Mostrar el registro sencillo del ítem
dc.contributor.author | Gisbert Soler, Víctor | es_ES |
dc.contributor.author | Jiménez-Serrano, Santiago | es_ES |
dc.contributor.author | Roses-Albert, Eduardo | es_ES |
dc.contributor.author | RODRIGO BORT, MIGUEL | es_ES |
dc.date.accessioned | 2021-04-23T03:31:13Z | |
dc.date.available | 2021-04-23T03:31:13Z | |
dc.date.issued | 2020-12 | es_ES |
dc.identifier.issn | 0010-4825 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/165515 | |
dc.description.abstract | [EN] Background: The Electrocardiographic Imaging (ECGI) technique, used to non-invasively reconstruct the epicardial electrical activity, requires an accurate model of the atria and torso anatomy. Here we evaluate a new automatic methodology able to locate the atrial anatomy within the torso based on an intrinsic electrical parameter of the ECGI solution. Methods: In 28 realistic simulations of the atrial electrical activity, we randomly displaced the atrial anatomy for +/- 2.5 cm and +/- 30 degrees on each axis. An automatic optimization method based on the L-curve curvature was used to estimate the original position using exclusively non-invasive data. Results: The automatic optimization algorithm located the atrial anatomy with a deviation of 0.5 +/- 0.5 cm in position and 16.0 +/- 10.7 degrees in orientation. With these approximate locations, the obtained electrophysiological maps reduced the average error in atrial rate measures from 1.1 +/- 1.1 Hz to 0.5 +/- 1.0 Hz and in the phase singularity position from 7.2 +/- 4.0 cm to 1.6 +/- 1.7 cm (p < 0.01). Conclusions: This proposed automatic optimization may help to solve spatial inaccuracies provoked by cardiac motion or respiration, as well as to use ECGI on torso and atrial anatomies from different medical image systems. | es_ES |
dc.description.sponsorship | This work was supported in part by: Generalitat Valenciana Grants [APOSTD/2017] and projects [GVA/2018/103]; Nvidia Corporation with GPU QUADRO P6000 donation. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Computers in Biology and Medicine | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Inverse problem | es_ES |
dc.subject | L-curve curvature | es_ES |
dc.subject | Electrophysiology | es_ES |
dc.subject | Mapping | es_ES |
dc.subject | Dominant frequency | es_ES |
dc.subject | Phase analysis | es_ES |
dc.subject | Reentry | es_ES |
dc.subject | Rotor | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.subject.classification | ESTADISTICA E INVESTIGACION OPERATIVA | es_ES |
dc.title | Atrial location optimization by electrical measures for Electrocardiographic Imaging | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.compbiomed.2020.104031 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//APOSTD%2F2017%2F068/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//GV%2F2018%2F103/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Aplicaciones de las Tecnologías de la Información - Institut Universitari d'Aplicacions de les Tecnologies de la Informació | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.description.bibliographicCitation | Gisbert Soler, V.; Jiménez-Serrano, S.; Roses-Albert, E.; Rodrigo Bort, M. (2020). Atrial location optimization by electrical measures for Electrocardiographic Imaging. Computers in Biology and Medicine. 127:1-8. https://doi.org/10.1016/j.compbiomed.2020.104031 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.compbiomed.2020.104031 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 8 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 127 | es_ES |
dc.relation.pasarela | S\419922 | es_ES |
dc.contributor.funder | Nvidia | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.description.references | Cuculich, P. S., Zhang, J., Wang, Y., Desouza, K. A., Vijayakumar, R., Woodard, P. K., & Rudy, Y. (2011). The Electrophysiological Cardiac Ventricular Substrate in Patients After Myocardial Infarction. Journal of the American College of Cardiology, 58(18), 1893-1902. doi:10.1016/j.jacc.2011.07.029 | es_ES |
dc.description.references | Revishvili, A. S., Wissner, E., Lebedev, D. S., Lemes, C., Deiss, S., Metzner, A., … Kuck, K.-H. (2015). Validation of the mapping accuracy of a novel non-invasive epicardial and endocardial electrophysiology system. Europace, 17(8), 1282-1288. doi:10.1093/europace/euu339 | es_ES |
dc.description.references | Haissaguerre, M., Hocini, M., Denis, A., Shah, A. J., Komatsu, Y., Yamashita, S., … Dubois, R. (2014). Driver Domains in Persistent Atrial Fibrillation. Circulation, 130(7), 530-538. doi:10.1161/circulationaha.113.005421 | es_ES |
dc.description.references | PEDRÓN-TORRECILLA, J., RODRIGO, M., CLIMENT, A. M., LIBEROS, A., PÉREZ-DAVID, E., BERMEJO, J., … GUILLEM, M. S. (2016). Noninvasive Estimation of Epicardial Dominant High-Frequency Regions During Atrial Fibrillation. Journal of Cardiovascular Electrophysiology, 27(4), 435-442. doi:10.1111/jce.12931 | es_ES |
dc.description.references | Cuculich, P. S., Wang, Y., Lindsay, B. D., Faddis, M. N., Schuessler, R. B., Damiano, R. J., … Rudy, Y. (2010). Noninvasive Characterization of Epicardial Activation in Humans With Diverse Atrial Fibrillation Patterns. Circulation, 122(14), 1364-1372. doi:10.1161/circulationaha.110.945709 | es_ES |
dc.description.references | Wang, Y., Schuessler, R. B., Damiano, R. J., Woodard, P. K., & Rudy, Y. (2007). Noninvasive electrocardiographic imaging (ECGI) of scar-related atypical atrial flutter. Heart Rhythm, 4(12), 1565-1567. doi:10.1016/j.hrthm.2007.08.019 | es_ES |
dc.description.references | Milan Horáček, B., & Clements, J. C. (1997). The inverse problem of electrocardiography: A solution in terms of single- and double-layer sources on the epicardial surface. Mathematical Biosciences, 144(2), 119-154. doi:10.1016/s0025-5564(97)00024-2 | es_ES |
dc.description.references | Rodrigo, M., Climent, A. M., Liberos, A., Hernandez-Romero, I., Arenal, A., Bermejo, J., … Guillem, M. S. (2018). Solving Inaccuracies in Anatomical Models for Electrocardiographic Inverse Problem Resolution by Maximizing Reconstruction Quality. IEEE Transactions on Medical Imaging, 37(3), 733-740. doi:10.1109/tmi.2017.2707413 | es_ES |
dc.description.references | Dössel, O., Krueger, M. W., Weber, F. M., Wilhelms, M., & Seemann, G. (2012). Computational modeling of the human atrial anatomy and electrophysiology. Medical & Biological Engineering & Computing, 50(8), 773-799. doi:10.1007/s11517-012-0924-6 | es_ES |
dc.description.references | Koivumäki, J. T., Seemann, G., Maleckar, M. M., & Tavi, P. (2014). In Silico Screening of the Key Cellular Remodeling Targets in Chronic Atrial Fibrillation. PLoS Computational Biology, 10(5), e1003620. doi:10.1371/journal.pcbi.1003620 | es_ES |
dc.description.references | Garcia-Molla, V. M., Liberos, A., Vidal, A., Guillem, M. S., Millet, J., Gonzalez, A., … Climent, A. M. (2014). Adaptive step ODE algorithms for the 3D simulation of electric heart activity with graphics processing units. Computers in Biology and Medicine, 44, 15-26. doi:10.1016/j.compbiomed.2013.10.023 | es_ES |
dc.description.references | Rodrigo, M., Climent, A. M., Liberos, A., Fernández-Avilés, F., Berenfeld, O., Atienza, F., & Guillem, M. S. (2017). Highest dominant frequency and rotor positions are robust markers of driver location during noninvasive mapping of atrial fibrillation: A computational study. Heart Rhythm, 14(8), 1224-1233. doi:10.1016/j.hrthm.2017.04.017 | es_ES |
dc.description.references | Dolan, E. D., Lewis, R. M., & Torczon, V. (2003). On the Local Convergence of Pattern Search. SIAM Journal on Optimization, 14(2), 567-583. doi:10.1137/s1052623400374495 | es_ES |
dc.description.references | Rodrigo, M., Guillem, M. S., Climent, A. M., Pedrón-Torrecilla, J., Liberos, A., Millet, J., … Berenfeld, O. (2014). Body surface localization of left and right atrial high-frequency rotors in atrial fibrillation patients: A clinical-computational study. Heart Rhythm, 11(9), 1584-1591. doi:10.1016/j.hrthm.2014.05.013 | es_ES |
dc.description.references | Sanders, P., Berenfeld, O., Hocini, M., Jaïs, P., Vaidyanathan, R., Hsu, L.-F., … Haïssaguerre, M. (2005). Spectral Analysis Identifies Sites of High-Frequency Activity Maintaining Atrial Fibrillation in Humans. Circulation, 112(6), 789-797. doi:10.1161/circulationaha.104.517011 | es_ES |
dc.description.references | Atienza, F., Almendral, J., Ormaetxe, J. M., Moya, Á., Martínez-Alday, J. D., Hernández-Madrid, A., … Jalife, J. (2014). Comparison of Radiofrequency Catheter Ablation of Drivers and Circumferential Pulmonary Vein Isolation in Atrial Fibrillation. Journal of the American College of Cardiology, 64(23), 2455-2467. doi:10.1016/j.jacc.2014.09.053 | es_ES |
dc.description.references | Rodrigo, M., Climent, A. M., Liberos, A., Fernández-Avilés, F., Berenfeld, O., Atienza, F., & Guillem, M. S. (2017). Technical Considerations on Phase Mapping for Identification of Atrial Reentrant Activity in Direct- and Inverse-Computed Electrograms. Circulation: Arrhythmia and Electrophysiology, 10(9). doi:10.1161/circep.117.005008 | es_ES |
dc.description.references | Miller, J. M., Kalra, V., Das, M. K., Jain, R., Garlie, J. B., Brewster, J. A., & Dandamudi, G. (2017). Clinical Benefit of Ablating Localized Sources for Human Atrial Fibrillation. Journal of the American College of Cardiology, 69(10), 1247-1256. doi:10.1016/j.jacc.2016.11.079 | es_ES |
dc.description.references | Perez-Alday, E. A., Thomas, J. A., Kabir, M., Sedaghat, G., Rogovoy, N., van Dam, E., … Tereshchenko, L. G. (2018). Torso geometry reconstruction and body surface electrode localization using three-dimensional photography. Journal of Electrocardiology, 51(1), 60-67. doi:10.1016/j.jelectrocard.2017.08.035 | es_ES |
dc.description.references | Schulze, W. H. W., Mackens, P., Potyagaylo, D., Rhode, K., Tülümen, E., Schimpf, R., … Dössel, O. (2014). Automatic camera-based identification and 3-D reconstruction of electrode positions in electrocardiographic imaging. Biomedical Engineering / Biomedizinische Technik, 59(6). doi:10.1515/bmt-2014-0018 | es_ES |
dc.description.references | Ghanem, R. N., Ramanathan, C., Ping Jia, & Rudy, Y. (2003). Heart-surface reconstruction and ecg electrodes localization using fluoroscopy, epipolar geometry and stereovision: application to noninvasive imaging of cardiac electrical activity. IEEE Transactions on Medical Imaging, 22(10), 1307-1318. doi:10.1109/tmi.2003.818263 | es_ES |
dc.description.references | Lee, J., Thornhill, R. E., Nery, P., Robert deKemp, Peña, E., Birnie, D., … Ukwatta, E. (2019). Left atrial imaging and registration of fibrosis with conduction voltages using LGE-MRI and electroanatomical mapping. Computers in Biology and Medicine, 111, 103341. doi:10.1016/j.compbiomed.2019.103341 | es_ES |
dc.description.references | Weiss, E., Wijesooriya, K., Dill, S. V., & Keall, P. J. (2007). Tumor and normal tissue motion in the thorax during respiration: Analysis of volumetric and positional variations using 4D CT. International Journal of Radiation Oncology*Biology*Physics, 67(1), 296-307. doi:10.1016/j.ijrobp.2006.09.009 | es_ES |
dc.description.references | Wikström, K., Isacsson, U., Nilsson, K., & Ahnesjö, A. (2018). Reproducibility of heart and thoracic wall position in repeated deep inspiration breath holds for radiotherapy of left-sided breast cancer patients. Acta Oncologica, 57(10), 1318-1324. doi:10.1080/0284186x.2018.1490027 | es_ES |
dc.description.references | Messinger-Rapport, B. J., & Rudy, Y. (1986). The Inverse Problem in Electrocardiography: A Model Study of the Effects of Geometry and Conductivity Parameters on the Reconstruction of Epicardial Potentials. IEEE Transactions on Biomedical Engineering, BME-33(7), 667-676. doi:10.1109/tbme.1986.325756 | es_ES |
dc.description.references | Messinger-Rapport, B. J., & Rudy, Y. (1990). Noninvasive recovery of epicardial potentials in a realistic heart-torso geometry. Normal sinus rhythm. Circulation Research, 66(4), 1023-1039. doi:10.1161/01.res.66.4.1023 | es_ES |
dc.description.references | Coll-Font, J., & Brooks, D. H. (2018). Tracking the Position of the Heart From Body Surface Potential Maps and Electrograms. Frontiers in Physiology, 9. doi:10.3389/fphys.2018.01727 | es_ES |
dc.description.references | Van der Waal, J., Meijborg, V., Schuler, S., Coronel, R., & Oostendorp, T. (2020). In silico validation of electrocardiographic imaging to reconstruct the endocardial and epicardial repolarization pattern using the equivalent dipole layer source model. Medical & Biological Engineering & Computing, 58(8), 1739-1749. doi:10.1007/s11517-020-02203-y | es_ES |
dc.description.references | Chamorro-Servent, J., Dubois, R., & Coudière, Y. (2019). Considering New Regularization Parameter-Choice Techniques for the Tikhonov Method to Improve the Accuracy of Electrocardiographic Imaging. Frontiers in Physiology, 10. doi:10.3389/fphys.2019.00273 | es_ES |