- -

Behaviour of headed studs subjected to cyclic shear in steel frames with reinforced concrete infill walls

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Behaviour of headed studs subjected to cyclic shear in steel frames with reinforced concrete infill walls

Show full item record

Pallarés Rubio, L.; Aguero Ramón Llin, A.; Martí Vargas, JR.; Pallarés Rubio, FJ. (2020). Behaviour of headed studs subjected to cyclic shear in steel frames with reinforced concrete infill walls. Construction and Building Materials. 262:1-14. https://doi.org/10.1016/j.conbuildmat.2020.120018

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/165522

Files in this item

Item Metadata

Title: Behaviour of headed studs subjected to cyclic shear in steel frames with reinforced concrete infill walls
Author: Pallarés Rubio, Luis Aguero Ramón Llin, Antonio Martí Vargas, José Rocío Pallarés Rubio, Francisco Javier
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil
Universitat Politècnica de València. Departamento de Mecánica de los Medios Continuos y Teoría de Estructuras - Departament de Mecànica dels Medis Continus i Teoria d'Estructures
Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Issued date:
Embargo end date: 2022-07-11
Abstract:
[EN] Headed studs are often used to facilitate composite actions between steel and concrete structures. In steel building structures, reinforced concrete walls are commonly used to ensure composite action to stiffen steel ...[+]
Subjects: Headed stud , Steel frame , Reinforced concrete infill wall , SRCW , Stud strength , Cyclic shear action , Experimental behaviour
Copyrigths: Embargado
Source:
Construction and Building Materials. (issn: 0950-0618 )
DOI: 10.1016/j.conbuildmat.2020.120018
Publisher:
Elsevier
Publisher version: https://doi.org/10.1016/j.conbuildmat.2020.120018
Project ID:
info:eu-repo/grantAgreement/MINECO//BIA2015-70651-R/ES/CERRAMIENTOS NO CONVENCIONALES PARA LA PROTECCION DE EDIFICACIONES E INFRAESTRUCTURAS CRITICAS: ATENUACION DE LOS EFECTOS DE ACCIONES SISMICAS Y EXPLOSIONES/
Thanks:
The present study was supported by the Universitat Politecnica de Valencia (UPV) and the Spanish Ministry of Economy and Competitiveness through Project BIA2015-70651-R and Generalitat Valenciana (GVA) by BEST2018. The ...[+]
Type: Artículo

References

Morelli, F., Caprili, S., & Salvatore, W. (2018). Dataset on the cyclic experimental behavior of Steel frames with Reinforced Concrete infill Walls. Data in Brief, 19, 2061-2070. doi:10.1016/j.dib.2018.06.111

Morelli, F., Mussini, N., & Salvatore, W. (2018). Influence of shear studs distribution on the mechanical behaviour of dissipative hybrid steel frames with r.c. infill walls. Bulletin of Earthquake Engineering, 17(2), 957-983. doi:10.1007/s10518-018-0475-9

Peng, X., & Gu, Q. (2011). Seismic behavior analysis for composite structures of steel frame-reinforced concrete infill wall. The Structural Design of Tall and Special Buildings, 22(11), 831-846. doi:10.1002/tal.724 [+]
Morelli, F., Caprili, S., & Salvatore, W. (2018). Dataset on the cyclic experimental behavior of Steel frames with Reinforced Concrete infill Walls. Data in Brief, 19, 2061-2070. doi:10.1016/j.dib.2018.06.111

Morelli, F., Mussini, N., & Salvatore, W. (2018). Influence of shear studs distribution on the mechanical behaviour of dissipative hybrid steel frames with r.c. infill walls. Bulletin of Earthquake Engineering, 17(2), 957-983. doi:10.1007/s10518-018-0475-9

Peng, X., & Gu, Q. (2011). Seismic behavior analysis for composite structures of steel frame-reinforced concrete infill wall. The Structural Design of Tall and Special Buildings, 22(11), 831-846. doi:10.1002/tal.724

AISC360. Load and Resistance Factor Design Specification for Structural Steel Buildings, American Institute for Steel Construction. Chicago, Illinois. 2016

ACI318. Building code requirements for structural concrete (ACI318) and commentary (ACI318R). Farmington Hills, Michigan. 2008.

Comite Euro-International du Beton - CEB. Fastenings to concrete and masonry structures. State of the art report. Bulletin 216, 1994. Telford, London.

Pallarés, L., & Hajjar, J. F. (2010). Headed steel stud anchors in composite structures, Part I: Shear. Journal of Constructional Steel Research, 66(2), 198-212. doi:10.1016/j.jcsr.2009.08.009

Hawkins, N. M., & Mitchell, D. (1984). Seismic Response of Composite Shear Connections. Journal of Structural Engineering, 110(9), 2120-2136. doi:10.1061/(asce)0733-9445(1984)110:9(2120)

Gattesco, N., & Giuriani, E. (1996). Experimental study on stud shear connectors subjected to cyclic loading. Journal of Constructional Steel Research, 38(1), 1-21. doi:10.1016/0143-974x(96)00007-7

Bursi, O S, and Ballerini, M. Behavior of a steel–concrete composite substructure with full and partial. Proceedings of the Eleventh World Congress on Earthquake Engineering. Acapulco: Elsevier. 1996. Paper 771.

Zandonini, R, and Bursi, O.S. Cyclic behavior of headed shear stud connectors. Edited by J F Hajjar, M Hosain, W S Easterling and B M Shahrooz. Composite construction in steel and concrete IV. Reston: ASCE. 470–482. 2002.

Civjan, S. A., & Singh, P. (2003). Behavior of Shear Studs Subjected to Fully Reversed Cyclic Loading. Journal of Structural Engineering, 129(11), 1466-1474. doi:10.1061/(asce)0733-9445(2003)129:11(1466)

Shariati, A., Shariati, M., Ramli Sulong, N. H., Suhatril, M., Arabnejad Khanouki, M. M., & Mahoutian, M. (2014). Experimental assessment of angle shear connectors under monotonic and fully reversed cyclic loading in high strength concrete. Construction and Building Materials, 52, 276-283. doi:10.1016/j.conbuildmat.2013.11.036

Shariati, M., Ramli Sulong, N. H., Suhatril, M., Shariati, A., Arabnejad Khanouki, M. M., & Sinaei, H. (2013). Comparison of behaviour between channel and angle shear connectors under monotonic and fully reversed cyclic loading. Construction and Building Materials, 38, 582-593. doi:10.1016/j.conbuildmat.2012.07.050

Bezerra, L. M., Barbosa, W. C. S., Bonilla, J., & Cavalcante, O. R. O. (2018). Truss-type shear connector for composite steel-concrete beams. Construction and Building Materials, 167, 757-767. doi:10.1016/j.conbuildmat.2018.01.183

Eurocode 4, UNE - ENV 1994-1.1. Design of composite steel and concrete structures. Part 1-1: General. Common rules and rules for buildings. AENOR. 2004.

FEMA-461. Interim Testing Protocols for Determining the Seismic Performance Characteristics of Structural and Nonstructural Components. Redwood City, California. 2007.

Wang, J., Qi, J., Tong, T., Xu, Q., & Xiu, H. (2019). Static behavior of large stud shear connectors in steel-UHPC composite structures. Engineering Structures, 178, 534-542. doi:10.1016/j.engstruct.2018.07.058

Burnet, M. J., & Oehlers, D. J. (2001). FRACTURE OF MECHANICAL SHEAR CONNECTORS IN COMPOSITE BEAMS*. Mechanics of Structures and Machines, 29(1), 1-41. doi:10.1081/sme-100000001

Oehlers, D. J., & Coughlan, C. G. (1986). The shear stiffness of stud shear connections in composite beams. Journal of Constructional Steel Research, 6(4), 273-284. doi:10.1016/0143-974x(86)90008-8

An, L., & Cederwall, K. (1996). Push-out tests on studs in high strength and normal strength concrete. Journal of Constructional Steel Research, 36(1), 15-29. doi:10.1016/0143-974x(94)00036-h

Xue, W., Ding, M., Wang, H., & Luo, Z. (2008). Static Behavior and Theoretical Model of Stud Shear Connectors. Journal of Bridge Engineering, 13(6), 623-634. doi:10.1061/(asce)1084-0702(2008)13:6(623)

Wang, L., Webster, M.D. and Hajjar, J.F. Pushout tests on deconstructable steel-concrete shear connections in sustainable composite beams. Journal of constructional steel research, 153.Elsevier. 2019. 618-637.

Buttry, K. E. Behaviour of stud connectors in lightweight and normal-weight concrete. M.S. Thesis (unpublished), University of Missouri, USA, August 1965.

Classen, M. and Hegger, J. Shear-slip behaviour and ductility of composite dowel connectors with pry-out failure. Engineering Structures, 150. Elsevier. 2017. 428-437.

Makino, M. Design of framed steel structures with infill reinforced concrete walls. Edited by Roeder CW. ASCE. New York: ASCE. 1985. 279-287.

NEHPR. Recommended Seismic Provisions for New Buildings and Other Structures. 2015 Edition.

AISC341. Seismic Provisions for Structural Steel Buildings. American Institute for Steel Construction. Chicago, Illinois. 2016.

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record