Mostrar el registro sencillo del ítem
dc.contributor.author | Vives-Gilabert, Yolanda | es_ES |
dc.contributor.author | Zorio, Esther | es_ES |
dc.contributor.author | Sanz-Sánchez, Jorge | es_ES |
dc.contributor.author | Calvillo-Batllés, Pilar | es_ES |
dc.contributor.author | Millet Roig, José | es_ES |
dc.contributor.author | Castells, Francisco | es_ES |
dc.date.accessioned | 2021-04-23T03:31:45Z | |
dc.date.available | 2021-04-23T03:31:45Z | |
dc.date.issued | 2020-05 | es_ES |
dc.identifier.issn | 0169-2607 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/165521 | |
dc.description.abstract | [EN] Background and objective: A heterogenous expression characterizes arrhythmogenic cardiomyopathy (AC). The evaluation of regional wall movement included in the current Task Force Criteria is only qualitative and restricted to the right ventricle. However, a strain-based approach could precisely quantify myocardial deformation in both ventricles. We aim to define and modelize the strain behavior of the left ventricle in AC patients with left ventricular (LV) involvement by applying algorithms such as Principal Component Analysis (PCA), clustering and naive Bayes (NB) classifiers. Methods: Thirty-six AC patients with LV involvement and twenty-three non-affected family members (controls) were enrolled. Feature-tracking analysis was applied to cine cardiac magnetic resonance imaging to assess strain time series from a 3D approach, to which PCA was applied. A Two-Step clustering algorithm separated the patients' group into clusters according to their level of LV strain impairment. A statistical characterization between controls and the new AC subgroups was done. Finally, a NB classifier was built and new data from a small evolutive dataset was predicted. Results: 60% of AC-LV patients showed mildly affected strain and 40% severely affected strain. Both groups and controls exhibited statistically significant differences, especially when comparing controls and severely affected AC-LV patients. The classification accuracy of the strain NB classifier reached 82.76%. The model performance was as good as to classify the individuals with a 100% sensitivity and specificity for severely impaired strain patients, 85.7% and 81.1% for mildly impaired strain patients, and 69.9% and 91.4% for normal strain, respectively. Even when the severely affected LV-AC group was excluded, LV strain showed a good accuracy to differentiate patients and controls. The prediction of the evolutive dataset revealed a progressive alteration of strain in time. Conclusions: Our LV strain classification model may help to identify AC patients with LV involvement, at least in a setting of a high pretest probability, such as family screening. | es_ES |
dc.description.sponsorship | This work was supported by grants from the "Ministerio de Economia y Competitividad"[DPI2015-70821-R], "Instituto de Salud Carlos III " and FEDER "Union Europea, Una forma de hacer Europa"[PI14/01477, PI15/00748, PI18/01582, CIBERCV] and La Fe Biobank [PT17/0 015/0043]. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation | ISCIII/PI14/01477 | es_ES |
dc.relation | INSTITUTO DE SALUD CARLOS III/PI15/00748 | es_ES |
dc.relation.ispartof | Computer Methods and Programs in Biomedicine | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Cardiac magnetic resonance imaging | es_ES |
dc.subject | Clustering | es_ES |
dc.subject | Naive Bayes classification | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Classification model based on strain measurements to identify patients with arrhythmogenic cardiomyopathy with left ventricular involvement | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.cmpb.2019.105296 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ISCIII//PI18%2F01582/ES/Modulación del fenotipo de miocardiopatía arritmogénica para mejorar el diagnóstico, buscar nuevos tratamientos y comprender sus mecanismos fisiopatogénicos. Papel de grasa epicárdica/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ISCIII//PT17%2F0015%2F0043/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//DPI2015-70821-R/ES/CARACTERIZACION DE LA MIOCARDIOPATIA ARRITMOGENICA A PARTIR DE TECNICAS AVANZADAS DE SEÑALES E IMAGENES PARA LA DEFINICION DE NUEVOS MARCADORES DIAGNOSTICOS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.description.bibliographicCitation | Vives-Gilabert, Y.; Zorio, E.; Sanz-Sánchez, J.; Calvillo-Batllés, P.; Millet Roig, J.; Castells, F. (2020). Classification model based on strain measurements to identify patients with arrhythmogenic cardiomyopathy with left ventricular involvement. Computer Methods and Programs in Biomedicine. 188:1-9. https://doi.org/10.1016/j.cmpb.2019.105296 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.cmpb.2019.105296 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 9 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 188 | es_ES |
dc.identifier.pmid | 31918194 | es_ES |
dc.relation.pasarela | S\400204 | es_ES |
dc.contributor.funder | Instituto de Salud Carlos III | es_ES |
dc.contributor.funder | Ministerio de Economía y Empresa | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.description.references | Bielza, C., & Larrañaga, P. (2014). Discrete Bayesian Network Classifiers. ACM Computing Surveys, 47(1), 1-43. doi:10.1145/2576868 | es_ES |
dc.description.references | Bourfiss, M., Vigneault, D. M., Aliyari Ghasebeh, M., Murray, B., James, C. A., Tichnell, C., … te Riele, A. S. J. M. (2017). Feature tracking CMR reveals abnormal strain in preclinical arrhythmogenic right ventricular dysplasia/ cardiomyopathy: a multisoftware feasibility and clinical implementation study. Journal of Cardiovascular Magnetic Resonance, 19(1). doi:10.1186/s12968-017-0380-4 | es_ES |
dc.description.references | Breiman, L. (2001). Machine Learning, 45(1), 5-32. doi:10.1023/a:1010933404324 | es_ES |
dc.description.references | Castells, F., Laguna, P., Sörnmo, L., Bollmann, A., & Roig, J. M. (2007). Principal Component Analysis in ECG Signal Processing. EURASIP Journal on Advances in Signal Processing, 2007(1). doi:10.1155/2007/74580 | es_ES |
dc.description.references | Cevenini, G., Barbini, E., Massai, M. R., & Barbini, P. (2011). A naïve Bayes classifier for planning transfusion requirements in heart surgery. Journal of Evaluation in Clinical Practice, 19(1), 25-29. doi:10.1111/j.1365-2753.2011.01762.x | es_ES |
dc.description.references | Igual, B., Zorio, E., Maceira, A., Estornell, J., Lopez-Lereu, M. P., Monmeneu, J. V., … Salvador, A. (2011). Resonancia magnética cardiaca en miocardiopatía arritmogénica. Tipos de afección y patrones de realce tardío de gadolinio. Revista Española de Cardiología, 64(12), 1114-1122. doi:10.1016/j.recesp.2011.07.014 | es_ES |
dc.description.references | Marcus, F. I., McKenna, W. J., Sherrill, D., Basso, C., Bauce, B., Bluemke, D. A., … Zareba, W. (2010). Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia: Proposed Modification of the Task Force Criteria. European Heart Journal, 31(7), 806-814. doi:10.1093/eurheartj/ehq025 | es_ES |
dc.description.references | McKenna, W. J., Thiene, G., Nava, A., Fontaliran, F., Blomstrom-Lundqvist, C., Fontaine, G., & Camerini, F. (1994). Diagnosis of arrhythmogenic right ventricular dysplasia/cardiomyopathy. Task Force of the Working Group Myocardial and Pericardial Disease of the European Society of Cardiology and of the Scientific Council on Cardiomyopathies of the International Society and Federation of Cardiology. Heart, 71(3), 215-218. doi:10.1136/hrt.71.3.215 | es_ES |
dc.description.references | Morales, D. A., Vives-Gilabert, Y., Gómez-Ansón, B., Bengoetxea, E., Larrañaga, P., Bielza, C., … Delfino, M. (2013). Predicting dementia development in Parkinson’s disease using Bayesian network classifiers. Psychiatry Research: Neuroimaging, 213(2), 92-98. doi:10.1016/j.pscychresns.2012.06.001 | es_ES |
dc.description.references | Narula, S., Shameer, K., Salem Omar, A. M., Dudley, J. T., & Sengupta, P. P. (2016). Machine-Learning Algorithms to Automate Morphological and Functional Assessments in 2D Echocardiography. Journal of the American College of Cardiology, 68(21), 2287-2295. doi:10.1016/j.jacc.2016.08.062 | es_ES |
dc.description.references | Pearson, K. (1901). LIII. On lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(11), 559-572. doi:10.1080/14786440109462720 | es_ES |
dc.description.references | Prati, G., Vitrella, G., Allocca, G., Muser, D., Buttignoni, S. C., Piccoli, G., … Nucifora, G. (2015). Right Ventricular Strain and Dyssynchrony Assessment in Arrhythmogenic Right Ventricular Cardiomyopathy. Circulation: Cardiovascular Imaging, 8(11). doi:10.1161/circimaging.115.003647 | es_ES |
dc.description.references | Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20, 53-65. doi:10.1016/0377-0427(87)90125-7 | es_ES |
dc.description.references | Sen-Chowdhry, S., Syrris, P., Ward, D., Asimaki, A., Sevdalis, E., & McKenna, W. J. (2007). Clinical and Genetic Characterization of Families With Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy Provides Novel Insights Into Patterns of Disease Expression. Circulation, 115(13), 1710-1720. doi:10.1161/circulationaha.106.660241 | es_ES |
dc.description.references | Sen-Chowdhry, S., Syrris, P., Prasad, S. K., Hughes, S. E., Merrifield, R., Ward, D., … McKenna, W. J. (2008). Left-Dominant Arrhythmogenic Cardiomyopathy. Journal of the American College of Cardiology, 52(25), 2175-2187. doi:10.1016/j.jacc.2008.09.019 | es_ES |
dc.description.references | Sen-Chowdhry, S., Morgan, R. D., Chambers, J. C., & McKenna, W. J. (2010). Arrhythmogenic Cardiomyopathy: Etiology, Diagnosis, and Treatment. Annual Review of Medicine, 61(1), 233-253. doi:10.1146/annurev.med.052208.130419 | es_ES |
dc.description.references | Sengupta, P. P., Huang, Y.-M., Bansal, M., Ashrafi, A., Fisher, M., Shameer, K., … Dudley, J. T. (2016). Cognitive Machine-Learning Algorithm for Cardiac Imaging. Circulation: Cardiovascular Imaging, 9(6). doi:10.1161/circimaging.115.004330 | es_ES |
dc.description.references | Smiseth, O. A., Torp, H., Opdahl, A., Haugaa, K. H., & Urheim, S. (2015). Myocardial strain imaging: how useful is it in clinical decision making? European Heart Journal, 37(15), 1196-1207. doi:10.1093/eurheartj/ehv529 | es_ES |
dc.description.references | Tabassian, M., Alessandrini, M., Herbots, L., Mirea, O., Pagourelias, E. D., Jasaityte, R., … D’hooge, J. (2017). Machine learning of the spatio-temporal characteristics of echocardiographic deformation curves for infarct classification. The International Journal of Cardiovascular Imaging, 33(8), 1159-1167. doi:10.1007/s10554-017-1108-0 | es_ES |
dc.description.references | Tops, L. F., Prakasa, K., Tandri, H., Dalal, D., Jain, R., Dimaano, V. L., … Abraham, T. P. (2009). Prevalence and Pathophysiologic Attributes of Ventricular Dyssynchrony in Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy. Journal of the American College of Cardiology, 54(5), 445-451. doi:10.1016/j.jacc.2009.04.038 | es_ES |
dc.description.references | Vives-Gilabert, Y., Sanz-Sánchez, J., Molina, P., Cebrián, A., Igual, B., Calvillo-Batllés, P., … Zorio, E. (2019). Left ventricular myocardial dysfunction in arrhythmogenic cardiomyopathy with left ventricular involvement: A door to improving diagnosis. International Journal of Cardiology, 274, 237-244. doi:10.1016/j.ijcard.2018.09.024 | es_ES |
dc.description.references | Wong, K. C. L., Tee, M., Chen, M., Bluemke, D. A., Summers, R. M., & Yao, J. (2016). Regional infarction identification from cardiac CT images: a computer-aided biomechanical approach. International Journal of Computer Assisted Radiology and Surgery, 11(9), 1573-1583. doi:10.1007/s11548-016-1404-5 | es_ES |