- -

Agri-food 4.0: A survey of the supply chains and technologies for the future agriculture

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Agri-food 4.0: A survey of the supply chains and technologies for the future agriculture

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Lezoche, Mario es_ES
dc.contributor.author Hernández, Jorge E. es_ES
dc.contributor.author Alemany Díaz, María Del Mar es_ES
dc.contributor.author Panetto, Hervé es_ES
dc.contributor.author Kacprzyk, Janusz es_ES
dc.date.accessioned 2021-04-23T03:31:33Z
dc.date.available 2021-04-23T03:31:33Z
dc.date.issued 2020-05 es_ES
dc.identifier.issn 0166-3615 es_ES
dc.identifier.uri http://hdl.handle.net/10251/165518
dc.description.abstract [EN] The term "Agri-Food 4.0" is an analogy to the term Industry 4.0; coming from the concept "agriculture 4.0". Since the origins of the industrial revolution, where the steam engines started the concept of Industry 1.0 and later the use of electricity upgraded the concept to Industry 2.0, the use of technologies generated a milestone in the industry revolution by addressing the Industry 3.0 concept. Hence, Industry 4.0, it is about including and integrating the latest developments based on digital technologies as well as the interoperability process across them. This allows enterprises to transmit real-time information in terms behaviour and performance. Therefore, the challenge is to maintain these complex networked structures efficiently linked and organised within the use of such technologies, especially to identify and satisfy supply chain stakeholders dynamic requirements. In this context, the agriculture domain is not an exception although it possesses some specialities depending from the domain. In fact, all agricultural machinery incorporates electronic controls and has entered to the digital age, enhancing their current performance. In addition, electronics, using sensors and drones, support the data collection of several agriculture key aspects, such as weather, geographical spatialization, animals and crops behaviours, as well as the entire farm life cycle. However, the use of the right methods and methodologies for enhancing agriculture supply chains performance is still a challenge, thus the concept of Industry 4.0 has evolved and adapted to agriculture 4.0 in order analyse the behaviours and performance in this specific domain. Thus, the question mark on how agriculture 4.0 support a better supply chain decision-making process, or how can help to save time to farmer to make effective decision based on objective data, remains open. Therefore, in this survey, a review of more than hundred papers on new technologies and the new available supply chains methods are analysed and contrasted to understand the future paths of the Agri-Food domain. es_ES
dc.description.sponsorship Authors of this publication acknowledge the contribution of the Project 691249, RUC-APS "Enhancing and implementing Knowledge based ICT solutions within high Risk and Uncertain Conditions for Agriculture Production Systems" (www.ruc-aps.eu), funded by the European Union under their funding scheme H2020-MSCARISE-2015. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Computers in Industry es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Agri-Food 4.0 es_ES
dc.subject Agriculture 4.0 es_ES
dc.subject Supply chains es_ES
dc.subject Internet of things es_ES
dc.subject Big data es_ES
dc.subject Blockchain es_ES
dc.subject Artificial intelligence es_ES
dc.subject.classification ORGANIZACION DE EMPRESAS es_ES
dc.title Agri-food 4.0: A survey of the supply chains and technologies for the future agriculture es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.compind.2020.103187 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/691249/EU/Enhancing and implementing Knowledge based ICT solutions within high Risk and Uncertain Conditions for Agriculture Production Systems/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Organización de Empresas - Departament d'Organització d'Empreses es_ES
dc.description.bibliographicCitation Lezoche, M.; Hernández, JE.; Alemany Díaz, MDM.; Panetto, H.; Kacprzyk, J. (2020). Agri-food 4.0: A survey of the supply chains and technologies for the future agriculture. Computers in Industry. 117:1-15. https://doi.org/10.1016/j.compind.2020.103187 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.compind.2020.103187 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 15 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 117 es_ES
dc.relation.pasarela S\405776 es_ES
dc.contributor.funder European Commission es_ES
dc.description.references Ahumada, O., & Villalobos, J. R. (2009). Application of planning models in the agri-food supply chain: A review. European Journal of Operational Research, 196(1), 1-20. doi:10.1016/j.ejor.2008.02.014 es_ES
dc.description.references Ait-Mouheb, N., Bahri, A., Thayer, B. B., Benyahia, B., Bourrié, G., Cherki, B., … Harmand, J. (2018). The reuse of reclaimed water for irrigation around the Mediterranean Rim: a step towards a more virtuous cycle? Regional Environmental Change, 18(3), 693-705. doi:10.1007/s10113-018-1292-z es_ES
dc.description.references Ali, J., & Kumar, S. (2011). Information and communication technologies (ICTs) and farmers’ decision-making across the agricultural supply chain. International Journal of Information Management, 31(2), 149-159. doi:10.1016/j.ijinfomgt.2010.07.008 es_ES
dc.description.references Alzahrani, S. M. (2018). Development of IoT mining machine for Twitter sentiment analysis: Mining in the cloud and results on the mirror. 2018 15th Learning and Technology Conference (L&T). doi:10.1109/lt.2018.8368490 es_ES
dc.description.references Amandeep, Bhattacharjee, A., Das, P., Basu, D., Roy, S., Ghosh, S., … Rana, T. K. (2017). Smart farming using IOT. 2017 8th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON). doi:10.1109/iemcon.2017.8117219 es_ES
dc.description.references Annosi, M. C., Brunetta, F., Monti, A., & Nati, F. (2019). Is the trend your friend? An analysis of technology 4.0 investment decisions in agricultural SMEs. Computers in Industry, 109, 59-71. doi:10.1016/j.compind.2019.04.003 es_ES
dc.description.references Baio, F. H. R. (2011). Evaluation of an auto-guidance system operating on a sugar cane harvester. Precision Agriculture, 13(1), 141-147. doi:10.1007/s11119-011-9241-6 es_ES
dc.description.references Belaud, J.-P., Prioux, N., Vialle, C., & Sablayrolles, C. (2019). Big data for agri-food 4.0: Application to sustainability management for by-products supply chain. Computers in Industry, 111, 41-50. doi:10.1016/j.compind.2019.06.006 es_ES
dc.description.references Nicolaas Bezuidenhout, C., Bodhanya, S., & Brenchley, L. (2012). An analysis of collaboration in a sugarcane production and processing supply chain. British Food Journal, 114(6), 880-895. doi:10.1108/00070701211234390 es_ES
dc.description.references Bhatt, M. R., & Buch, S. (2015). Prediction of formability for sheet metal component using artificial intelligent technique. 2015 2nd International Conference on Signal Processing and Integrated Networks (SPIN). doi:10.1109/spin.2015.7095356 es_ES
dc.description.references Birkel, H. S., & Hartmann, E. (2019). Impact of IoT challenges and risks for SCM. Supply Chain Management: An International Journal, 24(1), 39-61. doi:10.1108/scm-03-2018-0142 es_ES
dc.description.references Boehlje, M. (1999). Structural Changes in the Agricultural Industries: How Do We Measure, Analyze and Understand Them? American Journal of Agricultural Economics, 81(5), 1028-1041. doi:10.2307/1244080 es_ES
dc.description.references Bonney, L., Clark, R., Collins, R., & Fearne, A. (2007). From serendipity to sustainable competitive advantage: insights from Houston’s Farm and their journey of co‐innovation. Supply Chain Management: An International Journal, 12(6), 395-399. doi:10.1108/13598540710826326 es_ES
dc.description.references Boshkoska, B. M., Liu, S., Zhao, G., Fernandez, A., Gamboa, S., del Pino, M., … Chen, H. (2019). A decision support system for evaluation of the knowledge sharing crossing boundaries in agri-food value chains. Computers in Industry, 110, 64-80. doi:10.1016/j.compind.2019.04.012 es_ES
dc.description.references Brewster, C., Roussaki, I., Kalatzis, N., Doolin, K., & Ellis, K. (2017). IoT in Agriculture: Designing a Europe-Wide Large-Scale Pilot. IEEE Communications Magazine, 55(9), 26-33. doi:10.1109/mcom.2017.1600528 es_ES
dc.description.references Bronson, K., & Knezevic, I. (2016). Big Data in food and agriculture. Big Data & Society, 3(1), 205395171664817. doi:10.1177/2053951716648174 es_ES
dc.description.references Brown, K. (2013). Global environmental change I. Progress in Human Geography, 38(1), 107-117. doi:10.1177/0309132513498837 es_ES
dc.description.references Chilcanan, D., Navas, P., & Escobar, S. M. (2017). Expert system for remote process automation in multiplatform servers, through human machine conversation. 2017 12th Iberian Conference on Information Systems and Technologies (CISTI). doi:10.23919/cisti.2017.7975913 es_ES
dc.description.references Choi, J., In, Y., Park, C., Seok, S., Seo, H., & Kim, H. (2016). Secure IoT framework and 2D architecture for End-To-End security. The Journal of Supercomputing, 74(8), 3521-3535. doi:10.1007/s11227-016-1684-0 es_ES
dc.description.references Cohen, W. M., & Levinthal, D. A. (1990). Absorptive Capacity: A New Perspective on Learning and Innovation. Administrative Science Quarterly, 35(1), 128. doi:10.2307/2393553 es_ES
dc.description.references Dabbene, F., Gay, P., & Tortia, C. (2014). Traceability issues in food supply chain management: A review. Biosystems Engineering, 120, 65-80. doi:10.1016/j.biosystemseng.2013.09.006 es_ES
dc.description.references Del Borghi, A., Gallo, M., Strazza, C., & Del Borghi, M. (2014). An evaluation of environmental sustainability in the food industry through Life Cycle Assessment: the case study of tomato products supply chain. Journal of Cleaner Production, 78, 121-130. doi:10.1016/j.jclepro.2014.04.083 es_ES
dc.description.references Devarakonda, R., Shrestha, B., Palanisamy, G., Hook, L., Killeffer, T., Krassovski, M., … Lazer, K. (2014). OME: Tool for generating and managing metadata to handle BigData. 2014 IEEE International Conference on Big Data (Big Data). doi:10.1109/bigdata.2014.7004476 es_ES
dc.description.references Nascimento, A. F. do, Mendonça, E. de S., Leite, L. F. C., Scholberg, J., & Neves, J. C. L. (2012). Calibration and validation of models for short-term decomposition and N mineralization of plant residues in the tropics. Scientia Agricola, 69(6), 393-401. doi:10.1590/s0103-90162012000600008 es_ES
dc.description.references Dolan, C., & Humphrey, J. (2000). Governance and Trade in Fresh Vegetables: The Impact of UK Supermarkets on the African Horticulture Industry. Journal of Development Studies, 37(2), 147-176. doi:10.1080/713600072 es_ES
dc.description.references Dragincic, J., Korac, N., & Blagojevic, B. (2015). Group multi-criteria decision making (GMCDM) approach for selecting the most suitable table grape variety intended for organic viticulture. Computers and Electronics in Agriculture, 111, 194-202. doi:10.1016/j.compag.2014.12.023 es_ES
dc.description.references Dworak, V., Selbeck, J., Dammer, K.-H., Hoffmann, M., Zarezadeh, A., & Bobda, C. (2013). Strategy for the Development of a Smart NDVI Camera System for Outdoor Plant Detection and Agricultural Embedded Systems. Sensors, 13(2), 1523-1538. doi:10.3390/s130201523 es_ES
dc.description.references Eisele, M., Kiese, R., Krämer, A., & Leibundgut, C. (2001). Application of a catchment water quality model for assessment and prediction of nitrogen budgets. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 26(7-8), 547-551. doi:10.1016/s1464-1909(01)00048-x es_ES
dc.description.references Elsayed, K. M. F., Ismail, T., & S. Ouf, N. (2018). A Review on the Relevant Applications of Machine Learning in Agriculture. IJIREEICE, 6(8), 1-17. doi:10.17148/ijireeice.2018.681 es_ES
dc.description.references Esteso, A., Alemany, M. M. E., & Ortiz, A. (2017). Métodos y Modelos Deterministas e Inciertos para la Gestión de Cadenas de Suministro Agroalimentarias. Dirección y Organización, 41-46. doi:10.37610/dyo.v0i0.509 es_ES
dc.description.references Esteso, A., Alemany, M. M. E., & Ortiz, A. (2018). Conceptual framework for designing agri-food supply chains under uncertainty by mathematical programming models. International Journal of Production Research, 56(13), 4418-4446. doi:10.1080/00207543.2018.1447706 es_ES
dc.description.references GERHARDS, R., GUTJAHR, C., WEIS, M., KELLER, M., SÖKEFELD, M., MÖHRING, J., & PIEPHO, H. P. (2011). Using precision farming technology to quantify yield effects attributed to weed competition and herbicide application. Weed Research, 52(1), 6-15. doi:10.1111/j.1365-3180.2011.00893.x es_ES
dc.description.references Govindan, K., Jafarian, A., Khodaverdi, R., & Devika, K. (2014). Two-echelon multiple-vehicle location–routing problem with time windows for optimization of sustainable supply chain network of perishable food. International Journal of Production Economics, 152, 9-28. doi:10.1016/j.ijpe.2013.12.028 es_ES
dc.description.references Gumaste, S. S., & Kadam, A. J. (2016). Future weather prediction using genetic algorithm and FFT for smart farming. 2016 International Conference on Computing Communication Control and automation (ICCUBEA). doi:10.1109/iccubea.2016.7860028 es_ES
dc.description.references Hashem, H., & Ranc, D. (2016). A review of modeling toolbox for BigData. 2016 International Conference on Military Communications and Information Systems (ICMCIS). doi:10.1109/icmcis.2016.7496565 es_ES
dc.description.references Hefnawy, A., Elhariri, T., Cherifi, C., Robert, J., Bouras, A., Kubler, S., & Framling, K. (2017). Combined use of lifecycle management and IoT in smart cities. 2017 11th International Conference on Software, Knowledge, Information Management and Applications (SKIMA). doi:10.1109/skima.2017.8294112 es_ES
dc.description.references Hosseini, S. H., Tang, C. Y., & Jiang, J. N. (2014). Calibration of a Wind Farm Wind Speed Model With Incomplete Wind Data. IEEE Transactions on Sustainable Energy, 5(1), 343-350. doi:10.1109/tste.2013.2284490 es_ES
dc.description.references Hu, Y., Zhang, L., Li, J., & Mehrotra, S. (2016). ICME 2016 Image Recognition Grand Challenge. 2016 IEEE International Conference on Multimedia & Expo Workshops (ICMEW). doi:10.1109/icmew.2016.7574663 es_ES
dc.description.references A. Irmak, J. W. Jones, W. D. Batchelor, S. Irmak, K. J. Boote, & J. O. Paz. (2006). Artificial Neural Network Model as a Data Analysis Tool in Precision Farming. Transactions of the ASABE, 49(6), 2027-2037. doi:10.13031/2013.22264 es_ES
dc.description.references Jeon, S., Kim, B., & Huh, J. (2017). Study on methods to determine rotor equivalent wind speed to increase prediction accuracy of wind turbine performance under wake condition. Energy for Sustainable Development, 40, 41-49. doi:10.1016/j.esd.2017.06.001 es_ES
dc.description.references Joly, P.-B. (2005). Resilient farming systems in a complex world — new issues for the governance of science and innovation. Australian Journal of Experimental Agriculture, 45(6), 617. doi:10.1071/ea03252 es_ES
dc.description.references Joshi, R., Banwet, D. K., & Shankar, R. (2009). Indian cold chain: modeling the inhibitors. British Food Journal, 111(11), 1260-1283. doi:10.1108/00070700911001077 es_ES
dc.description.references Kamata, T., Roshanianfard, A., & Noguchi, N. (2018). Heavy-weight Crop Harvesting Robot - Controlling Algorithm. IFAC-PapersOnLine, 51(17), 244-249. doi:10.1016/j.ifacol.2018.08.165 es_ES
dc.description.references Kamble, S. S., Gunasekaran, A., & Gawankar, S. A. (2020). Achieving sustainable performance in a data-driven agriculture supply chain: A review for research and applications. International Journal of Production Economics, 219, 179-194. doi:10.1016/j.ijpe.2019.05.022 es_ES
dc.description.references Kamilaris, A., Kartakoullis, A., & Prenafeta-Boldú, F. X. (2017). A review on the practice of big data analysis in agriculture. Computers and Electronics in Agriculture, 143, 23-37. doi:10.1016/j.compag.2017.09.037 es_ES
dc.description.references Kelepouris, T., Pramatari, K., & Doukidis, G. (2007). RFID‐enabled traceability in the food supply chain. Industrial Management & Data Systems, 107(2), 183-200. doi:10.1108/02635570710723804 es_ES
dc.description.references Khan, S. F., & Ismail, M. Y. (2018). An Investigation into the Challenges and Opportunities Associated with the Application of Internet of Things (IoT) in the Agricultural Sector-A Review. Journal of Computer Science, 14(2), 132-143. doi:10.3844/jcssp.2018.132.143 es_ES
dc.description.references Kladivko, E. J., Helmers, M. J., Abendroth, L. J., Herzmann, D., Lal, R., Castellano, M. J., … Villamil, M. B. (2014). Standardized research protocols enable transdisciplinary research of climate variation impacts in corn production systems. Journal of Soil and Water Conservation, 69(6), 532-542. doi:10.2489/jswc.69.6.532 es_ES
dc.description.references Ko, T., Lee, J., & Ryu, D. (2018). Blockchain Technology and Manufacturing Industry: Real-Time Transparency and Cost Savings. Sustainability, 10(11), 4274. doi:10.3390/su10114274 es_ES
dc.description.references KÖK, M. S. (2009). Application of Food Safety Management Systems (ISO 22000/HACCP) in the Turkish Poultry Industry: A Comparison Based on Enterprise Size. Journal of Food Protection, 72(10), 2221-2225. doi:10.4315/0362-028x-72.10.2221 es_ES
dc.description.references Kvíz, Z., Kroulik, M., & Chyba, J. (2014). Machinery guidance systems analysis concerning pass-to-pass accuracy as a tool for efficient plant production in fields and for soil damage reduction. Plant, Soil and Environment, 60(No. 1), 36-42. doi:10.17221/622/2012-pse es_ES
dc.description.references Lamsal, K., Jones, P. C., & Thomas, B. W. (2016). Harvest logistics in agricultural systems with multiple, independent producers and no on-farm storage. Computers & Industrial Engineering, 91, 129-138. doi:10.1016/j.cie.2015.10.018 es_ES
dc.description.references Laube, P., Duckham, M., & Palaniswami, M. (2011). Deferred decentralized movement pattern mining for geosensor networks. International Journal of Geographical Information Science, 25(2), 273-292. doi:10.1080/13658810903296630 es_ES
dc.description.references Li, F.-R., Gao, C.-Y., Zhao, H.-L., & Li, X.-Y. (2002). Soil conservation effectiveness and energy efficiency of alternative rotations and continuous wheat cropping in the Loess Plateau of northwest China. Agriculture, Ecosystems & Environment, 91(1-3), 101-111. doi:10.1016/s0167-8809(01)00265-1 es_ES
dc.description.references Liakos, K., Busato, P., Moshou, D., Pearson, S., & Bochtis, D. (2018). Machine Learning in Agriculture: A Review. Sensors, 18(8), 2674. doi:10.3390/s18082674 es_ES
dc.description.references Meichen, L., Jun, C., Xiang, Z., Lu, W., & Yongpeng, T. (2018). Dynamic obstacle detection based on multi-sensor information fusion. IFAC-PapersOnLine, 51(17), 861-865. doi:10.1016/j.ifacol.2018.08.086 es_ES
dc.description.references Louwagie, G., Northey, G., Finn, J. A., & Purvis, G. (2012). Development of indicators for assessment of the environmental impact of livestock farming in Ireland using the Agri-environmental Footprint Index. Ecological Indicators, 18, 149-162. doi:10.1016/j.ecolind.2011.11.003 es_ES
dc.description.references Luque, A., Peralta, M. E., de las Heras, A., & Córdoba, A. (2017). State of the Industry 4.0 in the Andalusian food sector. Procedia Manufacturing, 13, 1199-1205. doi:10.1016/j.promfg.2017.09.195 es_ES
dc.description.references Malhotra, S., Doja, M. ., Alam, B., & Alam, M. (2017). Bigdata analysis and comparison of bigdata analytic approches. 2017 International Conference on Computing, Communication and Automation (ICCCA). doi:10.1109/ccaa.2017.8229821 es_ES
dc.description.references Mayer, J., Gunst, L., Mäder, P., Samson, M.-F., Carcea, M., Narducci, V., … Dubois, D. (2015). «Productivity, quality and sustainability of winter wheat under long-term conventional and organic management in Switzerland». European Journal of Agronomy, 65, 27-39. doi:10.1016/j.eja.2015.01.002 es_ES
dc.description.references McGuire, S., & Sperling, L. (2013). Making seed systems more resilient to stress. Global Environmental Change, 23(3), 644-653. doi:10.1016/j.gloenvcha.2013.02.001 es_ES
dc.description.references Mekala, M. S., & Viswanathan, P. (2017). A Survey: Smart agriculture IoT with cloud computing. 2017 International conference on Microelectronic Devices, Circuits and Systems (ICMDCS). doi:10.1109/icmdcs.2017.8211551 es_ES
dc.description.references Mishra, S., Mishra, D., & Santra, G. H. (2016). Applications of Machine Learning Techniques in Agricultural Crop Production: A Review Paper. Indian Journal of Science and Technology, 9(38). doi:10.17485/ijst/2016/v9i38/95032 es_ES
dc.description.references Mocnej, J., Seah, W. K. G., Pekar, A., & Zolotova, I. (2018). Decentralised IoT Architecture for Efficient Resources Utilisation. IFAC-PapersOnLine, 51(6), 168-173. doi:10.1016/j.ifacol.2018.07.148 es_ES
dc.description.references Mohanraj, I., Gokul, V., Ezhilarasie, R., & Umamakeswari, A. (2017). Intelligent drip irrigation and fertigation using wireless sensor networks. 2017 IEEE Technological Innovations in ICT for Agriculture and Rural Development (TIAR). doi:10.1109/tiar.2017.8273682 es_ES
dc.description.references Montecinos, J., Ouhimmou, M., Chauhan, S., & Paquet, M. (2018). Forecasting multiple waste collecting sites for the agro-food industry. Journal of Cleaner Production, 187, 932-939. doi:10.1016/j.jclepro.2018.03.127 es_ES
dc.description.references Yandun Narváez, F., Gregorio, E., Escolà, A., Rosell-Polo, J. R., Torres-Torriti, M., & Auat Cheein, F. (2018). Terrain classification using ToF sensors for the enhancement of agricultural machinery traversability. Journal of Terramechanics, 76, 1-13. doi:10.1016/j.jterra.2017.10.005 es_ES
dc.description.references Nguyen, T., ZHOU, L., Spiegler, V., Ieromonachou, P., & Lin, Y. (2018). Big data analytics in supply chain management: A state-of-the-art literature review. Computers & Operations Research, 98, 254-264. doi:10.1016/j.cor.2017.07.004 es_ES
dc.description.references Nilsson, E., Hochrainer-Stigler, S., Mochizuki, J., & Uvo, C. B. (2016). Hydro-climatic variability and agricultural production on the shores of Lake Chad. Environmental Development, 20, 15-30. doi:10.1016/j.envdev.2016.09.001 es_ES
dc.description.references Nolan, P., Paley, D. A., & Kroeger, K. (2017). Multi-UAS path planning for non-uniform data collection in precision agriculture. 2017 IEEE Aerospace Conference. doi:10.1109/aero.2017.7943794 es_ES
dc.description.references Oberholster, C., Adendorff, C., & Jonker, K. (2015). Financing Agricultural Production from a Value Chain Perspective. Outlook on Agriculture, 44(1), 49-60. doi:10.5367/oa.2015.0197 es_ES
dc.description.references Opara, L. U., & Mazaud, F. (2001). Food Traceability from Field to Plate. Outlook on Agriculture, 30(4), 239-247. doi:10.5367/000000001101293724 es_ES
dc.description.references Ott, K.-H., Aranı́bar, N., Singh, B., & Stockton, G. W. (2003). Metabonomics classifies pathways affected by bioactive compounds. Artificial neural network classification of NMR spectra of plant extracts. Phytochemistry, 62(6), 971-985. doi:10.1016/s0031-9422(02)00717-3 es_ES
dc.description.references Panetto, H. (2007). Towards a classification framework for interoperability of enterprise applications. International Journal of Computer Integrated Manufacturing, 20(8), 727-740. doi:10.1080/09511920600996419 es_ES
dc.description.references Paulraj, G. J. L., Francis, S. A. J., Peter, J. D., & Jebadurai, I. J. (2018). Resource-aware virtual machine migration in IoT cloud. Future Generation Computer Systems, 85, 173-183. doi:10.1016/j.future.2018.03.024 es_ES
dc.description.references Pilli, S. K., Nallathambi, B., George, S. J., & Diwanji, V. (2015). eAGROBOT — A robot for early crop disease detection using image processing. 2015 2nd International Conference on Electronics and Communication Systems (ICECS). doi:10.1109/ecs.2015.7124873 es_ES
dc.description.references Pinho, P., Dias, T., Cruz, C., Sim Tang, Y., Sutton, M. A., Martins-Loução, M.-A., … Branquinho, C. (2011). Using lichen functional diversity to assess the effects of atmospheric ammonia in Mediterranean woodlands. Journal of Applied Ecology, 48(5), 1107-1116. doi:10.1111/j.1365-2664.2011.02033.x es_ES
dc.description.references Prathibha, S. R., Hongal, A., & Jyothi, M. P. (2017). IOT Based Monitoring System in Smart Agriculture. 2017 International Conference on Recent Advances in Electronics and Communication Technology (ICRAECT). doi:10.1109/icraect.2017.52 es_ES
dc.description.references Reardon, T., Echeverria, R., Berdegué, J., Minten, B., Liverpool-Tasie, S., Tschirley, D., & Zilberman, D. (2019). Rapid transformation of food systems in developing regions: Highlighting the role of agricultural research & innovations. Agricultural Systems, 172, 47-59. doi:10.1016/j.agsy.2018.01.022 es_ES
dc.description.references Ribarics, P. (2016). Big Data and its impact on agriculture. Ecocycles, 2(1), 33-34. doi:10.19040/ecocycles.v2i1.54 es_ES
dc.description.references Rosell, J. R., & Sanz, R. (2012). A review of methods and applications of the geometric characterization of tree crops in agricultural activities. Computers and Electronics in Agriculture, 81, 124-141. doi:10.1016/j.compag.2011.09.007 es_ES
dc.description.references Roshanianfard, A., Kamata, T., & Noguchi, N. (2018). Performance evaluation of harvesting robot for heavy-weight crops. IFAC-PapersOnLine, 51(17), 332-338. doi:10.1016/j.ifacol.2018.08.200 es_ES
dc.description.references Routroy, S., & Behera, A. (2017). Agriculture supply chain. Journal of Agribusiness in Developing and Emerging Economies, 7(3), 275-302. doi:10.1108/jadee-06-2016-0039 es_ES
dc.description.references Ruiz-Garcia, L., Steinberger, G., & Rothmund, M. (2010). A model and prototype implementation for tracking and tracing agricultural batch products along the food chain. Food Control, 21(2), 112-121. doi:10.1016/j.foodcont.2008.12.003 es_ES
dc.description.references Saggi, M. K., & Jain, S. (2018). A survey towards an integration of big data analytics to big insights for value-creation. Information Processing & Management, 54(5), 758-790. doi:10.1016/j.ipm.2018.01.010 es_ES
dc.description.references Sánchez-Hermosilla, J., González, R., Rodríguez, F., & Donaire, J. (2013). Mechatronic Description of a Laser Autoguided Vehicle for Greenhouse Operations. Sensors, 13(1), 769-784. doi:10.3390/s130100769 es_ES
dc.description.references Santiago, R. M. C., Jose, J. A., Bandala, A. A., & Dadios, E. P. (2017). Multiple objective optimization of LED lighting system design using genetic algorithm. 2017 5th International Conference on Information and Communication Technology (ICoIC7). doi:10.1109/icoict.2017.8074698 es_ES
dc.description.references Senge, P. M. (1997). THE FIFTH DISCIPLINE. Measuring Business Excellence, 1(3), 46-51. doi:10.1108/eb025496 es_ES
dc.description.references Shi, X., An, X., Zhao, Q., Liu, H., Xia, L., Sun, X., & Guo, Y. (2019). State-of-the-Art Internet of Things in Protected Agriculture. Sensors, 19(8), 1833. doi:10.3390/s19081833 es_ES
dc.description.references Shin, D., & Ko, K. (2017). Comparative analysis of degradation rates for inland and seaside wind turbines in compliance with the International Electrotechnical Commission standard. Energy, 118, 1180-1186. doi:10.1016/j.energy.2016.10.140 es_ES
dc.description.references Singh, R., Soni, S. K., Patel, R. P., & Kalra, A. (2013). Technology for improving essential oil yield of Ocimum basilicum L. (sweet basil) by application of bioinoculant colonized seeds under organic field conditions. Industrial Crops and Products, 45, 335-342. doi:10.1016/j.indcrop.2013.01.003 es_ES
dc.description.references Soh, Y. W., Koo, C. H., Huang, Y. F., & Fung, K. F. (2018). Application of artificial intelligence models for the prediction of standardized precipitation evapotranspiration index (SPEI) at Langat River Basin, Malaysia. Computers and Electronics in Agriculture, 144, 164-173. doi:10.1016/j.compag.2017.12.002 es_ES
dc.description.references Spekken, M., de Bruin, S., Molin, J. P., & Sparovek, G. (2016). Planning machine paths and row crop patterns on steep surfaces to minimize soil erosion. Computers and Electronics in Agriculture, 124, 194-210. doi:10.1016/j.compag.2016.03.013 es_ES
dc.description.references Starr, G. C. (2005). Assessing temporal stability and spatial variability of soil water patterns with implications for precision water management. Agricultural Water Management, 72(3), 223-243. doi:10.1016/j.agwat.2004.09.020 es_ES
dc.description.references Suprem, A., Mahalik, N., & Kim, K. (2013). A review on application of technology systems, standards and interfaces for agriculture and food sector. Computer Standards & Interfaces, 35(4), 355-364. doi:10.1016/j.csi.2012.09.002 es_ES
dc.description.references Swisher, M. E., Ruiz-Menjivar, J., & Koenig, R. (2017). Value chains in renewable and sustainable food systems. Renewable Agriculture and Food Systems, 33(1), 1-5. doi:10.1017/s1742170517000667 es_ES
dc.description.references Tabatabaie, S. M. H., Rafiee, S., Keyhani, A., & Ebrahimi, A. (2013). Energy and economic assessment of prune production in Tehran province of Iran. Journal of Cleaner Production, 39, 280-284. doi:10.1016/j.jclepro.2012.07.052 es_ES
dc.description.references Tan, D. (2012). Developing Agricultural Products Logistics in China from the Perspective of Green Supply Chain. International Journal of Business and Management, 7(21). doi:10.5539/ijbm.v7n21p106 es_ES
dc.description.references Van der Vorst, J. G. A. J. (2005). Product traceability in food-supply chains. Accreditation and Quality Assurance, 11(1-2), 33-37. doi:10.1007/s00769-005-0028-1 es_ES
dc.description.references Vergara, P. M., de la Cal, E., Villar, J. R., González, V. M., & Sedano, J. (2017). An IoT Platform for Epilepsy Monitoring and Supervising. Journal of Sensors, 2017, 1-18. doi:10.1155/2017/6043069 es_ES
dc.description.references Wang, L., Aydin, N., Astaras, A., Ahmadian, M., Hammond, P. A., Tang, T. B., … Cumming, D. R. S. (s. f.). A Sensor System On Chip for Wireless Microsystems. 2006 IEEE International Symposium on Circuits and Systems. doi:10.1109/iscas.2006.1692720 es_ES
dc.description.references Wang, B., Xiong, Y.-F., Hu, Z.-J., Zhao, H.-Y., Zhang, W., & Mei, H. (2014). Interactive Inconsistency Fixing in Feature Modeling. Journal of Computer Science and Technology, 29(4), 724-736. doi:10.1007/s11390-014-1462-5 es_ES
dc.description.references Wang, H., Hohimer, C. J., Bhusal, S., Karkee, M., Mo, C., & Miller, J. H. (2018). Simulation As A Tool In Designing And Evaluating A Robotic Apple Harvesting System. IFAC-PapersOnLine, 51(17), 135-140. doi:10.1016/j.ifacol.2018.08.076 es_ES
dc.description.references Rediers, H., Claes, M., Peeters, L., & Willems, K. A. (2009). Evaluation of the cold chain of fresh-cut endive from farmer to plate. Postharvest Biology and Technology, 51(2), 257-262. doi:10.1016/j.postharvbio.2008.07.017 es_ES
dc.description.references Xavier, A., Freitas, M. de B. C., Rosário, M. do S., & Fragoso, R. (2018). Disaggregating statistical data at the field level: An entropy approach. Spatial Statistics, 23, 91-108. doi:10.1016/j.spasta.2017.11.005 es_ES
dc.description.references Xie, Y., Wang, P., Bai, X., Khan, J., Zhang, S., Li, L., & Wang, L. (2017). Assimilation of the leaf area index and vegetation temperature condition index for winter wheat yield estimation using Landsat imagery and the CERES-Wheat model. Agricultural and Forest Meteorology, 246, 194-206. doi:10.1016/j.agrformet.2017.06.015 es_ES
dc.description.references Yablonsky, S. (2018). A Multidimensional Framework for Digital Platform Innovation and Management: From Business to Technological Platforms. Systems Research and Behavioral Science, 35(4), 485-501. doi:10.1002/sres.2544 es_ES
dc.description.references Yakovleva, N. (2007). Measuring the Sustainability of the Food Supply Chain: A Case Study of the UK. Journal of Environmental Policy & Planning, 9(1), 75-100. doi:10.1080/15239080701255005 es_ES
dc.description.references Zhang, X., & Aramyan, L. H. (2009). A conceptual framework for supply chain governance. China Agricultural Economic Review, 1(2), 136-154. doi:10.1108/17561370910927408 es_ES
dc.description.references Zhao, C., & Yao, X. (2016). A digital hardware platform for RF PA digital predistortion algorithms. 2016 9th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI). doi:10.1109/cisp-bmei.2016.7852884 es_ES
dc.description.references Zhao, G., Liu, S., Lopez, C., Lu, H., Elgueta, S., Chen, H., & Boshkoska, B. M. (2019). Blockchain technology in agri-food value chain management: A synthesis of applications, challenges and future research directions. Computers in Industry, 109, 83-99. doi:10.1016/j.compind.2019.04.002 es_ES
dc.description.references Zhou, J., Long, X.-M., & Luo, H.-J. (2018). Spectrum optimization of light-emitting diode insecticide lamp based on partial discharge evaluation. Measurement, 124, 72-80. doi:10.1016/j.measurement.2018.03.073 es_ES
dc.subject.ods 02.- Poner fin al hambre, conseguir la seguridad alimentaria y una mejor nutrición, y promover la agricultura sostenible es_ES
dc.subject.ods 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem