPTO DE BIORREFINERIA MEDIANTE IMPLEMENTACION DE NUEVOS PROCESOS CATALITICOS CON CATALIZADORES SOLIDOS DE METALES NO NOBLES PARA LA PRODUCCION DE BIOCOMPUESTOS/
Descripción: This is the peer reviewed version of the following article: A. Garcia-Ortiz, K. S. Arias, M. J. Climent, A. Corma, S. Iborra, ChemSusChem 2020, 13, 707, which has been published in final form at https://doi.org/10.1002/cssc.201903496. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.
Agradecimientos:
The research leading to these results has received funding from the Spanish Ministry of Science, Innovation and Universities through "Severo Ochoa" Excellence Program (SEV-2016-0683) and the PGC2018-097277-B-100 (MCIU/AEI/FEDER, ...[+]
Tipo: Artículo

References

Climent, M. J., Corma, A., & Iborra, S. (2014). Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels. Green Chemistry, 16(2), 516. doi:10.1039/c3gc41492b

Yan, L., Yao, Q., & Fu, Y. (2017). Conversion of levulinic acid and alkyl levulinates into biofuels and high-value chemicals. Green Chemistry, 19(23), 5527-5547. doi:10.1039/c7gc02503c

Vidal, J. D., Climent, M. J., Concepcion, P., Corma, A., Iborra, S., & Sabater, M. J. (2015). Chemicals from Biomass: Chemoselective Reductive Amination of Ethyl Levulinate with Amines. ACS Catalysis, 5(10), 5812-5821. doi:10.1021/acscatal.5b01113 [+]
Climent, M. J., Corma, A., & Iborra, S. (2014). Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels. Green Chemistry, 16(2), 516. doi:10.1039/c3gc41492b

Yan, L., Yao, Q., & Fu, Y. (2017). Conversion of levulinic acid and alkyl levulinates into biofuels and high-value chemicals. Green Chemistry, 19(23), 5527-5547. doi:10.1039/c7gc02503c

Vidal, J. D., Climent, M. J., Concepcion, P., Corma, A., Iborra, S., & Sabater, M. J. (2015). Chemicals from Biomass: Chemoselective Reductive Amination of Ethyl Levulinate with Amines. ACS Catalysis, 5(10), 5812-5821. doi:10.1021/acscatal.5b01113

Mascal, M., & Nikitin, E. B. (2010). High-yield conversion of plant biomass into the key value-added feedstocks 5-(hydroxymethyl)furfural, levulinic acid, and levulinic esters via5-(chloromethyl)furfural. Green Chem., 12(3), 370-373. doi:10.1039/b918922j

Brasholz, M., von Känel, K., Hornung, C. H., Saubern, S., & Tsanaktsidis, J. (2011). Highly efficient dehydration of carbohydrates to 5-(chloromethyl)furfural (CMF), 5-(hydroxymethyl)furfural (HMF) and levulinic acid by biphasic continuous flow processing. Green Chemistry, 13(5), 1114. doi:10.1039/c1gc15107j

W. A.Frey J. W.Brown J. P.Kelly M. E.Carroll P. C.Guion(Georgia Pacific LLC Atlanta GA) US20150052806A1 2015.

V.Lopez-Fernandez L.Arribas M.Frades A.Ruiz WO2020016290A1 2020.

L. T.Banner J. A.Bohlmann B. J.Brazeau T.-J.Han P.Loucks S. N.Shriver S.Zhou(Cargill Inc Wayzata MN) US8962883B2 2015.

Alonso, D. M., Wettstein, S. G., & Dumesic, J. A. (2013). Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass. Green Chemistry, 15(3), 584. doi:10.1039/c3gc37065h

Tulchinsky, M. L., & Briggs, J. R. (2016). One-Pot Synthesis of Alkyl 4-Alkoxypentanoates by Esterification and Reductive Etherification of Levulinic Acid in Alcoholic Solutions. ACS Sustainable Chemistry & Engineering, 4(8), 4089-4093. doi:10.1021/acssuschemeng.6b00173

Vidal, J. D., Climent, M. J., Corma, A., Concepcion, D. P., & Iborra, S. (2016). One-Pot Selective Catalytic Synthesis of Pyrrolidone Derivatives from Ethyl Levulinate and Nitro Compounds. ChemSusChem, 10(1), 119-128. doi:10.1002/cssc.201601333

Foley, P., Kermanshahi pour, A., Beach, E. S., & Zimmerman, J. B. (2012). Derivation and synthesis of renewable surfactants. Chem. Soc. Rev., 41(4), 1499-1518. doi:10.1039/c1cs15217c

Garcia-Ortiz, A., Arias, K. S., Climent, M. J., Corma, A., & Iborra, S. (2018). Cover Feature: One-Pot Synthesis of Biomass-Derived Surfactants by Reacting Hydroxymethylfurfural, Glycerol, and Fatty Alcohols on Solid Acid Catalysts (ChemSusChem 17/2018). ChemSusChem, 11(17), 2838-2838. doi:10.1002/cssc.201801921

Arias, K. S., Climent, M. J., Corma, A., & Iborra, S. (2013). Biomass-Derived Chemicals: Synthesis of Biodegradable Surfactant Ether Molecules from Hydroxymethylfurfural. ChemSusChem, 7(1), 210-220. doi:10.1002/cssc.201300531

Climent, M. J., Corma, A., Iborra, S., Martínez-Silvestre, S., & Velty, A. (2013). Preparation of Glycerol Carbonate Esters by using Hybrid Nafion-Silica Catalyst. ChemSusChem, 6(7), 1224-1234. doi:10.1002/cssc.201300146

J. Verhoef, M., J. Creyghton, E., & A. Peters, J. (1997). Reductive etherification of substituted cyclohexanones with secondary alcohols catalysed by zeolite H-MCM-22. Chemical Communications, (20), 1989. doi:10.1039/a705196d

Gooßen, L., & Linder, C. (2006). Catalytic Reductive Etherification of Ketones with Alcohols at Ambient Hydrogen Pressure: A Practical, Waste-Minimized Synthesis of Dialkyl Ethers. Synlett, 2006(20), 3489-3491. doi:10.1055/s-2006-956484

Bethmont, V., Fache, F., & Lemaire, M. (1995). An alternative catalytic method to the Williamson’s synthesis of ethers. Tetrahedron Letters, 36(24), 4235-4236. doi:10.1016/0040-4039(95)00730-z

Shi, Y., Dayoub, W., Chen, G.-R., & Lemaire, M. (2010). Selective synthesis of 1-O-alkyl glycerol and diglycerol ethers by reductive alkylation of alcohols. Green Chemistry, 12(12), 2189. doi:10.1039/c0gc00202j

Sutter, M., Dayoub, W., Métay, E., Raoul, Y., & Lemaire, M. (2012). Selective Synthesis of 1-O-Alkyl(poly)glycerol Ethers by Catalytic Reductive Alkylation of Carboxylic Acids with a Recyclable Catalytic System. ChemSusChem, 5(12), 2397-2409. doi:10.1002/cssc.201200447

Fujii, Y., Furugaki, H., Tamura, E., Yano, S., & Kita, K. (2005). A Convenient Catalytic Method for the Synthesis of Ethers from Alcohols and Carbonyl Compounds. Bulletin of the Chemical Society of Japan, 78(3), 456-463. doi:10.1246/bcsj.78.456

HOWARD, W. L., & BROWN, J. H. (1961). Hydrogenolysis of Ketals. The Journal of Organic Chemistry, 26(4), 1026-1028. doi:10.1021/jo01063a010

Jadhav, D., Grippo, A. M., Shylesh, S., Gokhale, A. A., Redshaw, J., & Bell, A. T. (2017). Production of Biomass-Based Automotive Lubricants by Reductive Etherification. ChemSusChem, 10(11), 2527-2533. doi:10.1002/cssc.201700427

Fache, F., Bethmont, V., Jacquot, L., & Lemaire, M. (1996). Reductive O - and N -alkylations. Alternative catalytic methods to nucleophilic substitution. Recueil des Travaux Chimiques des Pays-Bas, 115(4), 231-238. doi:10.1002/recl.19961150408

Millman, W. S., & Smith, G. V. (1977). ROLE OF ACETAL FORMATION IN METAL CATALYZED HYDROGENATION AND EXCHANGE OF CINNAMALDEHYDE. Catalysis in Organic Syntheses 1977, 33-65. doi:10.1016/b978-0-12-650550-4.50008-0

Bethmont, V., Montassier, C., & Marecot, P. (2000). Ether synthesis from alcohol and aldehyde in the presence of hydrogen and palladium deposited on charcoal. Journal of Molecular Catalysis A: Chemical, 152(1-2), 133-140. doi:10.1016/s1381-1169(99)00272-1

García-Ortiz, A., Vidal, J. D., Climent, M. J., Concepción, P., Corma, A., & Iborra, S. (2019). Chemicals from Biomass: Selective Synthesis of N-Substituted Furfuryl Amines by the One-Pot Direct Reductive Amination of Furanic Aldehydes. ACS Sustainable Chemistry & Engineering, 7(6), 6243-6250. doi:10.1021/acssuschemeng.8b06631

Mastalir, Á., Rác, B., Király, Z., & Molnár, Á. (2007). In situ generation of Pd nanoparticles in MCM-41 and catalytic applications in liquid-phase alkyne hydrogenations. Journal of Molecular Catalysis A: Chemical, 264(1-2), 170-178. doi:10.1016/j.molcata.2006.09.021

Cabiac, A., Cacciaguerra, T., Trens, P., Durand, R., Delahay, G., Medevielle, A., … Coq, B. (2008). Influence of textural properties of activated carbons on Pd/carbon catalysts synthesis for cinnamaldehyde hydrogenation. Applied Catalysis A: General, 340(2), 229-235. doi:10.1016/j.apcata.2008.02.018

YIN, F., JI, S., WU, P., ZHAO, F., & LI, C. (2008). Deactivation behavior of Pd-based SBA-15 mesoporous silica catalysts for the catalytic combustion of methane. Journal of Catalysis, 257(1), 108-116. doi:10.1016/j.jcat.2008.04.010

Strobel, R. (2004). Flame spray synthesis of Pd/Al2O3 catalysts and their behavior in enantioselective hydrogenation. Journal of Catalysis, 222(2), 307-314. doi:10.1016/j.jcat.2003.10.012

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem