- -

Transforming Methyl Levulinate into Biosurfactants and Biolubricants by Chemoselective Reductive Etherification with Fatty Alcohols

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Transforming Methyl Levulinate into Biosurfactants and Biolubricants by Chemoselective Reductive Etherification with Fatty Alcohols

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Garcia-Ortiz, Andrea es_ES
dc.contributor.author Arias-Carrascal, Karen Sulay es_ES
dc.contributor.author Climent Olmedo, María José es_ES
dc.contributor.author Corma Canós, Avelino es_ES
dc.contributor.author Iborra Chornet, Sara es_ES
dc.date.accessioned 2021-04-22T03:31:42Z
dc.date.available 2021-04-22T03:31:42Z
dc.date.issued 2020-02-21 es_ES
dc.identifier.issn 1864-5631 es_ES
dc.identifier.uri http://hdl.handle.net/10251/165487
dc.description This is the peer reviewed version of the following article: A. Garcia-Ortiz, K. S. Arias, M. J. Climent, A. Corma, S. Iborra, ChemSusChem 2020, 13, 707, which has been published in final form at https://doi.org/10.1002/cssc.201903496. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. es_ES
dc.description.abstract [EN] Biomass-derived surfactants with very good surfacetension and criticalmicellar concentration properties wereobtained by conversion of methyl levulinate into methyl 4-alkoxypenta- noates through reductive etherification with aliphatic alcohols. Amongdifferent bifunctional acid/metal catalysts bestresults were obtained with Pd on carbon bearing acid sites. The reac- tion occurred through the formation of an enol ether inter- mediate followed by hydrogenation. Pd in high-density planes was the active hydrogenation species, and an optimum crystal size was found to be approximately 10 nm. The reductive etherification with aliphatic alcohols was extended to other aliphatic and cyclic ketonesand aldehydes obtained from bio- mass, and excellent results were obtained on supported Pd catalysts with the reaction route and experimentalconditions described in this work. es_ES
dc.description.sponsorship The research leading to these results has received funding from the Spanish Ministry of Science, Innovation and Universities through "Severo Ochoa" Excellence Program (SEV-2016-0683) and the PGC2018-097277-B-100 (MCIU/AEI/FEDER, UE) project. The authors also thank the Microscopy Service of UPV for kind help on measurement. A.G.-O. thanks "Severo Ochoa" Program (SEV-2016-0683) for a predoctoral fellowship. es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof ChemSusChem es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Biobased lubricants es_ES
dc.subject Biobased surfactants es_ES
dc.subject Fatty alcohols es_ES
dc.subject Methyl levulinate es_ES
dc.subject Reductive etherification es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Transforming Methyl Levulinate into Biosurfactants and Biolubricants by Chemoselective Reductive Etherification with Fatty Alcohols es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/cssc.201903496 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-097277-B-I00/ES/MEJORA DEL CONCEPTO DE BIORREFINERIA MEDIANTE IMPLEMENTACION DE NUEVOS PROCESOS CATALITICOS CON CATALIZADORES SOLIDOS DE METALES NO NOBLES PARA LA PRODUCCION DE BIOCOMPUESTOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Garcia-Ortiz, A.; Arias-Carrascal, KS.; Climent Olmedo, MJ.; Corma Canós, A.; Iborra Chornet, S. (2020). Transforming Methyl Levulinate into Biosurfactants and Biolubricants by Chemoselective Reductive Etherification with Fatty Alcohols. ChemSusChem. 13(4):707-714. https://doi.org/10.1002/cssc.201903496 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/cssc.201903496 es_ES
dc.description.upvformatpinicio 707 es_ES
dc.description.upvformatpfin 714 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 13 es_ES
dc.description.issue 4 es_ES
dc.identifier.pmid 31912979 es_ES
dc.relation.pasarela S\409282 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Climent, M. J., Corma, A., & Iborra, S. (2014). Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels. Green Chemistry, 16(2), 516. doi:10.1039/c3gc41492b es_ES
dc.description.references Yan, L., Yao, Q., & Fu, Y. (2017). Conversion of levulinic acid and alkyl levulinates into biofuels and high-value chemicals. Green Chemistry, 19(23), 5527-5547. doi:10.1039/c7gc02503c es_ES
dc.description.references Vidal, J. D., Climent, M. J., Concepcion, P., Corma, A., Iborra, S., & Sabater, M. J. (2015). Chemicals from Biomass: Chemoselective Reductive Amination of Ethyl Levulinate with Amines. ACS Catalysis, 5(10), 5812-5821. doi:10.1021/acscatal.5b01113 es_ES
dc.description.references Mascal, M., & Nikitin, E. B. (2010). High-yield conversion of plant biomass into the key value-added feedstocks 5-(hydroxymethyl)furfural, levulinic acid, and levulinic esters via5-(chloromethyl)furfural. Green Chem., 12(3), 370-373. doi:10.1039/b918922j es_ES
dc.description.references Brasholz, M., von Känel, K., Hornung, C. H., Saubern, S., & Tsanaktsidis, J. (2011). Highly efficient dehydration of carbohydrates to 5-(chloromethyl)furfural (CMF), 5-(hydroxymethyl)furfural (HMF) and levulinic acid by biphasic continuous flow processing. Green Chemistry, 13(5), 1114. doi:10.1039/c1gc15107j es_ES
dc.description.references W. A.Frey J. W.Brown J. P.Kelly M. E.Carroll P. C.Guion(Georgia Pacific LLC Atlanta GA) US20150052806A1 2015. es_ES
dc.description.references V.Lopez-Fernandez L.Arribas M.Frades A.Ruiz WO2020016290A1 2020. es_ES
dc.description.references L. T.Banner J. A.Bohlmann B. J.Brazeau T.-J.Han P.Loucks S. N.Shriver S.Zhou(Cargill Inc Wayzata MN) US8962883B2 2015. es_ES
dc.description.references Alonso, D. M., Wettstein, S. G., & Dumesic, J. A. (2013). Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass. Green Chemistry, 15(3), 584. doi:10.1039/c3gc37065h es_ES
dc.description.references Tulchinsky, M. L., & Briggs, J. R. (2016). One-Pot Synthesis of Alkyl 4-Alkoxypentanoates by Esterification and Reductive Etherification of Levulinic Acid in Alcoholic Solutions. ACS Sustainable Chemistry & Engineering, 4(8), 4089-4093. doi:10.1021/acssuschemeng.6b00173 es_ES
dc.description.references Vidal, J. D., Climent, M. J., Corma, A., Concepcion, D. P., & Iborra, S. (2016). One-Pot Selective Catalytic Synthesis of Pyrrolidone Derivatives from Ethyl Levulinate and Nitro Compounds. ChemSusChem, 10(1), 119-128. doi:10.1002/cssc.201601333 es_ES
dc.description.references Foley, P., Kermanshahi pour, A., Beach, E. S., & Zimmerman, J. B. (2012). Derivation and synthesis of renewable surfactants. Chem. Soc. Rev., 41(4), 1499-1518. doi:10.1039/c1cs15217c es_ES
dc.description.references Garcia-Ortiz, A., Arias, K. S., Climent, M. J., Corma, A., & Iborra, S. (2018). Cover Feature: One-Pot Synthesis of Biomass-Derived Surfactants by Reacting Hydroxymethylfurfural, Glycerol, and Fatty Alcohols on Solid Acid Catalysts (ChemSusChem 17/2018). ChemSusChem, 11(17), 2838-2838. doi:10.1002/cssc.201801921 es_ES
dc.description.references Arias, K. S., Climent, M. J., Corma, A., & Iborra, S. (2013). Biomass-Derived Chemicals: Synthesis of Biodegradable Surfactant Ether Molecules from Hydroxymethylfurfural. ChemSusChem, 7(1), 210-220. doi:10.1002/cssc.201300531 es_ES
dc.description.references Climent, M. J., Corma, A., Iborra, S., Martínez-Silvestre, S., & Velty, A. (2013). Preparation of Glycerol Carbonate Esters by using Hybrid Nafion-Silica Catalyst. ChemSusChem, 6(7), 1224-1234. doi:10.1002/cssc.201300146 es_ES
dc.description.references J. Verhoef, M., J. Creyghton, E., & A. Peters, J. (1997). Reductive etherification of substituted cyclohexanones with secondary alcohols catalysed by zeolite H-MCM-22. Chemical Communications, (20), 1989. doi:10.1039/a705196d es_ES
dc.description.references Gooßen, L., & Linder, C. (2006). Catalytic Reductive Etherification of Ketones with Alcohols at Ambient Hydrogen Pressure: A Practical, Waste-Minimized Synthesis of Dialkyl Ethers. Synlett, 2006(20), 3489-3491. doi:10.1055/s-2006-956484 es_ES
dc.description.references Bethmont, V., Fache, F., & Lemaire, M. (1995). An alternative catalytic method to the Williamson’s synthesis of ethers. Tetrahedron Letters, 36(24), 4235-4236. doi:10.1016/0040-4039(95)00730-z es_ES
dc.description.references Shi, Y., Dayoub, W., Chen, G.-R., & Lemaire, M. (2010). Selective synthesis of 1-O-alkyl glycerol and diglycerol ethers by reductive alkylation of alcohols. Green Chemistry, 12(12), 2189. doi:10.1039/c0gc00202j es_ES
dc.description.references Sutter, M., Dayoub, W., Métay, E., Raoul, Y., & Lemaire, M. (2012). Selective Synthesis of 1-O-Alkyl(poly)glycerol Ethers by Catalytic Reductive Alkylation of Carboxylic Acids with a Recyclable Catalytic System. ChemSusChem, 5(12), 2397-2409. doi:10.1002/cssc.201200447 es_ES
dc.description.references Fujii, Y., Furugaki, H., Tamura, E., Yano, S., & Kita, K. (2005). A Convenient Catalytic Method for the Synthesis of Ethers from Alcohols and Carbonyl Compounds. Bulletin of the Chemical Society of Japan, 78(3), 456-463. doi:10.1246/bcsj.78.456 es_ES
dc.description.references HOWARD, W. L., & BROWN, J. H. (1961). Hydrogenolysis of Ketals. The Journal of Organic Chemistry, 26(4), 1026-1028. doi:10.1021/jo01063a010 es_ES
dc.description.references Jadhav, D., Grippo, A. M., Shylesh, S., Gokhale, A. A., Redshaw, J., & Bell, A. T. (2017). Production of Biomass-Based Automotive Lubricants by Reductive Etherification. ChemSusChem, 10(11), 2527-2533. doi:10.1002/cssc.201700427 es_ES
dc.description.references Fache, F., Bethmont, V., Jacquot, L., & Lemaire, M. (1996). Reductive O - and N -alkylations. Alternative catalytic methods to nucleophilic substitution. Recueil des Travaux Chimiques des Pays-Bas, 115(4), 231-238. doi:10.1002/recl.19961150408 es_ES
dc.description.references Millman, W. S., & Smith, G. V. (1977). ROLE OF ACETAL FORMATION IN METAL CATALYZED HYDROGENATION AND EXCHANGE OF CINNAMALDEHYDE. Catalysis in Organic Syntheses 1977, 33-65. doi:10.1016/b978-0-12-650550-4.50008-0 es_ES
dc.description.references Bethmont, V., Montassier, C., & Marecot, P. (2000). Ether synthesis from alcohol and aldehyde in the presence of hydrogen and palladium deposited on charcoal. Journal of Molecular Catalysis A: Chemical, 152(1-2), 133-140. doi:10.1016/s1381-1169(99)00272-1 es_ES
dc.description.references García-Ortiz, A., Vidal, J. D., Climent, M. J., Concepción, P., Corma, A., & Iborra, S. (2019). Chemicals from Biomass: Selective Synthesis of N-Substituted Furfuryl Amines by the One-Pot Direct Reductive Amination of Furanic Aldehydes. ACS Sustainable Chemistry & Engineering, 7(6), 6243-6250. doi:10.1021/acssuschemeng.8b06631 es_ES
dc.description.references Mastalir, Á., Rác, B., Király, Z., & Molnár, Á. (2007). In situ generation of Pd nanoparticles in MCM-41 and catalytic applications in liquid-phase alkyne hydrogenations. Journal of Molecular Catalysis A: Chemical, 264(1-2), 170-178. doi:10.1016/j.molcata.2006.09.021 es_ES
dc.description.references Cabiac, A., Cacciaguerra, T., Trens, P., Durand, R., Delahay, G., Medevielle, A., … Coq, B. (2008). Influence of textural properties of activated carbons on Pd/carbon catalysts synthesis for cinnamaldehyde hydrogenation. Applied Catalysis A: General, 340(2), 229-235. doi:10.1016/j.apcata.2008.02.018 es_ES
dc.description.references YIN, F., JI, S., WU, P., ZHAO, F., & LI, C. (2008). Deactivation behavior of Pd-based SBA-15 mesoporous silica catalysts for the catalytic combustion of methane. Journal of Catalysis, 257(1), 108-116. doi:10.1016/j.jcat.2008.04.010 es_ES
dc.description.references Strobel, R. (2004). Flame spray synthesis of Pd/Al2O3 catalysts and their behavior in enantioselective hydrogenation. Journal of Catalysis, 222(2), 307-314. doi:10.1016/j.jcat.2003.10.012 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem