- -

Agri-food 4.0: A survey of the supply chains and technologies for the future agriculture

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Agri-food 4.0: A survey of the supply chains and technologies for the future agriculture

Mostrar el registro completo del ítem

Lezoche, M.; Hernández, JE.; Alemany Díaz, MDM.; Panetto, H.; Kacprzyk, J. (2020). Agri-food 4.0: A survey of the supply chains and technologies for the future agriculture. Computers in Industry. 117:1-15. https://doi.org/10.1016/j.compind.2020.103187

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/165518

Ficheros en el ítem

Metadatos del ítem

Título: Agri-food 4.0: A survey of the supply chains and technologies for the future agriculture
Autor: Lezoche, Mario Hernández, Jorge E. Alemany Díaz, María Del Mar Panetto, Hervé Kacprzyk, Janusz
Entidad UPV: Universitat Politècnica de València. Departamento de Organización de Empresas - Departament d'Organització d'Empreses
Fecha difusión:
Resumen:
[EN] The term "Agri-Food 4.0" is an analogy to the term Industry 4.0; coming from the concept "agriculture 4.0". Since the origins of the industrial revolution, where the steam engines started the concept of Industry 1.0 ...[+]
Palabras clave: Agri-Food 4.0 , Agriculture 4.0 , Supply chains , Internet of things , Big data , Blockchain , Artificial intelligence
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Computers in Industry. (issn: 0166-3615 )
DOI: 10.1016/j.compind.2020.103187
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.compind.2020.103187
Código del Proyecto:
info:eu-repo/grantAgreement/EC/H2020/691249/EU/Enhancing and implementing Knowledge based ICT solutions within high Risk and Uncertain Conditions for Agriculture Production Systems/
Agradecimientos:
Authors of this publication acknowledge the contribution of the Project 691249, RUC-APS "Enhancing and implementing Knowledge based ICT solutions within high Risk and Uncertain Conditions for Agriculture Production Systems" ...[+]
Tipo: Artículo

References

Ahumada, O., & Villalobos, J. R. (2009). Application of planning models in the agri-food supply chain: A review. European Journal of Operational Research, 196(1), 1-20. doi:10.1016/j.ejor.2008.02.014

Ait-Mouheb, N., Bahri, A., Thayer, B. B., Benyahia, B., Bourrié, G., Cherki, B., … Harmand, J. (2018). The reuse of reclaimed water for irrigation around the Mediterranean Rim: a step towards a more virtuous cycle? Regional Environmental Change, 18(3), 693-705. doi:10.1007/s10113-018-1292-z

Ali, J., & Kumar, S. (2011). Information and communication technologies (ICTs) and farmers’ decision-making across the agricultural supply chain. International Journal of Information Management, 31(2), 149-159. doi:10.1016/j.ijinfomgt.2010.07.008 [+]
Ahumada, O., & Villalobos, J. R. (2009). Application of planning models in the agri-food supply chain: A review. European Journal of Operational Research, 196(1), 1-20. doi:10.1016/j.ejor.2008.02.014

Ait-Mouheb, N., Bahri, A., Thayer, B. B., Benyahia, B., Bourrié, G., Cherki, B., … Harmand, J. (2018). The reuse of reclaimed water for irrigation around the Mediterranean Rim: a step towards a more virtuous cycle? Regional Environmental Change, 18(3), 693-705. doi:10.1007/s10113-018-1292-z

Ali, J., & Kumar, S. (2011). Information and communication technologies (ICTs) and farmers’ decision-making across the agricultural supply chain. International Journal of Information Management, 31(2), 149-159. doi:10.1016/j.ijinfomgt.2010.07.008

Alzahrani, S. M. (2018). Development of IoT mining machine for Twitter sentiment analysis: Mining in the cloud and results on the mirror. 2018 15th Learning and Technology Conference (L&T). doi:10.1109/lt.2018.8368490

Amandeep, Bhattacharjee, A., Das, P., Basu, D., Roy, S., Ghosh, S., … Rana, T. K. (2017). Smart farming using IOT. 2017 8th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON). doi:10.1109/iemcon.2017.8117219

Annosi, M. C., Brunetta, F., Monti, A., & Nati, F. (2019). Is the trend your friend? An analysis of technology 4.0 investment decisions in agricultural SMEs. Computers in Industry, 109, 59-71. doi:10.1016/j.compind.2019.04.003

Baio, F. H. R. (2011). Evaluation of an auto-guidance system operating on a sugar cane harvester. Precision Agriculture, 13(1), 141-147. doi:10.1007/s11119-011-9241-6

Belaud, J.-P., Prioux, N., Vialle, C., & Sablayrolles, C. (2019). Big data for agri-food 4.0: Application to sustainability management for by-products supply chain. Computers in Industry, 111, 41-50. doi:10.1016/j.compind.2019.06.006

Nicolaas Bezuidenhout, C., Bodhanya, S., & Brenchley, L. (2012). An analysis of collaboration in a sugarcane production and processing supply chain. British Food Journal, 114(6), 880-895. doi:10.1108/00070701211234390

Bhatt, M. R., & Buch, S. (2015). Prediction of formability for sheet metal component using artificial intelligent technique. 2015 2nd International Conference on Signal Processing and Integrated Networks (SPIN). doi:10.1109/spin.2015.7095356

Birkel, H. S., & Hartmann, E. (2019). Impact of IoT challenges and risks for SCM. Supply Chain Management: An International Journal, 24(1), 39-61. doi:10.1108/scm-03-2018-0142

Boehlje, M. (1999). Structural Changes in the Agricultural Industries: How Do We Measure, Analyze and Understand Them? American Journal of Agricultural Economics, 81(5), 1028-1041. doi:10.2307/1244080

Bonney, L., Clark, R., Collins, R., & Fearne, A. (2007). From serendipity to sustainable competitive advantage: insights from Houston’s Farm and their journey of co‐innovation. Supply Chain Management: An International Journal, 12(6), 395-399. doi:10.1108/13598540710826326

Boshkoska, B. M., Liu, S., Zhao, G., Fernandez, A., Gamboa, S., del Pino, M., … Chen, H. (2019). A decision support system for evaluation of the knowledge sharing crossing boundaries in agri-food value chains. Computers in Industry, 110, 64-80. doi:10.1016/j.compind.2019.04.012

Brewster, C., Roussaki, I., Kalatzis, N., Doolin, K., & Ellis, K. (2017). IoT in Agriculture: Designing a Europe-Wide Large-Scale Pilot. IEEE Communications Magazine, 55(9), 26-33. doi:10.1109/mcom.2017.1600528

Bronson, K., & Knezevic, I. (2016). Big Data in food and agriculture. Big Data & Society, 3(1), 205395171664817. doi:10.1177/2053951716648174

Brown, K. (2013). Global environmental change I. Progress in Human Geography, 38(1), 107-117. doi:10.1177/0309132513498837

Chilcanan, D., Navas, P., & Escobar, S. M. (2017). Expert system for remote process automation in multiplatform servers, through human machine conversation. 2017 12th Iberian Conference on Information Systems and Technologies (CISTI). doi:10.23919/cisti.2017.7975913

Choi, J., In, Y., Park, C., Seok, S., Seo, H., & Kim, H. (2016). Secure IoT framework and 2D architecture for End-To-End security. The Journal of Supercomputing, 74(8), 3521-3535. doi:10.1007/s11227-016-1684-0

Cohen, W. M., & Levinthal, D. A. (1990). Absorptive Capacity: A New Perspective on Learning and Innovation. Administrative Science Quarterly, 35(1), 128. doi:10.2307/2393553

Dabbene, F., Gay, P., & Tortia, C. (2014). Traceability issues in food supply chain management: A review. Biosystems Engineering, 120, 65-80. doi:10.1016/j.biosystemseng.2013.09.006

Del Borghi, A., Gallo, M., Strazza, C., & Del Borghi, M. (2014). An evaluation of environmental sustainability in the food industry through Life Cycle Assessment: the case study of tomato products supply chain. Journal of Cleaner Production, 78, 121-130. doi:10.1016/j.jclepro.2014.04.083

Devarakonda, R., Shrestha, B., Palanisamy, G., Hook, L., Killeffer, T., Krassovski, M., … Lazer, K. (2014). OME: Tool for generating and managing metadata to handle BigData. 2014 IEEE International Conference on Big Data (Big Data). doi:10.1109/bigdata.2014.7004476

Nascimento, A. F. do, Mendonça, E. de S., Leite, L. F. C., Scholberg, J., & Neves, J. C. L. (2012). Calibration and validation of models for short-term decomposition and N mineralization of plant residues in the tropics. Scientia Agricola, 69(6), 393-401. doi:10.1590/s0103-90162012000600008

Dolan, C., & Humphrey, J. (2000). Governance and Trade in Fresh Vegetables: The Impact of UK Supermarkets on the African Horticulture Industry. Journal of Development Studies, 37(2), 147-176. doi:10.1080/713600072

Dragincic, J., Korac, N., & Blagojevic, B. (2015). Group multi-criteria decision making (GMCDM) approach for selecting the most suitable table grape variety intended for organic viticulture. Computers and Electronics in Agriculture, 111, 194-202. doi:10.1016/j.compag.2014.12.023

Dworak, V., Selbeck, J., Dammer, K.-H., Hoffmann, M., Zarezadeh, A., & Bobda, C. (2013). Strategy for the Development of a Smart NDVI Camera System for Outdoor Plant Detection and Agricultural Embedded Systems. Sensors, 13(2), 1523-1538. doi:10.3390/s130201523

Eisele, M., Kiese, R., Krämer, A., & Leibundgut, C. (2001). Application of a catchment water quality model for assessment and prediction of nitrogen budgets. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 26(7-8), 547-551. doi:10.1016/s1464-1909(01)00048-x

Elsayed, K. M. F., Ismail, T., & S. Ouf, N. (2018). A Review on the Relevant Applications of Machine Learning in Agriculture. IJIREEICE, 6(8), 1-17. doi:10.17148/ijireeice.2018.681

Esteso, A., Alemany, M. M. E., & Ortiz, A. (2017). Métodos y Modelos Deterministas e Inciertos para la Gestión de Cadenas de Suministro Agroalimentarias. Dirección y Organización, 41-46. doi:10.37610/dyo.v0i0.509

Esteso, A., Alemany, M. M. E., & Ortiz, A. (2018). Conceptual framework for designing agri-food supply chains under uncertainty by mathematical programming models. International Journal of Production Research, 56(13), 4418-4446. doi:10.1080/00207543.2018.1447706

GERHARDS, R., GUTJAHR, C., WEIS, M., KELLER, M., SÖKEFELD, M., MÖHRING, J., & PIEPHO, H. P. (2011). Using precision farming technology to quantify yield effects attributed to weed competition and herbicide application. Weed Research, 52(1), 6-15. doi:10.1111/j.1365-3180.2011.00893.x

Govindan, K., Jafarian, A., Khodaverdi, R., & Devika, K. (2014). Two-echelon multiple-vehicle location–routing problem with time windows for optimization of sustainable supply chain network of perishable food. International Journal of Production Economics, 152, 9-28. doi:10.1016/j.ijpe.2013.12.028

Gumaste, S. S., & Kadam, A. J. (2016). Future weather prediction using genetic algorithm and FFT for smart farming. 2016 International Conference on Computing Communication Control and automation (ICCUBEA). doi:10.1109/iccubea.2016.7860028

Hashem, H., & Ranc, D. (2016). A review of modeling toolbox for BigData. 2016 International Conference on Military Communications and Information Systems (ICMCIS). doi:10.1109/icmcis.2016.7496565

Hefnawy, A., Elhariri, T., Cherifi, C., Robert, J., Bouras, A., Kubler, S., & Framling, K. (2017). Combined use of lifecycle management and IoT in smart cities. 2017 11th International Conference on Software, Knowledge, Information Management and Applications (SKIMA). doi:10.1109/skima.2017.8294112

Hosseini, S. H., Tang, C. Y., & Jiang, J. N. (2014). Calibration of a Wind Farm Wind Speed Model With Incomplete Wind Data. IEEE Transactions on Sustainable Energy, 5(1), 343-350. doi:10.1109/tste.2013.2284490

Hu, Y., Zhang, L., Li, J., & Mehrotra, S. (2016). ICME 2016 Image Recognition Grand Challenge. 2016 IEEE International Conference on Multimedia & Expo Workshops (ICMEW). doi:10.1109/icmew.2016.7574663

A. Irmak, J. W. Jones, W. D. Batchelor, S. Irmak, K. J. Boote, & J. O. Paz. (2006). Artificial Neural Network Model as a Data Analysis Tool in Precision Farming. Transactions of the ASABE, 49(6), 2027-2037. doi:10.13031/2013.22264

Jeon, S., Kim, B., & Huh, J. (2017). Study on methods to determine rotor equivalent wind speed to increase prediction accuracy of wind turbine performance under wake condition. Energy for Sustainable Development, 40, 41-49. doi:10.1016/j.esd.2017.06.001

Joly, P.-B. (2005). Resilient farming systems in a complex world — new issues for the governance of science and innovation. Australian Journal of Experimental Agriculture, 45(6), 617. doi:10.1071/ea03252

Joshi, R., Banwet, D. K., & Shankar, R. (2009). Indian cold chain: modeling the inhibitors. British Food Journal, 111(11), 1260-1283. doi:10.1108/00070700911001077

Kamata, T., Roshanianfard, A., & Noguchi, N. (2018). Heavy-weight Crop Harvesting Robot - Controlling Algorithm. IFAC-PapersOnLine, 51(17), 244-249. doi:10.1016/j.ifacol.2018.08.165

Kamble, S. S., Gunasekaran, A., & Gawankar, S. A. (2020). Achieving sustainable performance in a data-driven agriculture supply chain: A review for research and applications. International Journal of Production Economics, 219, 179-194. doi:10.1016/j.ijpe.2019.05.022

Kamilaris, A., Kartakoullis, A., & Prenafeta-Boldú, F. X. (2017). A review on the practice of big data analysis in agriculture. Computers and Electronics in Agriculture, 143, 23-37. doi:10.1016/j.compag.2017.09.037

Kelepouris, T., Pramatari, K., & Doukidis, G. (2007). RFID‐enabled traceability in the food supply chain. Industrial Management & Data Systems, 107(2), 183-200. doi:10.1108/02635570710723804

Khan, S. F., & Ismail, M. Y. (2018). An Investigation into the Challenges and Opportunities Associated with the Application of Internet of Things (IoT) in the Agricultural Sector-A Review. Journal of Computer Science, 14(2), 132-143. doi:10.3844/jcssp.2018.132.143

Kladivko, E. J., Helmers, M. J., Abendroth, L. J., Herzmann, D., Lal, R., Castellano, M. J., … Villamil, M. B. (2014). Standardized research protocols enable transdisciplinary research of climate variation impacts in corn production systems. Journal of Soil and Water Conservation, 69(6), 532-542. doi:10.2489/jswc.69.6.532

Ko, T., Lee, J., & Ryu, D. (2018). Blockchain Technology and Manufacturing Industry: Real-Time Transparency and Cost Savings. Sustainability, 10(11), 4274. doi:10.3390/su10114274

KÖK, M. S. (2009). Application of Food Safety Management Systems (ISO 22000/HACCP) in the Turkish Poultry Industry: A Comparison Based on Enterprise Size. Journal of Food Protection, 72(10), 2221-2225. doi:10.4315/0362-028x-72.10.2221

Kvíz, Z., Kroulik, M., & Chyba, J. (2014). Machinery guidance systems analysis concerning pass-to-pass accuracy as a tool for efficient plant production in fields and for soil damage reduction. Plant, Soil and Environment, 60(No. 1), 36-42. doi:10.17221/622/2012-pse

Lamsal, K., Jones, P. C., & Thomas, B. W. (2016). Harvest logistics in agricultural systems with multiple, independent producers and no on-farm storage. Computers & Industrial Engineering, 91, 129-138. doi:10.1016/j.cie.2015.10.018

Laube, P., Duckham, M., & Palaniswami, M. (2011). Deferred decentralized movement pattern mining for geosensor networks. International Journal of Geographical Information Science, 25(2), 273-292. doi:10.1080/13658810903296630

Li, F.-R., Gao, C.-Y., Zhao, H.-L., & Li, X.-Y. (2002). Soil conservation effectiveness and energy efficiency of alternative rotations and continuous wheat cropping in the Loess Plateau of northwest China. Agriculture, Ecosystems & Environment, 91(1-3), 101-111. doi:10.1016/s0167-8809(01)00265-1

Liakos, K., Busato, P., Moshou, D., Pearson, S., & Bochtis, D. (2018). Machine Learning in Agriculture: A Review. Sensors, 18(8), 2674. doi:10.3390/s18082674

Meichen, L., Jun, C., Xiang, Z., Lu, W., & Yongpeng, T. (2018). Dynamic obstacle detection based on multi-sensor information fusion. IFAC-PapersOnLine, 51(17), 861-865. doi:10.1016/j.ifacol.2018.08.086

Louwagie, G., Northey, G., Finn, J. A., & Purvis, G. (2012). Development of indicators for assessment of the environmental impact of livestock farming in Ireland using the Agri-environmental Footprint Index. Ecological Indicators, 18, 149-162. doi:10.1016/j.ecolind.2011.11.003

Luque, A., Peralta, M. E., de las Heras, A., & Córdoba, A. (2017). State of the Industry 4.0 in the Andalusian food sector. Procedia Manufacturing, 13, 1199-1205. doi:10.1016/j.promfg.2017.09.195

Malhotra, S., Doja, M. ., Alam, B., & Alam, M. (2017). Bigdata analysis and comparison of bigdata analytic approches. 2017 International Conference on Computing, Communication and Automation (ICCCA). doi:10.1109/ccaa.2017.8229821

Mayer, J., Gunst, L., Mäder, P., Samson, M.-F., Carcea, M., Narducci, V., … Dubois, D. (2015). «Productivity, quality and sustainability of winter wheat under long-term conventional and organic management in Switzerland». European Journal of Agronomy, 65, 27-39. doi:10.1016/j.eja.2015.01.002

McGuire, S., & Sperling, L. (2013). Making seed systems more resilient to stress. Global Environmental Change, 23(3), 644-653. doi:10.1016/j.gloenvcha.2013.02.001

Mekala, M. S., & Viswanathan, P. (2017). A Survey: Smart agriculture IoT with cloud computing. 2017 International conference on Microelectronic Devices, Circuits and Systems (ICMDCS). doi:10.1109/icmdcs.2017.8211551

Mishra, S., Mishra, D., & Santra, G. H. (2016). Applications of Machine Learning Techniques in Agricultural Crop Production: A Review Paper. Indian Journal of Science and Technology, 9(38). doi:10.17485/ijst/2016/v9i38/95032

Mocnej, J., Seah, W. K. G., Pekar, A., & Zolotova, I. (2018). Decentralised IoT Architecture for Efficient Resources Utilisation. IFAC-PapersOnLine, 51(6), 168-173. doi:10.1016/j.ifacol.2018.07.148

Mohanraj, I., Gokul, V., Ezhilarasie, R., & Umamakeswari, A. (2017). Intelligent drip irrigation and fertigation using wireless sensor networks. 2017 IEEE Technological Innovations in ICT for Agriculture and Rural Development (TIAR). doi:10.1109/tiar.2017.8273682

Montecinos, J., Ouhimmou, M., Chauhan, S., & Paquet, M. (2018). Forecasting multiple waste collecting sites for the agro-food industry. Journal of Cleaner Production, 187, 932-939. doi:10.1016/j.jclepro.2018.03.127

Yandun Narváez, F., Gregorio, E., Escolà, A., Rosell-Polo, J. R., Torres-Torriti, M., & Auat Cheein, F. (2018). Terrain classification using ToF sensors for the enhancement of agricultural machinery traversability. Journal of Terramechanics, 76, 1-13. doi:10.1016/j.jterra.2017.10.005

Nguyen, T., ZHOU, L., Spiegler, V., Ieromonachou, P., & Lin, Y. (2018). Big data analytics in supply chain management: A state-of-the-art literature review. Computers & Operations Research, 98, 254-264. doi:10.1016/j.cor.2017.07.004

Nilsson, E., Hochrainer-Stigler, S., Mochizuki, J., & Uvo, C. B. (2016). Hydro-climatic variability and agricultural production on the shores of Lake Chad. Environmental Development, 20, 15-30. doi:10.1016/j.envdev.2016.09.001

Nolan, P., Paley, D. A., & Kroeger, K. (2017). Multi-UAS path planning for non-uniform data collection in precision agriculture. 2017 IEEE Aerospace Conference. doi:10.1109/aero.2017.7943794

Oberholster, C., Adendorff, C., & Jonker, K. (2015). Financing Agricultural Production from a Value Chain Perspective. Outlook on Agriculture, 44(1), 49-60. doi:10.5367/oa.2015.0197

Opara, L. U., & Mazaud, F. (2001). Food Traceability from Field to Plate. Outlook on Agriculture, 30(4), 239-247. doi:10.5367/000000001101293724

Ott, K.-H., Aranı́bar, N., Singh, B., & Stockton, G. W. (2003). Metabonomics classifies pathways affected by bioactive compounds. Artificial neural network classification of NMR spectra of plant extracts. Phytochemistry, 62(6), 971-985. doi:10.1016/s0031-9422(02)00717-3

Panetto, H. (2007). Towards a classification framework for interoperability of enterprise applications. International Journal of Computer Integrated Manufacturing, 20(8), 727-740. doi:10.1080/09511920600996419

Paulraj, G. J. L., Francis, S. A. J., Peter, J. D., & Jebadurai, I. J. (2018). Resource-aware virtual machine migration in IoT cloud. Future Generation Computer Systems, 85, 173-183. doi:10.1016/j.future.2018.03.024

Pilli, S. K., Nallathambi, B., George, S. J., & Diwanji, V. (2015). eAGROBOT — A robot for early crop disease detection using image processing. 2015 2nd International Conference on Electronics and Communication Systems (ICECS). doi:10.1109/ecs.2015.7124873

Pinho, P., Dias, T., Cruz, C., Sim Tang, Y., Sutton, M. A., Martins-Loução, M.-A., … Branquinho, C. (2011). Using lichen functional diversity to assess the effects of atmospheric ammonia in Mediterranean woodlands. Journal of Applied Ecology, 48(5), 1107-1116. doi:10.1111/j.1365-2664.2011.02033.x

Prathibha, S. R., Hongal, A., & Jyothi, M. P. (2017). IOT Based Monitoring System in Smart Agriculture. 2017 International Conference on Recent Advances in Electronics and Communication Technology (ICRAECT). doi:10.1109/icraect.2017.52

Reardon, T., Echeverria, R., Berdegué, J., Minten, B., Liverpool-Tasie, S., Tschirley, D., & Zilberman, D. (2019). Rapid transformation of food systems in developing regions: Highlighting the role of agricultural research & innovations. Agricultural Systems, 172, 47-59. doi:10.1016/j.agsy.2018.01.022

Ribarics, P. (2016). Big Data and its impact on agriculture. Ecocycles, 2(1), 33-34. doi:10.19040/ecocycles.v2i1.54

Rosell, J. R., & Sanz, R. (2012). A review of methods and applications of the geometric characterization of tree crops in agricultural activities. Computers and Electronics in Agriculture, 81, 124-141. doi:10.1016/j.compag.2011.09.007

Roshanianfard, A., Kamata, T., & Noguchi, N. (2018). Performance evaluation of harvesting robot for heavy-weight crops. IFAC-PapersOnLine, 51(17), 332-338. doi:10.1016/j.ifacol.2018.08.200

Routroy, S., & Behera, A. (2017). Agriculture supply chain. Journal of Agribusiness in Developing and Emerging Economies, 7(3), 275-302. doi:10.1108/jadee-06-2016-0039

Ruiz-Garcia, L., Steinberger, G., & Rothmund, M. (2010). A model and prototype implementation for tracking and tracing agricultural batch products along the food chain. Food Control, 21(2), 112-121. doi:10.1016/j.foodcont.2008.12.003

Saggi, M. K., & Jain, S. (2018). A survey towards an integration of big data analytics to big insights for value-creation. Information Processing & Management, 54(5), 758-790. doi:10.1016/j.ipm.2018.01.010

Sánchez-Hermosilla, J., González, R., Rodríguez, F., & Donaire, J. (2013). Mechatronic Description of a Laser Autoguided Vehicle for Greenhouse Operations. Sensors, 13(1), 769-784. doi:10.3390/s130100769

Santiago, R. M. C., Jose, J. A., Bandala, A. A., & Dadios, E. P. (2017). Multiple objective optimization of LED lighting system design using genetic algorithm. 2017 5th International Conference on Information and Communication Technology (ICoIC7). doi:10.1109/icoict.2017.8074698

Senge, P. M. (1997). THE FIFTH DISCIPLINE. Measuring Business Excellence, 1(3), 46-51. doi:10.1108/eb025496

Shi, X., An, X., Zhao, Q., Liu, H., Xia, L., Sun, X., & Guo, Y. (2019). State-of-the-Art Internet of Things in Protected Agriculture. Sensors, 19(8), 1833. doi:10.3390/s19081833

Shin, D., & Ko, K. (2017). Comparative analysis of degradation rates for inland and seaside wind turbines in compliance with the International Electrotechnical Commission standard. Energy, 118, 1180-1186. doi:10.1016/j.energy.2016.10.140

Singh, R., Soni, S. K., Patel, R. P., & Kalra, A. (2013). Technology for improving essential oil yield of Ocimum basilicum L. (sweet basil) by application of bioinoculant colonized seeds under organic field conditions. Industrial Crops and Products, 45, 335-342. doi:10.1016/j.indcrop.2013.01.003

Soh, Y. W., Koo, C. H., Huang, Y. F., & Fung, K. F. (2018). Application of artificial intelligence models for the prediction of standardized precipitation evapotranspiration index (SPEI) at Langat River Basin, Malaysia. Computers and Electronics in Agriculture, 144, 164-173. doi:10.1016/j.compag.2017.12.002

Spekken, M., de Bruin, S., Molin, J. P., & Sparovek, G. (2016). Planning machine paths and row crop patterns on steep surfaces to minimize soil erosion. Computers and Electronics in Agriculture, 124, 194-210. doi:10.1016/j.compag.2016.03.013

Starr, G. C. (2005). Assessing temporal stability and spatial variability of soil water patterns with implications for precision water management. Agricultural Water Management, 72(3), 223-243. doi:10.1016/j.agwat.2004.09.020

Suprem, A., Mahalik, N., & Kim, K. (2013). A review on application of technology systems, standards and interfaces for agriculture and food sector. Computer Standards & Interfaces, 35(4), 355-364. doi:10.1016/j.csi.2012.09.002

Swisher, M. E., Ruiz-Menjivar, J., & Koenig, R. (2017). Value chains in renewable and sustainable food systems. Renewable Agriculture and Food Systems, 33(1), 1-5. doi:10.1017/s1742170517000667

Tabatabaie, S. M. H., Rafiee, S., Keyhani, A., & Ebrahimi, A. (2013). Energy and economic assessment of prune production in Tehran province of Iran. Journal of Cleaner Production, 39, 280-284. doi:10.1016/j.jclepro.2012.07.052

Tan, D. (2012). Developing Agricultural Products Logistics in China from the Perspective of Green Supply Chain. International Journal of Business and Management, 7(21). doi:10.5539/ijbm.v7n21p106

Van der Vorst, J. G. A. J. (2005). Product traceability in food-supply chains. Accreditation and Quality Assurance, 11(1-2), 33-37. doi:10.1007/s00769-005-0028-1

Vergara, P. M., de la Cal, E., Villar, J. R., González, V. M., & Sedano, J. (2017). An IoT Platform for Epilepsy Monitoring and Supervising. Journal of Sensors, 2017, 1-18. doi:10.1155/2017/6043069

Wang, L., Aydin, N., Astaras, A., Ahmadian, M., Hammond, P. A., Tang, T. B., … Cumming, D. R. S. (s. f.). A Sensor System On Chip for Wireless Microsystems. 2006 IEEE International Symposium on Circuits and Systems. doi:10.1109/iscas.2006.1692720

Wang, B., Xiong, Y.-F., Hu, Z.-J., Zhao, H.-Y., Zhang, W., & Mei, H. (2014). Interactive Inconsistency Fixing in Feature Modeling. Journal of Computer Science and Technology, 29(4), 724-736. doi:10.1007/s11390-014-1462-5

Wang, H., Hohimer, C. J., Bhusal, S., Karkee, M., Mo, C., & Miller, J. H. (2018). Simulation As A Tool In Designing And Evaluating A Robotic Apple Harvesting System. IFAC-PapersOnLine, 51(17), 135-140. doi:10.1016/j.ifacol.2018.08.076

Rediers, H., Claes, M., Peeters, L., & Willems, K. A. (2009). Evaluation of the cold chain of fresh-cut endive from farmer to plate. Postharvest Biology and Technology, 51(2), 257-262. doi:10.1016/j.postharvbio.2008.07.017

Xavier, A., Freitas, M. de B. C., Rosário, M. do S., & Fragoso, R. (2018). Disaggregating statistical data at the field level: An entropy approach. Spatial Statistics, 23, 91-108. doi:10.1016/j.spasta.2017.11.005

Xie, Y., Wang, P., Bai, X., Khan, J., Zhang, S., Li, L., & Wang, L. (2017). Assimilation of the leaf area index and vegetation temperature condition index for winter wheat yield estimation using Landsat imagery and the CERES-Wheat model. Agricultural and Forest Meteorology, 246, 194-206. doi:10.1016/j.agrformet.2017.06.015

Yablonsky, S. (2018). A Multidimensional Framework for Digital Platform Innovation and Management: From Business to Technological Platforms. Systems Research and Behavioral Science, 35(4), 485-501. doi:10.1002/sres.2544

Yakovleva, N. (2007). Measuring the Sustainability of the Food Supply Chain: A Case Study of the UK. Journal of Environmental Policy & Planning, 9(1), 75-100. doi:10.1080/15239080701255005

Zhang, X., & Aramyan, L. H. (2009). A conceptual framework for supply chain governance. China Agricultural Economic Review, 1(2), 136-154. doi:10.1108/17561370910927408

Zhao, C., & Yao, X. (2016). A digital hardware platform for RF PA digital predistortion algorithms. 2016 9th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI). doi:10.1109/cisp-bmei.2016.7852884

Zhao, G., Liu, S., Lopez, C., Lu, H., Elgueta, S., Chen, H., & Boshkoska, B. M. (2019). Blockchain technology in agri-food value chain management: A synthesis of applications, challenges and future research directions. Computers in Industry, 109, 83-99. doi:10.1016/j.compind.2019.04.002

Zhou, J., Long, X.-M., & Luo, H.-J. (2018). Spectrum optimization of light-emitting diode insecticide lamp based on partial discharge evaluation. Measurement, 124, 72-80. doi:10.1016/j.measurement.2018.03.073

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem