Morelli, F., Caprili, S., & Salvatore, W. (2018). Dataset on the cyclic experimental behavior of Steel frames with Reinforced Concrete infill Walls. Data in Brief, 19, 2061-2070. doi:10.1016/j.dib.2018.06.111
Morelli, F., Mussini, N., & Salvatore, W. (2018). Influence of shear studs distribution on the mechanical behaviour of dissipative hybrid steel frames with r.c. infill walls. Bulletin of Earthquake Engineering, 17(2), 957-983. doi:10.1007/s10518-018-0475-9
Peng, X., & Gu, Q. (2011). Seismic behavior analysis for composite structures of steel frame-reinforced concrete infill wall. The Structural Design of Tall and Special Buildings, 22(11), 831-846. doi:10.1002/tal.724
[+]
Morelli, F., Caprili, S., & Salvatore, W. (2018). Dataset on the cyclic experimental behavior of Steel frames with Reinforced Concrete infill Walls. Data in Brief, 19, 2061-2070. doi:10.1016/j.dib.2018.06.111
Morelli, F., Mussini, N., & Salvatore, W. (2018). Influence of shear studs distribution on the mechanical behaviour of dissipative hybrid steel frames with r.c. infill walls. Bulletin of Earthquake Engineering, 17(2), 957-983. doi:10.1007/s10518-018-0475-9
Peng, X., & Gu, Q. (2011). Seismic behavior analysis for composite structures of steel frame-reinforced concrete infill wall. The Structural Design of Tall and Special Buildings, 22(11), 831-846. doi:10.1002/tal.724
AISC360. Load and Resistance Factor Design Specification for Structural Steel Buildings, American Institute for Steel Construction. Chicago, Illinois. 2016
ACI318. Building code requirements for structural concrete (ACI318) and commentary (ACI318R). Farmington Hills, Michigan. 2008.
Comite Euro-International du Beton - CEB. Fastenings to concrete and masonry structures. State of the art report. Bulletin 216, 1994. Telford, London.
Pallarés, L., & Hajjar, J. F. (2010). Headed steel stud anchors in composite structures, Part I: Shear. Journal of Constructional Steel Research, 66(2), 198-212. doi:10.1016/j.jcsr.2009.08.009
Hawkins, N. M., & Mitchell, D. (1984). Seismic Response of Composite Shear Connections. Journal of Structural Engineering, 110(9), 2120-2136. doi:10.1061/(asce)0733-9445(1984)110:9(2120)
Gattesco, N., & Giuriani, E. (1996). Experimental study on stud shear connectors subjected to cyclic loading. Journal of Constructional Steel Research, 38(1), 1-21. doi:10.1016/0143-974x(96)00007-7
Bursi, O S, and Ballerini, M. Behavior of a steel–concrete composite substructure with full and partial. Proceedings of the Eleventh World Congress on Earthquake Engineering. Acapulco: Elsevier. 1996. Paper 771.
Zandonini, R, and Bursi, O.S. Cyclic behavior of headed shear stud connectors. Edited by J F Hajjar, M Hosain, W S Easterling and B M Shahrooz. Composite construction in steel and concrete IV. Reston: ASCE. 470–482. 2002.
Civjan, S. A., & Singh, P. (2003). Behavior of Shear Studs Subjected to Fully Reversed Cyclic Loading. Journal of Structural Engineering, 129(11), 1466-1474. doi:10.1061/(asce)0733-9445(2003)129:11(1466)
Shariati, A., Shariati, M., Ramli Sulong, N. H., Suhatril, M., Arabnejad Khanouki, M. M., & Mahoutian, M. (2014). Experimental assessment of angle shear connectors under monotonic and fully reversed cyclic loading in high strength concrete. Construction and Building Materials, 52, 276-283. doi:10.1016/j.conbuildmat.2013.11.036
Shariati, M., Ramli Sulong, N. H., Suhatril, M., Shariati, A., Arabnejad Khanouki, M. M., & Sinaei, H. (2013). Comparison of behaviour between channel and angle shear connectors under monotonic and fully reversed cyclic loading. Construction and Building Materials, 38, 582-593. doi:10.1016/j.conbuildmat.2012.07.050
Bezerra, L. M., Barbosa, W. C. S., Bonilla, J., & Cavalcante, O. R. O. (2018). Truss-type shear connector for composite steel-concrete beams. Construction and Building Materials, 167, 757-767. doi:10.1016/j.conbuildmat.2018.01.183
Eurocode 4, UNE - ENV 1994-1.1. Design of composite steel and concrete structures. Part 1-1: General. Common rules and rules for buildings. AENOR. 2004.
FEMA-461. Interim Testing Protocols for Determining the Seismic Performance Characteristics of Structural and Nonstructural Components. Redwood City, California. 2007.
Wang, J., Qi, J., Tong, T., Xu, Q., & Xiu, H. (2019). Static behavior of large stud shear connectors in steel-UHPC composite structures. Engineering Structures, 178, 534-542. doi:10.1016/j.engstruct.2018.07.058
Burnet, M. J., & Oehlers, D. J. (2001). FRACTURE OF MECHANICAL SHEAR CONNECTORS IN COMPOSITE BEAMS*. Mechanics of Structures and Machines, 29(1), 1-41. doi:10.1081/sme-100000001
Oehlers, D. J., & Coughlan, C. G. (1986). The shear stiffness of stud shear connections in composite beams. Journal of Constructional Steel Research, 6(4), 273-284. doi:10.1016/0143-974x(86)90008-8
An, L., & Cederwall, K. (1996). Push-out tests on studs in high strength and normal strength concrete. Journal of Constructional Steel Research, 36(1), 15-29. doi:10.1016/0143-974x(94)00036-h
Xue, W., Ding, M., Wang, H., & Luo, Z. (2008). Static Behavior and Theoretical Model of Stud Shear Connectors. Journal of Bridge Engineering, 13(6), 623-634. doi:10.1061/(asce)1084-0702(2008)13:6(623)
Wang, L., Webster, M.D. and Hajjar, J.F. Pushout tests on deconstructable steel-concrete shear connections in sustainable composite beams. Journal of constructional steel research, 153.Elsevier. 2019. 618-637.
Buttry, K. E. Behaviour of stud connectors in lightweight and normal-weight concrete. M.S. Thesis (unpublished), University of Missouri, USA, August 1965.
Classen, M. and Hegger, J. Shear-slip behaviour and ductility of composite dowel connectors with pry-out failure. Engineering Structures, 150. Elsevier. 2017. 428-437.
Makino, M. Design of framed steel structures with infill reinforced concrete walls. Edited by Roeder CW. ASCE. New York: ASCE. 1985. 279-287.
NEHPR. Recommended Seismic Provisions for New Buildings and Other Structures. 2015 Edition.
AISC341. Seismic Provisions for Structural Steel Buildings. American Institute for Steel Construction. Chicago, Illinois. 2016.
[-]