- -

Atrial location optimization by electrical measures for Electrocardiographic Imaging

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Atrial location optimization by electrical measures for Electrocardiographic Imaging

Show full item record

Gisbert Soler, V.; Jiménez-Serrano, S.; Roses-Albert, E.; Rodrigo Bort, M. (2020). Atrial location optimization by electrical measures for Electrocardiographic Imaging. Computers in Biology and Medicine. 127:1-8. https://doi.org/10.1016/j.compbiomed.2020.104031

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/165515

Files in this item

Item Metadata

Title: Atrial location optimization by electrical measures for Electrocardiographic Imaging
Author: Gisbert Soler, Víctor Jiménez-Serrano, Santiago Roses-Albert, Eduardo RODRIGO BORT, MIGUEL
UPV Unit: Universitat Politècnica de València. Instituto Universitario de Aplicaciones de las Tecnologías de la Información - Institut Universitari d'Aplicacions de les Tecnologies de la Informació
Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat
Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Issued date:
Abstract:
[EN] Background: The Electrocardiographic Imaging (ECGI) technique, used to non-invasively reconstruct the epicardial electrical activity, requires an accurate model of the atria and torso anatomy. Here we evaluate a new ...[+]
Subjects: Inverse problem , L-curve curvature , Electrophysiology , Mapping , Dominant frequency , Phase analysis , Reentry , Rotor
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Computers in Biology and Medicine. (issn: 0010-4825 )
DOI: 10.1016/j.compbiomed.2020.104031
Publisher:
Elsevier
Publisher version: https://doi.org/10.1016/j.compbiomed.2020.104031
Project ID:
GENERALITAT VALENCIANA/APOSTD/2017/068
GENERALITAT VALENCIANA/GV/2018/103
Thanks:
This work was supported in part by: Generalitat Valenciana Grants [APOSTD/2017] and projects [GVA/2018/103]; Nvidia Corporation with GPU QUADRO P6000 donation.
Type: Artículo

References

Cuculich, P. S., Zhang, J., Wang, Y., Desouza, K. A., Vijayakumar, R., Woodard, P. K., & Rudy, Y. (2011). The Electrophysiological Cardiac Ventricular Substrate in Patients After Myocardial Infarction. Journal of the American College of Cardiology, 58(18), 1893-1902. doi:10.1016/j.jacc.2011.07.029

Revishvili, A. S., Wissner, E., Lebedev, D. S., Lemes, C., Deiss, S., Metzner, A., … Kuck, K.-H. (2015). Validation of the mapping accuracy of a novel non-invasive epicardial and endocardial electrophysiology system. Europace, 17(8), 1282-1288. doi:10.1093/europace/euu339

Haissaguerre, M., Hocini, M., Denis, A., Shah, A. J., Komatsu, Y., Yamashita, S., … Dubois, R. (2014). Driver Domains in Persistent Atrial Fibrillation. Circulation, 130(7), 530-538. doi:10.1161/circulationaha.113.005421 [+]
Cuculich, P. S., Zhang, J., Wang, Y., Desouza, K. A., Vijayakumar, R., Woodard, P. K., & Rudy, Y. (2011). The Electrophysiological Cardiac Ventricular Substrate in Patients After Myocardial Infarction. Journal of the American College of Cardiology, 58(18), 1893-1902. doi:10.1016/j.jacc.2011.07.029

Revishvili, A. S., Wissner, E., Lebedev, D. S., Lemes, C., Deiss, S., Metzner, A., … Kuck, K.-H. (2015). Validation of the mapping accuracy of a novel non-invasive epicardial and endocardial electrophysiology system. Europace, 17(8), 1282-1288. doi:10.1093/europace/euu339

Haissaguerre, M., Hocini, M., Denis, A., Shah, A. J., Komatsu, Y., Yamashita, S., … Dubois, R. (2014). Driver Domains in Persistent Atrial Fibrillation. Circulation, 130(7), 530-538. doi:10.1161/circulationaha.113.005421

PEDRÓN-TORRECILLA, J., RODRIGO, M., CLIMENT, A. M., LIBEROS, A., PÉREZ-DAVID, E., BERMEJO, J., … GUILLEM, M. S. (2016). Noninvasive Estimation of Epicardial Dominant High-Frequency Regions During Atrial Fibrillation. Journal of Cardiovascular Electrophysiology, 27(4), 435-442. doi:10.1111/jce.12931

Cuculich, P. S., Wang, Y., Lindsay, B. D., Faddis, M. N., Schuessler, R. B., Damiano, R. J., … Rudy, Y. (2010). Noninvasive Characterization of Epicardial Activation in Humans With Diverse Atrial Fibrillation Patterns. Circulation, 122(14), 1364-1372. doi:10.1161/circulationaha.110.945709

Wang, Y., Schuessler, R. B., Damiano, R. J., Woodard, P. K., & Rudy, Y. (2007). Noninvasive electrocardiographic imaging (ECGI) of scar-related atypical atrial flutter. Heart Rhythm, 4(12), 1565-1567. doi:10.1016/j.hrthm.2007.08.019

Milan Horáček, B., & Clements, J. C. (1997). The inverse problem of electrocardiography: A solution in terms of single- and double-layer sources on the epicardial surface. Mathematical Biosciences, 144(2), 119-154. doi:10.1016/s0025-5564(97)00024-2

Rodrigo, M., Climent, A. M., Liberos, A., Hernandez-Romero, I., Arenal, A., Bermejo, J., … Guillem, M. S. (2018). Solving Inaccuracies in Anatomical Models for Electrocardiographic Inverse Problem Resolution by Maximizing Reconstruction Quality. IEEE Transactions on Medical Imaging, 37(3), 733-740. doi:10.1109/tmi.2017.2707413

Dössel, O., Krueger, M. W., Weber, F. M., Wilhelms, M., & Seemann, G. (2012). Computational modeling of the human atrial anatomy and electrophysiology. Medical & Biological Engineering & Computing, 50(8), 773-799. doi:10.1007/s11517-012-0924-6

Koivumäki, J. T., Seemann, G., Maleckar, M. M., & Tavi, P. (2014). In Silico Screening of the Key Cellular Remodeling Targets in Chronic Atrial Fibrillation. PLoS Computational Biology, 10(5), e1003620. doi:10.1371/journal.pcbi.1003620

Garcia-Molla, V. M., Liberos, A., Vidal, A., Guillem, M. S., Millet, J., Gonzalez, A., … Climent, A. M. (2014). Adaptive step ODE algorithms for the 3D simulation of electric heart activity with graphics processing units. Computers in Biology and Medicine, 44, 15-26. doi:10.1016/j.compbiomed.2013.10.023

Rodrigo, M., Climent, A. M., Liberos, A., Fernández-Avilés, F., Berenfeld, O., Atienza, F., & Guillem, M. S. (2017). Highest dominant frequency and rotor positions are robust markers of driver location during noninvasive mapping of atrial fibrillation: A computational study. Heart Rhythm, 14(8), 1224-1233. doi:10.1016/j.hrthm.2017.04.017

Dolan, E. D., Lewis, R. M., & Torczon, V. (2003). On the Local Convergence of Pattern Search. SIAM Journal on Optimization, 14(2), 567-583. doi:10.1137/s1052623400374495

Rodrigo, M., Guillem, M. S., Climent, A. M., Pedrón-Torrecilla, J., Liberos, A., Millet, J., … Berenfeld, O. (2014). Body surface localization of left and right atrial high-frequency rotors in atrial fibrillation patients: A clinical-computational study. Heart Rhythm, 11(9), 1584-1591. doi:10.1016/j.hrthm.2014.05.013

Sanders, P., Berenfeld, O., Hocini, M., Jaïs, P., Vaidyanathan, R., Hsu, L.-F., … Haïssaguerre, M. (2005). Spectral Analysis Identifies Sites of High-Frequency Activity Maintaining Atrial Fibrillation in Humans. Circulation, 112(6), 789-797. doi:10.1161/circulationaha.104.517011

Atienza, F., Almendral, J., Ormaetxe, J. M., Moya, Á., Martínez-Alday, J. D., Hernández-Madrid, A., … Jalife, J. (2014). Comparison of Radiofrequency Catheter Ablation of Drivers and Circumferential Pulmonary Vein Isolation in Atrial Fibrillation. Journal of the American College of Cardiology, 64(23), 2455-2467. doi:10.1016/j.jacc.2014.09.053

Rodrigo, M., Climent, A. M., Liberos, A., Fernández-Avilés, F., Berenfeld, O., Atienza, F., & Guillem, M. S. (2017). Technical Considerations on Phase Mapping for Identification of Atrial Reentrant Activity in Direct- and Inverse-Computed Electrograms. Circulation: Arrhythmia and Electrophysiology, 10(9). doi:10.1161/circep.117.005008

Miller, J. M., Kalra, V., Das, M. K., Jain, R., Garlie, J. B., Brewster, J. A., & Dandamudi, G. (2017). Clinical Benefit of Ablating Localized Sources for Human Atrial Fibrillation. Journal of the American College of Cardiology, 69(10), 1247-1256. doi:10.1016/j.jacc.2016.11.079

Perez-Alday, E. A., Thomas, J. A., Kabir, M., Sedaghat, G., Rogovoy, N., van Dam, E., … Tereshchenko, L. G. (2018). Torso geometry reconstruction and body surface electrode localization using three-dimensional photography. Journal of Electrocardiology, 51(1), 60-67. doi:10.1016/j.jelectrocard.2017.08.035

Schulze, W. H. W., Mackens, P., Potyagaylo, D., Rhode, K., Tülümen, E., Schimpf, R., … Dössel, O. (2014). Automatic camera-based identification and 3-D reconstruction of electrode positions in electrocardiographic imaging. Biomedical Engineering / Biomedizinische Technik, 59(6). doi:10.1515/bmt-2014-0018

Ghanem, R. N., Ramanathan, C., Ping Jia, & Rudy, Y. (2003). Heart-surface reconstruction and ecg electrodes localization using fluoroscopy, epipolar geometry and stereovision: application to noninvasive imaging of cardiac electrical activity. IEEE Transactions on Medical Imaging, 22(10), 1307-1318. doi:10.1109/tmi.2003.818263

Lee, J., Thornhill, R. E., Nery, P., Robert deKemp, Peña, E., Birnie, D., … Ukwatta, E. (2019). Left atrial imaging and registration of fibrosis with conduction voltages using LGE-MRI and electroanatomical mapping. Computers in Biology and Medicine, 111, 103341. doi:10.1016/j.compbiomed.2019.103341

Weiss, E., Wijesooriya, K., Dill, S. V., & Keall, P. J. (2007). Tumor and normal tissue motion in the thorax during respiration: Analysis of volumetric and positional variations using 4D CT. International Journal of Radiation Oncology*Biology*Physics, 67(1), 296-307. doi:10.1016/j.ijrobp.2006.09.009

Wikström, K., Isacsson, U., Nilsson, K., & Ahnesjö, A. (2018). Reproducibility of heart and thoracic wall position in repeated deep inspiration breath holds for radiotherapy of left-sided breast cancer patients. Acta Oncologica, 57(10), 1318-1324. doi:10.1080/0284186x.2018.1490027

Messinger-Rapport, B. J., & Rudy, Y. (1986). The Inverse Problem in Electrocardiography: A Model Study of the Effects of Geometry and Conductivity Parameters on the Reconstruction of Epicardial Potentials. IEEE Transactions on Biomedical Engineering, BME-33(7), 667-676. doi:10.1109/tbme.1986.325756

Messinger-Rapport, B. J., & Rudy, Y. (1990). Noninvasive recovery of epicardial potentials in a realistic heart-torso geometry. Normal sinus rhythm. Circulation Research, 66(4), 1023-1039. doi:10.1161/01.res.66.4.1023

Coll-Font, J., & Brooks, D. H. (2018). Tracking the Position of the Heart From Body Surface Potential Maps and Electrograms. Frontiers in Physiology, 9. doi:10.3389/fphys.2018.01727

Van der Waal, J., Meijborg, V., Schuler, S., Coronel, R., & Oostendorp, T. (2020). In silico validation of electrocardiographic imaging to reconstruct the endocardial and epicardial repolarization pattern using the equivalent dipole layer source model. Medical & Biological Engineering & Computing, 58(8), 1739-1749. doi:10.1007/s11517-020-02203-y

Chamorro-Servent, J., Dubois, R., & Coudière, Y. (2019). Considering New Regularization Parameter-Choice Techniques for the Tikhonov Method to Improve the Accuracy of Electrocardiographic Imaging. Frontiers in Physiology, 10. doi:10.3389/fphys.2019.00273

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record