- -

Classification model based on strain measurements to identify patients with arrhythmogenic cardiomyopathy with left ventricular involvement

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Classification model based on strain measurements to identify patients with arrhythmogenic cardiomyopathy with left ventricular involvement

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Vives-Gilabert, Yolanda es_ES
dc.contributor.author Zorio, Esther es_ES
dc.contributor.author Sanz-Sánchez, Jorge es_ES
dc.contributor.author Calvillo-Batllés, Pilar es_ES
dc.contributor.author Millet Roig, José es_ES
dc.contributor.author Castells, Francisco es_ES
dc.date.accessioned 2021-04-23T03:31:45Z
dc.date.available 2021-04-23T03:31:45Z
dc.date.issued 2020-05 es_ES
dc.identifier.issn 0169-2607 es_ES
dc.identifier.uri http://hdl.handle.net/10251/165521
dc.description.abstract [EN] Background and objective: A heterogenous expression characterizes arrhythmogenic cardiomyopathy (AC). The evaluation of regional wall movement included in the current Task Force Criteria is only qualitative and restricted to the right ventricle. However, a strain-based approach could precisely quantify myocardial deformation in both ventricles. We aim to define and modelize the strain behavior of the left ventricle in AC patients with left ventricular (LV) involvement by applying algorithms such as Principal Component Analysis (PCA), clustering and naive Bayes (NB) classifiers. Methods: Thirty-six AC patients with LV involvement and twenty-three non-affected family members (controls) were enrolled. Feature-tracking analysis was applied to cine cardiac magnetic resonance imaging to assess strain time series from a 3D approach, to which PCA was applied. A Two-Step clustering algorithm separated the patients' group into clusters according to their level of LV strain impairment. A statistical characterization between controls and the new AC subgroups was done. Finally, a NB classifier was built and new data from a small evolutive dataset was predicted. Results: 60% of AC-LV patients showed mildly affected strain and 40% severely affected strain. Both groups and controls exhibited statistically significant differences, especially when comparing controls and severely affected AC-LV patients. The classification accuracy of the strain NB classifier reached 82.76%. The model performance was as good as to classify the individuals with a 100% sensitivity and specificity for severely impaired strain patients, 85.7% and 81.1% for mildly impaired strain patients, and 69.9% and 91.4% for normal strain, respectively. Even when the severely affected LV-AC group was excluded, LV strain showed a good accuracy to differentiate patients and controls. The prediction of the evolutive dataset revealed a progressive alteration of strain in time. Conclusions: Our LV strain classification model may help to identify AC patients with LV involvement, at least in a setting of a high pretest probability, such as family screening. es_ES
dc.description.sponsorship This work was supported by grants from the "Ministerio de Economia y Competitividad"[DPI2015-70821-R], "Instituto de Salud Carlos III " and FEDER "Union Europea, Una forma de hacer Europa"[PI14/01477, PI15/00748, PI18/01582, CIBERCV] and La Fe Biobank [PT17/0 015/0043]. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation ISCIII/PI14/01477 es_ES
dc.relation INSTITUTO DE SALUD CARLOS III/PI15/00748 es_ES
dc.relation.ispartof Computer Methods and Programs in Biomedicine es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Cardiac magnetic resonance imaging es_ES
dc.subject Clustering es_ES
dc.subject Naive Bayes classification es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Classification model based on strain measurements to identify patients with arrhythmogenic cardiomyopathy with left ventricular involvement es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.cmpb.2019.105296 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ISCIII//PI18%2F01582/ES/Modulación del fenotipo de miocardiopatía arritmogénica para mejorar el diagnóstico, buscar nuevos tratamientos y comprender sus mecanismos fisiopatogénicos. Papel de grasa epicárdica/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ISCIII//PT17%2F0015%2F0043/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//DPI2015-70821-R/ES/CARACTERIZACION DE LA MIOCARDIOPATIA ARRITMOGENICA A PARTIR DE TECNICAS AVANZADAS DE SEÑALES E IMAGENES PARA LA DEFINICION DE NUEVOS MARCADORES DIAGNOSTICOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Vives-Gilabert, Y.; Zorio, E.; Sanz-Sánchez, J.; Calvillo-Batllés, P.; Millet Roig, J.; Castells, F. (2020). Classification model based on strain measurements to identify patients with arrhythmogenic cardiomyopathy with left ventricular involvement. Computer Methods and Programs in Biomedicine. 188:1-9. https://doi.org/10.1016/j.cmpb.2019.105296 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.cmpb.2019.105296 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 9 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 188 es_ES
dc.identifier.pmid 31918194 es_ES
dc.relation.pasarela S\400204 es_ES
dc.contributor.funder Instituto de Salud Carlos III es_ES
dc.contributor.funder Ministerio de Economía y Empresa es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.description.references Bielza, C., & Larrañaga, P. (2014). Discrete Bayesian Network Classifiers. ACM Computing Surveys, 47(1), 1-43. doi:10.1145/2576868 es_ES
dc.description.references Bourfiss, M., Vigneault, D. M., Aliyari Ghasebeh, M., Murray, B., James, C. A., Tichnell, C., … te Riele, A. S. J. M. (2017). Feature tracking CMR reveals abnormal strain in preclinical arrhythmogenic right ventricular dysplasia/ cardiomyopathy: a multisoftware feasibility and clinical implementation study. Journal of Cardiovascular Magnetic Resonance, 19(1). doi:10.1186/s12968-017-0380-4 es_ES
dc.description.references Breiman, L. (2001). Machine Learning, 45(1), 5-32. doi:10.1023/a:1010933404324 es_ES
dc.description.references Castells, F., Laguna, P., Sörnmo, L., Bollmann, A., & Roig, J. M. (2007). Principal Component Analysis in ECG Signal Processing. EURASIP Journal on Advances in Signal Processing, 2007(1). doi:10.1155/2007/74580 es_ES
dc.description.references Cevenini, G., Barbini, E., Massai, M. R., & Barbini, P. (2011). A naïve Bayes classifier for planning transfusion requirements in heart surgery. Journal of Evaluation in Clinical Practice, 19(1), 25-29. doi:10.1111/j.1365-2753.2011.01762.x es_ES
dc.description.references Igual, B., Zorio, E., Maceira, A., Estornell, J., Lopez-Lereu, M. P., Monmeneu, J. V., … Salvador, A. (2011). Resonancia magnética cardiaca en miocardiopatía arritmogénica. Tipos de afección y patrones de realce tardío de gadolinio. Revista Española de Cardiología, 64(12), 1114-1122. doi:10.1016/j.recesp.2011.07.014 es_ES
dc.description.references Marcus, F. I., McKenna, W. J., Sherrill, D., Basso, C., Bauce, B., Bluemke, D. A., … Zareba, W. (2010). Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia: Proposed Modification of the Task Force Criteria. European Heart Journal, 31(7), 806-814. doi:10.1093/eurheartj/ehq025 es_ES
dc.description.references McKenna, W. J., Thiene, G., Nava, A., Fontaliran, F., Blomstrom-Lundqvist, C., Fontaine, G., & Camerini, F. (1994). Diagnosis of arrhythmogenic right ventricular dysplasia/cardiomyopathy. Task Force of the Working Group Myocardial and Pericardial Disease of the European Society of Cardiology and of the Scientific Council on Cardiomyopathies of the International Society and Federation of Cardiology. Heart, 71(3), 215-218. doi:10.1136/hrt.71.3.215 es_ES
dc.description.references Morales, D. A., Vives-Gilabert, Y., Gómez-Ansón, B., Bengoetxea, E., Larrañaga, P., Bielza, C., … Delfino, M. (2013). Predicting dementia development in Parkinson’s disease using Bayesian network classifiers. Psychiatry Research: Neuroimaging, 213(2), 92-98. doi:10.1016/j.pscychresns.2012.06.001 es_ES
dc.description.references Narula, S., Shameer, K., Salem Omar, A. M., Dudley, J. T., & Sengupta, P. P. (2016). Machine-Learning Algorithms to Automate Morphological and Functional Assessments in 2D Echocardiography. Journal of the American College of Cardiology, 68(21), 2287-2295. doi:10.1016/j.jacc.2016.08.062 es_ES
dc.description.references Pearson, K. (1901). LIII. On lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(11), 559-572. doi:10.1080/14786440109462720 es_ES
dc.description.references Prati, G., Vitrella, G., Allocca, G., Muser, D., Buttignoni, S. C., Piccoli, G., … Nucifora, G. (2015). Right Ventricular Strain and Dyssynchrony Assessment in Arrhythmogenic Right Ventricular Cardiomyopathy. Circulation: Cardiovascular Imaging, 8(11). doi:10.1161/circimaging.115.003647 es_ES
dc.description.references Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20, 53-65. doi:10.1016/0377-0427(87)90125-7 es_ES
dc.description.references Sen-Chowdhry, S., Syrris, P., Ward, D., Asimaki, A., Sevdalis, E., & McKenna, W. J. (2007). Clinical and Genetic Characterization of Families With Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy Provides Novel Insights Into Patterns of Disease Expression. Circulation, 115(13), 1710-1720. doi:10.1161/circulationaha.106.660241 es_ES
dc.description.references Sen-Chowdhry, S., Syrris, P., Prasad, S. K., Hughes, S. E., Merrifield, R., Ward, D., … McKenna, W. J. (2008). Left-Dominant Arrhythmogenic Cardiomyopathy. Journal of the American College of Cardiology, 52(25), 2175-2187. doi:10.1016/j.jacc.2008.09.019 es_ES
dc.description.references Sen-Chowdhry, S., Morgan, R. D., Chambers, J. C., & McKenna, W. J. (2010). Arrhythmogenic Cardiomyopathy: Etiology, Diagnosis, and Treatment. Annual Review of Medicine, 61(1), 233-253. doi:10.1146/annurev.med.052208.130419 es_ES
dc.description.references Sengupta, P. P., Huang, Y.-M., Bansal, M., Ashrafi, A., Fisher, M., Shameer, K., … Dudley, J. T. (2016). Cognitive Machine-Learning Algorithm for Cardiac Imaging. Circulation: Cardiovascular Imaging, 9(6). doi:10.1161/circimaging.115.004330 es_ES
dc.description.references Smiseth, O. A., Torp, H., Opdahl, A., Haugaa, K. H., & Urheim, S. (2015). Myocardial strain imaging: how useful is it in clinical decision making? European Heart Journal, 37(15), 1196-1207. doi:10.1093/eurheartj/ehv529 es_ES
dc.description.references Tabassian, M., Alessandrini, M., Herbots, L., Mirea, O., Pagourelias, E. D., Jasaityte, R., … D’hooge, J. (2017). Machine learning of the spatio-temporal characteristics of echocardiographic deformation curves for infarct classification. The International Journal of Cardiovascular Imaging, 33(8), 1159-1167. doi:10.1007/s10554-017-1108-0 es_ES
dc.description.references Tops, L. F., Prakasa, K., Tandri, H., Dalal, D., Jain, R., Dimaano, V. L., … Abraham, T. P. (2009). Prevalence and Pathophysiologic Attributes of Ventricular Dyssynchrony in Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy. Journal of the American College of Cardiology, 54(5), 445-451. doi:10.1016/j.jacc.2009.04.038 es_ES
dc.description.references Vives-Gilabert, Y., Sanz-Sánchez, J., Molina, P., Cebrián, A., Igual, B., Calvillo-Batllés, P., … Zorio, E. (2019). Left ventricular myocardial dysfunction in arrhythmogenic cardiomyopathy with left ventricular involvement: A door to improving diagnosis. International Journal of Cardiology, 274, 237-244. doi:10.1016/j.ijcard.2018.09.024 es_ES
dc.description.references Wong, K. C. L., Tee, M., Chen, M., Bluemke, D. A., Summers, R. M., & Yao, J. (2016). Regional infarction identification from cardiac CT images: a computer-aided biomechanical approach. International Journal of Computer Assisted Radiology and Surgery, 11(9), 1573-1583. doi:10.1007/s11548-016-1404-5 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem