- -

Atrial location optimization by electrical measures for Electrocardiographic Imaging

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Atrial location optimization by electrical measures for Electrocardiographic Imaging

Show simple item record

Files in this item

dc.contributor.author Gisbert Soler, Víctor es_ES
dc.contributor.author Jiménez-Serrano, Santiago es_ES
dc.contributor.author Roses-Albert, Eduardo es_ES
dc.contributor.author RODRIGO BORT, MIGUEL es_ES
dc.date.accessioned 2021-04-23T03:31:13Z
dc.date.available 2021-04-23T03:31:13Z
dc.date.issued 2020-12 es_ES
dc.identifier.issn 0010-4825 es_ES
dc.identifier.uri http://hdl.handle.net/10251/165515
dc.description.abstract [EN] Background: The Electrocardiographic Imaging (ECGI) technique, used to non-invasively reconstruct the epicardial electrical activity, requires an accurate model of the atria and torso anatomy. Here we evaluate a new automatic methodology able to locate the atrial anatomy within the torso based on an intrinsic electrical parameter of the ECGI solution. Methods: In 28 realistic simulations of the atrial electrical activity, we randomly displaced the atrial anatomy for +/- 2.5 cm and +/- 30 degrees on each axis. An automatic optimization method based on the L-curve curvature was used to estimate the original position using exclusively non-invasive data. Results: The automatic optimization algorithm located the atrial anatomy with a deviation of 0.5 +/- 0.5 cm in position and 16.0 +/- 10.7 degrees in orientation. With these approximate locations, the obtained electrophysiological maps reduced the average error in atrial rate measures from 1.1 +/- 1.1 Hz to 0.5 +/- 1.0 Hz and in the phase singularity position from 7.2 +/- 4.0 cm to 1.6 +/- 1.7 cm (p < 0.01). Conclusions: This proposed automatic optimization may help to solve spatial inaccuracies provoked by cardiac motion or respiration, as well as to use ECGI on torso and atrial anatomies from different medical image systems. es_ES
dc.description.sponsorship This work was supported in part by: Generalitat Valenciana Grants [APOSTD/2017] and projects [GVA/2018/103]; Nvidia Corporation with GPU QUADRO P6000 donation. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Computers in Biology and Medicine es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Inverse problem es_ES
dc.subject L-curve curvature es_ES
dc.subject Electrophysiology es_ES
dc.subject Mapping es_ES
dc.subject Dominant frequency es_ES
dc.subject Phase analysis es_ES
dc.subject Reentry es_ES
dc.subject Rotor es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.title Atrial location optimization by electrical measures for Electrocardiographic Imaging es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.compbiomed.2020.104031 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//APOSTD%2F2017%2F068/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//GV%2F2018%2F103/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Aplicaciones de las Tecnologías de la Información - Institut Universitari d'Aplicacions de les Tecnologies de la Informació es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Gisbert Soler, V.; Jiménez-Serrano, S.; Roses-Albert, E.; Rodrigo Bort, M. (2020). Atrial location optimization by electrical measures for Electrocardiographic Imaging. Computers in Biology and Medicine. 127:1-8. https://doi.org/10.1016/j.compbiomed.2020.104031 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.compbiomed.2020.104031 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 8 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 127 es_ES
dc.relation.pasarela S\419922 es_ES
dc.contributor.funder Nvidia es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.description.references Cuculich, P. S., Zhang, J., Wang, Y., Desouza, K. A., Vijayakumar, R., Woodard, P. K., & Rudy, Y. (2011). The Electrophysiological Cardiac Ventricular Substrate in Patients After Myocardial Infarction. Journal of the American College of Cardiology, 58(18), 1893-1902. doi:10.1016/j.jacc.2011.07.029 es_ES
dc.description.references Revishvili, A. S., Wissner, E., Lebedev, D. S., Lemes, C., Deiss, S., Metzner, A., … Kuck, K.-H. (2015). Validation of the mapping accuracy of a novel non-invasive epicardial and endocardial electrophysiology system. Europace, 17(8), 1282-1288. doi:10.1093/europace/euu339 es_ES
dc.description.references Haissaguerre, M., Hocini, M., Denis, A., Shah, A. J., Komatsu, Y., Yamashita, S., … Dubois, R. (2014). Driver Domains in Persistent Atrial Fibrillation. Circulation, 130(7), 530-538. doi:10.1161/circulationaha.113.005421 es_ES
dc.description.references PEDRÓN-TORRECILLA, J., RODRIGO, M., CLIMENT, A. M., LIBEROS, A., PÉREZ-DAVID, E., BERMEJO, J., … GUILLEM, M. S. (2016). Noninvasive Estimation of Epicardial Dominant High-Frequency Regions During Atrial Fibrillation. Journal of Cardiovascular Electrophysiology, 27(4), 435-442. doi:10.1111/jce.12931 es_ES
dc.description.references Cuculich, P. S., Wang, Y., Lindsay, B. D., Faddis, M. N., Schuessler, R. B., Damiano, R. J., … Rudy, Y. (2010). Noninvasive Characterization of Epicardial Activation in Humans With Diverse Atrial Fibrillation Patterns. Circulation, 122(14), 1364-1372. doi:10.1161/circulationaha.110.945709 es_ES
dc.description.references Wang, Y., Schuessler, R. B., Damiano, R. J., Woodard, P. K., & Rudy, Y. (2007). Noninvasive electrocardiographic imaging (ECGI) of scar-related atypical atrial flutter. Heart Rhythm, 4(12), 1565-1567. doi:10.1016/j.hrthm.2007.08.019 es_ES
dc.description.references Milan Horáček, B., & Clements, J. C. (1997). The inverse problem of electrocardiography: A solution in terms of single- and double-layer sources on the epicardial surface. Mathematical Biosciences, 144(2), 119-154. doi:10.1016/s0025-5564(97)00024-2 es_ES
dc.description.references Rodrigo, M., Climent, A. M., Liberos, A., Hernandez-Romero, I., Arenal, A., Bermejo, J., … Guillem, M. S. (2018). Solving Inaccuracies in Anatomical Models for Electrocardiographic Inverse Problem Resolution by Maximizing Reconstruction Quality. IEEE Transactions on Medical Imaging, 37(3), 733-740. doi:10.1109/tmi.2017.2707413 es_ES
dc.description.references Dössel, O., Krueger, M. W., Weber, F. M., Wilhelms, M., & Seemann, G. (2012). Computational modeling of the human atrial anatomy and electrophysiology. Medical & Biological Engineering & Computing, 50(8), 773-799. doi:10.1007/s11517-012-0924-6 es_ES
dc.description.references Koivumäki, J. T., Seemann, G., Maleckar, M. M., & Tavi, P. (2014). In Silico Screening of the Key Cellular Remodeling Targets in Chronic Atrial Fibrillation. PLoS Computational Biology, 10(5), e1003620. doi:10.1371/journal.pcbi.1003620 es_ES
dc.description.references Garcia-Molla, V. M., Liberos, A., Vidal, A., Guillem, M. S., Millet, J., Gonzalez, A., … Climent, A. M. (2014). Adaptive step ODE algorithms for the 3D simulation of electric heart activity with graphics processing units. Computers in Biology and Medicine, 44, 15-26. doi:10.1016/j.compbiomed.2013.10.023 es_ES
dc.description.references Rodrigo, M., Climent, A. M., Liberos, A., Fernández-Avilés, F., Berenfeld, O., Atienza, F., & Guillem, M. S. (2017). Highest dominant frequency and rotor positions are robust markers of driver location during noninvasive mapping of atrial fibrillation: A computational study. Heart Rhythm, 14(8), 1224-1233. doi:10.1016/j.hrthm.2017.04.017 es_ES
dc.description.references Dolan, E. D., Lewis, R. M., & Torczon, V. (2003). On the Local Convergence of Pattern Search. SIAM Journal on Optimization, 14(2), 567-583. doi:10.1137/s1052623400374495 es_ES
dc.description.references Rodrigo, M., Guillem, M. S., Climent, A. M., Pedrón-Torrecilla, J., Liberos, A., Millet, J., … Berenfeld, O. (2014). Body surface localization of left and right atrial high-frequency rotors in atrial fibrillation patients: A clinical-computational study. Heart Rhythm, 11(9), 1584-1591. doi:10.1016/j.hrthm.2014.05.013 es_ES
dc.description.references Sanders, P., Berenfeld, O., Hocini, M., Jaïs, P., Vaidyanathan, R., Hsu, L.-F., … Haïssaguerre, M. (2005). Spectral Analysis Identifies Sites of High-Frequency Activity Maintaining Atrial Fibrillation in Humans. Circulation, 112(6), 789-797. doi:10.1161/circulationaha.104.517011 es_ES
dc.description.references Atienza, F., Almendral, J., Ormaetxe, J. M., Moya, Á., Martínez-Alday, J. D., Hernández-Madrid, A., … Jalife, J. (2014). Comparison of Radiofrequency Catheter Ablation of Drivers and Circumferential Pulmonary Vein Isolation in Atrial Fibrillation. Journal of the American College of Cardiology, 64(23), 2455-2467. doi:10.1016/j.jacc.2014.09.053 es_ES
dc.description.references Rodrigo, M., Climent, A. M., Liberos, A., Fernández-Avilés, F., Berenfeld, O., Atienza, F., & Guillem, M. S. (2017). Technical Considerations on Phase Mapping for Identification of Atrial Reentrant Activity in Direct- and Inverse-Computed Electrograms. Circulation: Arrhythmia and Electrophysiology, 10(9). doi:10.1161/circep.117.005008 es_ES
dc.description.references Miller, J. M., Kalra, V., Das, M. K., Jain, R., Garlie, J. B., Brewster, J. A., & Dandamudi, G. (2017). Clinical Benefit of Ablating Localized Sources for Human Atrial Fibrillation. Journal of the American College of Cardiology, 69(10), 1247-1256. doi:10.1016/j.jacc.2016.11.079 es_ES
dc.description.references Perez-Alday, E. A., Thomas, J. A., Kabir, M., Sedaghat, G., Rogovoy, N., van Dam, E., … Tereshchenko, L. G. (2018). Torso geometry reconstruction and body surface electrode localization using three-dimensional photography. Journal of Electrocardiology, 51(1), 60-67. doi:10.1016/j.jelectrocard.2017.08.035 es_ES
dc.description.references Schulze, W. H. W., Mackens, P., Potyagaylo, D., Rhode, K., Tülümen, E., Schimpf, R., … Dössel, O. (2014). Automatic camera-based identification and 3-D reconstruction of electrode positions in electrocardiographic imaging. Biomedical Engineering / Biomedizinische Technik, 59(6). doi:10.1515/bmt-2014-0018 es_ES
dc.description.references Ghanem, R. N., Ramanathan, C., Ping Jia, & Rudy, Y. (2003). Heart-surface reconstruction and ecg electrodes localization using fluoroscopy, epipolar geometry and stereovision: application to noninvasive imaging of cardiac electrical activity. IEEE Transactions on Medical Imaging, 22(10), 1307-1318. doi:10.1109/tmi.2003.818263 es_ES
dc.description.references Lee, J., Thornhill, R. E., Nery, P., Robert deKemp, Peña, E., Birnie, D., … Ukwatta, E. (2019). Left atrial imaging and registration of fibrosis with conduction voltages using LGE-MRI and electroanatomical mapping. Computers in Biology and Medicine, 111, 103341. doi:10.1016/j.compbiomed.2019.103341 es_ES
dc.description.references Weiss, E., Wijesooriya, K., Dill, S. V., & Keall, P. J. (2007). Tumor and normal tissue motion in the thorax during respiration: Analysis of volumetric and positional variations using 4D CT. International Journal of Radiation Oncology*Biology*Physics, 67(1), 296-307. doi:10.1016/j.ijrobp.2006.09.009 es_ES
dc.description.references Wikström, K., Isacsson, U., Nilsson, K., & Ahnesjö, A. (2018). Reproducibility of heart and thoracic wall position in repeated deep inspiration breath holds for radiotherapy of left-sided breast cancer patients. Acta Oncologica, 57(10), 1318-1324. doi:10.1080/0284186x.2018.1490027 es_ES
dc.description.references Messinger-Rapport, B. J., & Rudy, Y. (1986). The Inverse Problem in Electrocardiography: A Model Study of the Effects of Geometry and Conductivity Parameters on the Reconstruction of Epicardial Potentials. IEEE Transactions on Biomedical Engineering, BME-33(7), 667-676. doi:10.1109/tbme.1986.325756 es_ES
dc.description.references Messinger-Rapport, B. J., & Rudy, Y. (1990). Noninvasive recovery of epicardial potentials in a realistic heart-torso geometry. Normal sinus rhythm. Circulation Research, 66(4), 1023-1039. doi:10.1161/01.res.66.4.1023 es_ES
dc.description.references Coll-Font, J., & Brooks, D. H. (2018). Tracking the Position of the Heart From Body Surface Potential Maps and Electrograms. Frontiers in Physiology, 9. doi:10.3389/fphys.2018.01727 es_ES
dc.description.references Van der Waal, J., Meijborg, V., Schuler, S., Coronel, R., & Oostendorp, T. (2020). In silico validation of electrocardiographic imaging to reconstruct the endocardial and epicardial repolarization pattern using the equivalent dipole layer source model. Medical & Biological Engineering & Computing, 58(8), 1739-1749. doi:10.1007/s11517-020-02203-y es_ES
dc.description.references Chamorro-Servent, J., Dubois, R., & Coudière, Y. (2019). Considering New Regularization Parameter-Choice Techniques for the Tikhonov Method to Improve the Accuracy of Electrocardiographic Imaging. Frontiers in Physiology, 10. doi:10.3389/fphys.2019.00273 es_ES


This item appears in the following Collection(s)

Show simple item record