- -

A Ciliary Motility Index for Activity Measurement in Cell Cultures With Respiratory Syncytial Virus

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Ciliary Motility Index for Activity Measurement in Cell Cultures With Respiratory Syncytial Virus

Mostrar el registro completo del ítem

Parrilla Bernabé, E.; Armengot, M.; Mata, M.; Carda, C.; Cortijo, J.; Moratal, D.; Ginestar Peiro, D.... (2019). A Ciliary Motility Index for Activity Measurement in Cell Cultures With Respiratory Syncytial Virus. American Journal of Rhinology and Allergy. 33(2):121-128. https://doi.org/10.1177/1945892418811324

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/165524

Ficheros en el ítem

Metadatos del ítem

Título: A Ciliary Motility Index for Activity Measurement in Cell Cultures With Respiratory Syncytial Virus
Autor: Parrilla Bernabé, Eduardo Armengot, Miguel Mata, Manuel Carda, Carmen Cortijo, Julio Moratal, David Ginestar Peiro, Damián Hueso, José L. Riera Guasp, Jaime
Entidad UPV: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] Background: The respiratory epithelium is frequently infected by the respiratory syncytial virus, resulting in inflammation, a reduction in cilia activity and an increase in the production of mucus. Methods: In this ...[+]
Palabras clave: Respiratory epithelium , Respiratory syncytial virus , Dense optical flow , Ciliary motility: Cell cultures , Ciliary beat frequency , Ciliary beat pattern , Motility index
Derechos de uso: Cerrado
Fuente:
American Journal of Rhinology and Allergy. (issn: 1945-8924 )
DOI: 10.1177/1945892418811324
Editorial:
SAGE Publishing
Versión del editor: https://doi.org/10.1177/1945892418811324
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//MAT2016-76039-C4-2-R/ES/DIFERENCIACION CONDROGENICA DE CELULAS CULTIVADAS EN INTERFASES ELECTRICAMENTE ACTIVAS/
info:eu-repo/grantAgreement/MINECO//PI16%2F01315/ES/Sustitutos traqueales epitelizados generados por ingeniería tisular/
Agradecimientos:
The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by grants MAT2016-76039-C4-2-R (C.C.) and PI16/01315 (M.M.) from ...[+]
Tipo: Artículo

References

Collins PL, Chanock RM, Murphy BR. Virology, Chapter Respiratory Syncytial Virus. 4th ed. New York: Raven Press; 2001:1443–1485.

Krishnan, S., Halonen, M., & Welliver, R. C. (2004). Innate Immune Responses in Respiratory Syncytial Virus Infections. Viral Immunology, 17(2), 220-233. doi:10.1089/0882824041310612

Martínez, I., Lombardía, L., García-Barreno, B., Domínguez, O., & Melero, J. A. (2007). Distinct gene subsets are induced at different time points after human respiratory syncytial virus infection of A549 cells. Journal of General Virology, 88(2), 570-581. doi:10.1099/vir.0.82187-0 [+]
Collins PL, Chanock RM, Murphy BR. Virology, Chapter Respiratory Syncytial Virus. 4th ed. New York: Raven Press; 2001:1443–1485.

Krishnan, S., Halonen, M., & Welliver, R. C. (2004). Innate Immune Responses in Respiratory Syncytial Virus Infections. Viral Immunology, 17(2), 220-233. doi:10.1089/0882824041310612

Martínez, I., Lombardía, L., García-Barreno, B., Domínguez, O., & Melero, J. A. (2007). Distinct gene subsets are induced at different time points after human respiratory syncytial virus infection of A549 cells. Journal of General Virology, 88(2), 570-581. doi:10.1099/vir.0.82187-0

Martínez, I., Lombardía, L., Herranz, C., García-Barreno, B., Domínguez, O., & Melero, J. A. (2009). Cultures of HEp-2 cells persistently infected by human respiratory syncytial virus differ in chemokine expression and resistance to apoptosis as compared to lytic infections of the same cell type. Virology, 388(1), 31-41. doi:10.1016/j.virol.2009.03.008

Rosa, F., & Barnaba, V. (1998). Persisting viruses and chronic inflammation: understanding their relation to autoimmunity. Immunological Reviews, 164(1), 17-27. doi:10.1111/j.1600-065x.1998.tb01204.x

Wedzicha, J. A. (2004). Role of Viruses in Exacerbations of Chronic Obstructive Pulmonary Disease. Proceedings of the American Thoracic Society, 1(2), 115-120. doi:10.1513/pats.2306030

Wilkinson, T. M. A., Donaldson, G. C., Johnston, S. L., Openshaw, P. J. M., & Wedzicha, J. A. (2006). Respiratory Syncytial Virus, Airway Inflammation, and FEV1Decline in Patients with Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 173(8), 871-876. doi:10.1164/rccm.200509-1489oc

Mallia, P., & Johnston, S. L. (2006). How Viral Infections Cause Exacerbation of Airway Diseases. Chest, 130(4), 1203-1210. doi:10.1378/chest.130.4.1203

Avadhanula, V., Rodriguez, C. A., DeVincenzo, J. P., Wang, Y., Webby, R. J., Ulett, G. C., & Adderson, E. E. (2006). Respiratory Viruses Augment the Adhesion of Bacterial Pathogens to Respiratory Epithelium in a Viral Species- and Cell Type-Dependent Manner. Journal of Virology, 80(4), 1629-1636. doi:10.1128/jvi.80.4.1629-1636.2006

Fishaut, M., Schwartzman, J. D., McIntosh, K., & Mostow, S. R. (1978). Behavior of Respiratory Syncytial Virus in Piglet Tracheal Organ Culture. Journal of Infectious Diseases, 138(5), 644-649. doi:10.1093/infdis/138.5.644

TAKEYAMA, K., FAHY, J. V., & NADEL, J. A. (2001). Relationship of Epidermal Growth Factor Receptors to Goblet Cell Production in Human Bronchi. American Journal of Respiratory and Critical Care Medicine, 163(2), 511-516. doi:10.1164/ajrccm.163.2.2001038

Tristram, D. A., Hicks, W., & Hard, R. (1998). Respiratory Syncytial Virus and Human Bronchial Epithelium. Archives of Otolaryngology–Head & Neck Surgery, 124(7), 777. doi:10.1001/archotol.124.7.777

Jumat, M. R., Yan, Y., Ravi, L. I., Wong, P., Huong, T. N., Li, C., … Sugrue, R. J. (2015). Morphogenesis of respiratory syncytial virus in human primary nasal ciliated epithelial cells occurs at surface membrane microdomains that are distinct from cilia. Virology, 484, 395-411. doi:10.1016/j.virol.2015.05.014

Smith, C. M., Kulkarni, H., Radhakrishnan, P., Rutman, A., Bankart, M. J., Williams, G., … O’Callaghan, C. (2013). Ciliary dyskinesia is an early feature of respiratory syncytial virus infection. European Respiratory Journal, 43(2), 485-496. doi:10.1183/09031936.00205312

Mata, M., Sarrion, I., Armengot, M., Carda, C., Martinez, I., Melero, J. A., & Cortijo, J. (2012). Respiratory Syncytial Virus Inhibits Ciliagenesis in Differentiated Normal Human Bronchial Epithelial Cells: Effectiveness of N-Acetylcysteine. PLoS ONE, 7(10), e48037. doi:10.1371/journal.pone.0048037

Smith, C. M., Sandrini, S., Datta, S., Freestone, P., Shafeeq, S., Radhakrishnan, P., … O’Callaghan, C. (2014). Respiratory Syncytial Virus Increases the Virulence ofStreptococcus pneumoniaeby Binding to Penicillin Binding Protein 1a. A New Paradigm in Respiratory Infection. American Journal of Respiratory and Critical Care Medicine, 190(2), 196-207. doi:10.1164/rccm.201311-2110oc

Horn, B. K. P., & Schunck, B. G. (1981). Determining optical flow. Artificial Intelligence, 17(1-3), 185-203. doi:10.1016/0004-3702(81)90024-2

Mantovani, G., Pifferi, M., & Vozzi, G. (2009). Automated software for analysis of ciliary beat frequency and metachronal wave orientation in primary ciliary dyskinesia. European Archives of Oto-Rhino-Laryngology, 267(6), 897-902. doi:10.1007/s00405-009-1161-y

Parrilla, E., Armengot, M., Mata, M., Sánchez-Vílchez, J. M., Cortijo, J., Hueso, J. L., … Moratal, D. (2014). Primary ciliary dyskinesia assessment by means of optical flow analysis of phase-contrast microscopy images. Computerized Medical Imaging and Graphics, 38(3), 163-170. doi:10.1016/j.compmedimag.2013.12.010

Feriani, L., Juenet, M., Fowler, C. J., Bruot, N., Chioccioli, M., Holland, S. M., … Cicuta, P. (2017). Assessing the Collective Dynamics of Motile Cilia in Cultures of Human Airway Cells by Multiscale DDM. Biophysical Journal, 113(1), 109-119. doi:10.1016/j.bpj.2017.05.028

Vig, D. K., Hamby, A. E., & Wolgemuth, C. W. (2016). On the Quantification of Cellular Velocity Fields. Biophysical Journal, 110(7), 1469-1475. doi:10.1016/j.bpj.2016.02.032

Dongmin Guo, van de Ven, A. L., & Xiaobo Zhou. (2014). Red Blood Cell Tracking Using Optical Flow Methods. IEEE Journal of Biomedical and Health Informatics, 18(3), 991-998. doi:10.1109/jbhi.2013.2281915

Mata, M. (2005). Phosphodiesterase 4 inhibition decreases MUC5AC expression induced by epidermal growth factor in human airway epithelial cells. Thorax, 60(2), 144-152. doi:10.1136/thx.2004.025692

Cortijo, J., Milara, J., Mata, M., Donet, E., Gavara, N., Peel, S. E., … Morcillo, E. J. (2010). Nickel induces intracellular calcium mobilization and pathophysiological responses in human cultured airway epithelial cells. Chemico-Biological Interactions, 183(1), 25-33. doi:10.1016/j.cbi.2009.09.011

Martínez, I., Melero, J. A., & Dopazo, J. (1997). Antigenic structure of the human respiratory syncytial virus G glycoprotein and relevance of hypermutation events for the generation of antigenic variants. Journal of General Virology, 78(10), 2419-2429. doi:10.1099/0022-1317-78-10-2419

García-Barreno, B., Palomo, C., Peñas, C., Delgado, T., Perez-Breña, P., & Melero, J. A. (1989). Marked differences in the antigenic structure of human respiratory syncytial virus F and G glycoproteins. Journal of Virology, 63(2), 925-932. doi:10.1128/jvi.63.2.925-932.1989

Mbiguino, A., & Menezes, J. (1991). Purification of human respiratory syncytial virus: superiority of sucrose gradient over percoll, renografin, and metrizamide gradients. Journal of Virological Methods, 31(2-3), 161-170. doi:10.1016/0166-0934(91)90154-r

Herranz, C., Melero, J. A., & Martínez, I. (2011). Reduced innate immune response, apoptosis, and virus release in cells cured of respiratory syncytial virus persistent infection. Virology, 410(1), 56-63. doi:10.1016/j.virol.2010.10.035

Mata, M., Martinez, I., Melero, J. A., Tenor, H., & Cortijo, J. (2013). Roflumilast Inhibits Respiratory Syncytial Virus Infection in Human Differentiated Bronchial Epithelial Cells. PLoS ONE, 8(7), e69670. doi:10.1371/journal.pone.0069670

Mirra, V., Werner, C., & Santamaria, F. (2017). Primary Ciliary Dyskinesia: An Update on Clinical Aspects, Genetics, Diagnosis, and Future Treatment Strategies. Frontiers in Pediatrics, 5. doi:10.3389/fped.2017.00135

Meste, O., Brau, F., & Guyon, A. (2015). Robust estimation of the motile cilia beating frequency. Medical & Biological Engineering & Computing, 53(10), 1025-1035. doi:10.1007/s11517-015-1345-0

Yi, W.-J., Park, K.-S., Lee, C.-H., & Rhee, C.-S. (2003). Correlation between ciliary beat frequency and metachronal wave disorder using image analysis method. Medical & Biological Engineering & Computing, 41(4), 481-485. doi:10.1007/bf02348093

Philippou, S., Otto, P., Reinhold, P., Elschner, M., & Streckert, H.-J. (2000). Respiratory syncytial virus-induced chronic bronchiolitis in experimentally infected calves. Virchows Archiv, 436(6), 617-621. doi:10.1007/s004280000197

Hirst, R. A., Jackson, C. L., Coles, J. L., Williams, G., Rutman, A., Goggin, P. M., … Lucas, J. S. (2014). Culture of Primary Ciliary Dyskinesia Epithelial Cells at Air-Liquid Interface Can Alter Ciliary Phenotype but Remains a Robust and Informative Diagnostic Aid. PLoS ONE, 9(2), e89675. doi:10.1371/journal.pone.0089675

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem