- -

Classification model based on strain measurements to identify patients with arrhythmogenic cardiomyopathy with left ventricular involvement

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Classification model based on strain measurements to identify patients with arrhythmogenic cardiomyopathy with left ventricular involvement

Show full item record

Vives-Gilabert, Y.; Zorio, E.; Sanz-Sánchez, J.; Calvillo-Batllés, P.; Millet Roig, J.; Castells, F. (2020). Classification model based on strain measurements to identify patients with arrhythmogenic cardiomyopathy with left ventricular involvement. Computer Methods and Programs in Biomedicine. 188:1-9. https://doi.org/10.1016/j.cmpb.2019.105296

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/165521

Files in this item

Item Metadata

Title: Classification model based on strain measurements to identify patients with arrhythmogenic cardiomyopathy with left ventricular involvement
Author: Vives-Gilabert, Yolanda Zorio, Esther Sanz-Sánchez, Jorge Calvillo-Batllés, Pilar Millet Roig, José Castells, Francisco
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Issued date:
Abstract:
[EN] Background and objective: A heterogenous expression characterizes arrhythmogenic cardiomyopathy (AC). The evaluation of regional wall movement included in the current Task Force Criteria is only qualitative and ...[+]
Subjects: Cardiac magnetic resonance imaging , Clustering , Naive Bayes classification
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Computer Methods and Programs in Biomedicine. (issn: 0169-2607 )
DOI: 10.1016/j.cmpb.2019.105296
Publisher:
Elsevier
Publisher version: https://doi.org/10.1016/j.cmpb.2019.105296
Project ID:
info:eu-repo/grantAgreement/ISCIII//PI18%2F01582/ES/Modulación del fenotipo de miocardiopatía arritmogénica para mejorar el diagnóstico, buscar nuevos tratamientos y comprender sus mecanismos fisiopatogénicos. Papel de grasa epicárdica/
info:eu-repo/grantAgreement/ISCIII//PT17%2F0015%2F0043/
info:eu-repo/grantAgreement/MINECO//DPI2015-70821-R/ES/CARACTERIZACION DE LA MIOCARDIOPATIA ARRITMOGENICA A PARTIR DE TECNICAS AVANZADAS DE SEÑALES E IMAGENES PARA LA DEFINICION DE NUEVOS MARCADORES DIAGNOSTICOS/
ISCIII/PI14/01477
INSTITUTO DE SALUD CARLOS III/PI15/00748
Thanks:
This work was supported by grants from the "Ministerio de Economia y Competitividad"[DPI2015-70821-R], "Instituto de Salud Carlos III " and FEDER "Union Europea, Una forma de hacer Europa"[PI14/01477, PI15/00748, PI18/01582, ...[+]
Type: Artículo

References

Bielza, C., & Larrañaga, P. (2014). Discrete Bayesian Network Classifiers. ACM Computing Surveys, 47(1), 1-43. doi:10.1145/2576868

Bourfiss, M., Vigneault, D. M., Aliyari Ghasebeh, M., Murray, B., James, C. A., Tichnell, C., … te Riele, A. S. J. M. (2017). Feature tracking CMR reveals abnormal strain in preclinical arrhythmogenic right ventricular dysplasia/ cardiomyopathy: a multisoftware feasibility and clinical implementation study. Journal of Cardiovascular Magnetic Resonance, 19(1). doi:10.1186/s12968-017-0380-4

Breiman, L. (2001). Machine Learning, 45(1), 5-32. doi:10.1023/a:1010933404324 [+]
Bielza, C., & Larrañaga, P. (2014). Discrete Bayesian Network Classifiers. ACM Computing Surveys, 47(1), 1-43. doi:10.1145/2576868

Bourfiss, M., Vigneault, D. M., Aliyari Ghasebeh, M., Murray, B., James, C. A., Tichnell, C., … te Riele, A. S. J. M. (2017). Feature tracking CMR reveals abnormal strain in preclinical arrhythmogenic right ventricular dysplasia/ cardiomyopathy: a multisoftware feasibility and clinical implementation study. Journal of Cardiovascular Magnetic Resonance, 19(1). doi:10.1186/s12968-017-0380-4

Breiman, L. (2001). Machine Learning, 45(1), 5-32. doi:10.1023/a:1010933404324

Castells, F., Laguna, P., Sörnmo, L., Bollmann, A., & Roig, J. M. (2007). Principal Component Analysis in ECG Signal Processing. EURASIP Journal on Advances in Signal Processing, 2007(1). doi:10.1155/2007/74580

Cevenini, G., Barbini, E., Massai, M. R., & Barbini, P. (2011). A naïve Bayes classifier for planning transfusion requirements in heart surgery. Journal of Evaluation in Clinical Practice, 19(1), 25-29. doi:10.1111/j.1365-2753.2011.01762.x

Igual, B., Zorio, E., Maceira, A., Estornell, J., Lopez-Lereu, M. P., Monmeneu, J. V., … Salvador, A. (2011). Resonancia magnética cardiaca en miocardiopatía arritmogénica. Tipos de afección y patrones de realce tardío de gadolinio. Revista Española de Cardiología, 64(12), 1114-1122. doi:10.1016/j.recesp.2011.07.014

Marcus, F. I., McKenna, W. J., Sherrill, D., Basso, C., Bauce, B., Bluemke, D. A., … Zareba, W. (2010). Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia: Proposed Modification of the Task Force Criteria. European Heart Journal, 31(7), 806-814. doi:10.1093/eurheartj/ehq025

McKenna, W. J., Thiene, G., Nava, A., Fontaliran, F., Blomstrom-Lundqvist, C., Fontaine, G., & Camerini, F. (1994). Diagnosis of arrhythmogenic right ventricular dysplasia/cardiomyopathy. Task Force of the Working Group Myocardial and Pericardial Disease of the European Society of Cardiology and of the Scientific Council on Cardiomyopathies of the International Society and Federation of Cardiology. Heart, 71(3), 215-218. doi:10.1136/hrt.71.3.215

Morales, D. A., Vives-Gilabert, Y., Gómez-Ansón, B., Bengoetxea, E., Larrañaga, P., Bielza, C., … Delfino, M. (2013). Predicting dementia development in Parkinson’s disease using Bayesian network classifiers. Psychiatry Research: Neuroimaging, 213(2), 92-98. doi:10.1016/j.pscychresns.2012.06.001

Narula, S., Shameer, K., Salem Omar, A. M., Dudley, J. T., & Sengupta, P. P. (2016). Machine-Learning Algorithms to Automate Morphological and Functional Assessments in 2D Echocardiography. Journal of the American College of Cardiology, 68(21), 2287-2295. doi:10.1016/j.jacc.2016.08.062

Pearson, K. (1901). LIII. On lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(11), 559-572. doi:10.1080/14786440109462720

Prati, G., Vitrella, G., Allocca, G., Muser, D., Buttignoni, S. C., Piccoli, G., … Nucifora, G. (2015). Right Ventricular Strain and Dyssynchrony Assessment in Arrhythmogenic Right Ventricular Cardiomyopathy. Circulation: Cardiovascular Imaging, 8(11). doi:10.1161/circimaging.115.003647

Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20, 53-65. doi:10.1016/0377-0427(87)90125-7

Sen-Chowdhry, S., Syrris, P., Ward, D., Asimaki, A., Sevdalis, E., & McKenna, W. J. (2007). Clinical and Genetic Characterization of Families With Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy Provides Novel Insights Into Patterns of Disease Expression. Circulation, 115(13), 1710-1720. doi:10.1161/circulationaha.106.660241

Sen-Chowdhry, S., Syrris, P., Prasad, S. K., Hughes, S. E., Merrifield, R., Ward, D., … McKenna, W. J. (2008). Left-Dominant Arrhythmogenic Cardiomyopathy. Journal of the American College of Cardiology, 52(25), 2175-2187. doi:10.1016/j.jacc.2008.09.019

Sen-Chowdhry, S., Morgan, R. D., Chambers, J. C., & McKenna, W. J. (2010). Arrhythmogenic Cardiomyopathy: Etiology, Diagnosis, and Treatment. Annual Review of Medicine, 61(1), 233-253. doi:10.1146/annurev.med.052208.130419

Sengupta, P. P., Huang, Y.-M., Bansal, M., Ashrafi, A., Fisher, M., Shameer, K., … Dudley, J. T. (2016). Cognitive Machine-Learning Algorithm for Cardiac Imaging. Circulation: Cardiovascular Imaging, 9(6). doi:10.1161/circimaging.115.004330

Smiseth, O. A., Torp, H., Opdahl, A., Haugaa, K. H., & Urheim, S. (2015). Myocardial strain imaging: how useful is it in clinical decision making? European Heart Journal, 37(15), 1196-1207. doi:10.1093/eurheartj/ehv529

Tabassian, M., Alessandrini, M., Herbots, L., Mirea, O., Pagourelias, E. D., Jasaityte, R., … D’hooge, J. (2017). Machine learning of the spatio-temporal characteristics of echocardiographic deformation curves for infarct classification. The International Journal of Cardiovascular Imaging, 33(8), 1159-1167. doi:10.1007/s10554-017-1108-0

Tops, L. F., Prakasa, K., Tandri, H., Dalal, D., Jain, R., Dimaano, V. L., … Abraham, T. P. (2009). Prevalence and Pathophysiologic Attributes of Ventricular Dyssynchrony in Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy. Journal of the American College of Cardiology, 54(5), 445-451. doi:10.1016/j.jacc.2009.04.038

Vives-Gilabert, Y., Sanz-Sánchez, J., Molina, P., Cebrián, A., Igual, B., Calvillo-Batllés, P., … Zorio, E. (2019). Left ventricular myocardial dysfunction in arrhythmogenic cardiomyopathy with left ventricular involvement: A door to improving diagnosis. International Journal of Cardiology, 274, 237-244. doi:10.1016/j.ijcard.2018.09.024

Wong, K. C. L., Tee, M., Chen, M., Bluemke, D. A., Summers, R. M., & Yao, J. (2016). Regional infarction identification from cardiac CT images: a computer-aided biomechanical approach. International Journal of Computer Assisted Radiology and Surgery, 11(9), 1573-1583. doi:10.1007/s11548-016-1404-5

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record