- -

A Ciliary Motility Index for Activity Measurement in Cell Cultures With Respiratory Syncytial Virus

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Ciliary Motility Index for Activity Measurement in Cell Cultures With Respiratory Syncytial Virus

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Parrilla Bernabé, Eduardo es_ES
dc.contributor.author Armengot, Miguel es_ES
dc.contributor.author Mata, Manuel es_ES
dc.contributor.author Carda, Carmen es_ES
dc.contributor.author Cortijo, Julio es_ES
dc.contributor.author Moratal, David es_ES
dc.contributor.author Ginestar Peiro, Damián es_ES
dc.contributor.author Hueso, José L. es_ES
dc.contributor.author Riera Guasp, Jaime es_ES
dc.date.accessioned 2021-04-23T03:31:58Z
dc.date.available 2021-04-23T03:31:58Z
dc.date.issued 2019-03-01 es_ES
dc.identifier.issn 1945-8924 es_ES
dc.identifier.uri http://hdl.handle.net/10251/165524
dc.description.abstract [EN] Background: The respiratory epithelium is frequently infected by the respiratory syncytial virus, resulting in inflammation, a reduction in cilia activity and an increase in the production of mucus. Methods: In this study, an automatic method has been proposed to characterize the ciliary motility from cell cultures by means of a motility index using a dense optical flow algorithm. This method allows us to determine the ciliary beat frequency (CBF) together with a ciliary motility index of the cells in the cultures. The object of this analysis is to automatically distinguish between normal and infected cells in a culture. Results: The method was applied in 2 stages. It was concluded from the first stage that the CBF is not a good enough indicator to discriminate between the control and infected cultures. However, the ciliary motility index does succeed in discriminating between the control and infected cultures using the t test with a value t ¿ 6.46 and P <.001. In the second stage, it has been shown that the ciliary motility index did not differ significantly between patients, and the analysis of variance test gives a ¿ 0.05, F ¿ 1.61, P ¿.20. A threshold for this index has been determined using a receiver operating characteristics analysis that gives an area under the curve of 0.93. Conclusions: We have obtained a ciliary motility index that is able to discriminate between control and infected cultures after the eighth postinfection day. After infection, there is a rapid cilia loss of the cells and the measured CBF corresponds to the remaining noninfected cells. This is why the CBF does not discriminate between the control and the infected cells. es_ES
dc.description.sponsorship The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by grants MAT2016-76039-C4-2-R (C.C.) and PI16/01315 (M.M.) from the Ministry of Economy and Competitiveness of the Spanish Government and by the Instituto de Salud Carlos III (ISCIII). CIBER-BBN and CIBERER are funded by the VI National R&D&I Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program, and CIBER Actions and financed by the ISCIII with the assistance of the European Regional Development Fund. es_ES
dc.language Inglés es_ES
dc.publisher SAGE Publishing es_ES
dc.relation.ispartof American Journal of Rhinology and Allergy es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Respiratory epithelium es_ES
dc.subject Respiratory syncytial virus es_ES
dc.subject Dense optical flow es_ES
dc.subject Ciliary motility: Cell cultures es_ES
dc.subject Ciliary beat frequency es_ES
dc.subject Ciliary beat pattern es_ES
dc.subject Motility index es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title A Ciliary Motility Index for Activity Measurement in Cell Cultures With Respiratory Syncytial Virus es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1177/1945892418811324 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2016-76039-C4-2-R/ES/DIFERENCIACION CONDROGENICA DE CELULAS CULTIVADAS EN INTERFASES ELECTRICAMENTE ACTIVAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//PI16%2F01315/ES/Sustitutos traqueales epitelizados generados por ingeniería tisular/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Parrilla Bernabé, E.; Armengot, M.; Mata, M.; Carda, C.; Cortijo, J.; Moratal, D.; Ginestar Peiro, D.... (2019). A Ciliary Motility Index for Activity Measurement in Cell Cultures With Respiratory Syncytial Virus. American Journal of Rhinology and Allergy. 33(2):121-128. https://doi.org/10.1177/1945892418811324 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1177/1945892418811324 es_ES
dc.description.upvformatpinicio 121 es_ES
dc.description.upvformatpfin 128 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 33 es_ES
dc.description.issue 2 es_ES
dc.identifier.pmid 30457015 es_ES
dc.relation.pasarela S\381010 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Instituto de Salud Carlos III es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Collins PL, Chanock RM, Murphy BR. Virology, Chapter Respiratory Syncytial Virus. 4th ed. New York: Raven Press; 2001:1443–1485. es_ES
dc.description.references Krishnan, S., Halonen, M., & Welliver, R. C. (2004). Innate Immune Responses in Respiratory Syncytial Virus Infections. Viral Immunology, 17(2), 220-233. doi:10.1089/0882824041310612 es_ES
dc.description.references Martínez, I., Lombardía, L., García-Barreno, B., Domínguez, O., & Melero, J. A. (2007). Distinct gene subsets are induced at different time points after human respiratory syncytial virus infection of A549 cells. Journal of General Virology, 88(2), 570-581. doi:10.1099/vir.0.82187-0 es_ES
dc.description.references Martínez, I., Lombardía, L., Herranz, C., García-Barreno, B., Domínguez, O., & Melero, J. A. (2009). Cultures of HEp-2 cells persistently infected by human respiratory syncytial virus differ in chemokine expression and resistance to apoptosis as compared to lytic infections of the same cell type. Virology, 388(1), 31-41. doi:10.1016/j.virol.2009.03.008 es_ES
dc.description.references Rosa, F., & Barnaba, V. (1998). Persisting viruses and chronic inflammation: understanding their relation to autoimmunity. Immunological Reviews, 164(1), 17-27. doi:10.1111/j.1600-065x.1998.tb01204.x es_ES
dc.description.references Wedzicha, J. A. (2004). Role of Viruses in Exacerbations of Chronic Obstructive Pulmonary Disease. Proceedings of the American Thoracic Society, 1(2), 115-120. doi:10.1513/pats.2306030 es_ES
dc.description.references Wilkinson, T. M. A., Donaldson, G. C., Johnston, S. L., Openshaw, P. J. M., & Wedzicha, J. A. (2006). Respiratory Syncytial Virus, Airway Inflammation, and FEV1Decline in Patients with Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 173(8), 871-876. doi:10.1164/rccm.200509-1489oc es_ES
dc.description.references Mallia, P., & Johnston, S. L. (2006). How Viral Infections Cause Exacerbation of Airway Diseases. Chest, 130(4), 1203-1210. doi:10.1378/chest.130.4.1203 es_ES
dc.description.references Avadhanula, V., Rodriguez, C. A., DeVincenzo, J. P., Wang, Y., Webby, R. J., Ulett, G. C., & Adderson, E. E. (2006). Respiratory Viruses Augment the Adhesion of Bacterial Pathogens to Respiratory Epithelium in a Viral Species- and Cell Type-Dependent Manner. Journal of Virology, 80(4), 1629-1636. doi:10.1128/jvi.80.4.1629-1636.2006 es_ES
dc.description.references Fishaut, M., Schwartzman, J. D., McIntosh, K., & Mostow, S. R. (1978). Behavior of Respiratory Syncytial Virus in Piglet Tracheal Organ Culture. Journal of Infectious Diseases, 138(5), 644-649. doi:10.1093/infdis/138.5.644 es_ES
dc.description.references TAKEYAMA, K., FAHY, J. V., & NADEL, J. A. (2001). Relationship of Epidermal Growth Factor Receptors to Goblet Cell Production in Human Bronchi. American Journal of Respiratory and Critical Care Medicine, 163(2), 511-516. doi:10.1164/ajrccm.163.2.2001038 es_ES
dc.description.references Tristram, D. A., Hicks, W., & Hard, R. (1998). Respiratory Syncytial Virus and Human Bronchial Epithelium. Archives of Otolaryngology–Head & Neck Surgery, 124(7), 777. doi:10.1001/archotol.124.7.777 es_ES
dc.description.references Jumat, M. R., Yan, Y., Ravi, L. I., Wong, P., Huong, T. N., Li, C., … Sugrue, R. J. (2015). Morphogenesis of respiratory syncytial virus in human primary nasal ciliated epithelial cells occurs at surface membrane microdomains that are distinct from cilia. Virology, 484, 395-411. doi:10.1016/j.virol.2015.05.014 es_ES
dc.description.references Smith, C. M., Kulkarni, H., Radhakrishnan, P., Rutman, A., Bankart, M. J., Williams, G., … O’Callaghan, C. (2013). Ciliary dyskinesia is an early feature of respiratory syncytial virus infection. European Respiratory Journal, 43(2), 485-496. doi:10.1183/09031936.00205312 es_ES
dc.description.references Mata, M., Sarrion, I., Armengot, M., Carda, C., Martinez, I., Melero, J. A., & Cortijo, J. (2012). Respiratory Syncytial Virus Inhibits Ciliagenesis in Differentiated Normal Human Bronchial Epithelial Cells: Effectiveness of N-Acetylcysteine. PLoS ONE, 7(10), e48037. doi:10.1371/journal.pone.0048037 es_ES
dc.description.references Smith, C. M., Sandrini, S., Datta, S., Freestone, P., Shafeeq, S., Radhakrishnan, P., … O’Callaghan, C. (2014). Respiratory Syncytial Virus Increases the Virulence ofStreptococcus pneumoniaeby Binding to Penicillin Binding Protein 1a. A New Paradigm in Respiratory Infection. American Journal of Respiratory and Critical Care Medicine, 190(2), 196-207. doi:10.1164/rccm.201311-2110oc es_ES
dc.description.references Horn, B. K. P., & Schunck, B. G. (1981). Determining optical flow. Artificial Intelligence, 17(1-3), 185-203. doi:10.1016/0004-3702(81)90024-2 es_ES
dc.description.references Mantovani, G., Pifferi, M., & Vozzi, G. (2009). Automated software for analysis of ciliary beat frequency and metachronal wave orientation in primary ciliary dyskinesia. European Archives of Oto-Rhino-Laryngology, 267(6), 897-902. doi:10.1007/s00405-009-1161-y es_ES
dc.description.references Parrilla, E., Armengot, M., Mata, M., Sánchez-Vílchez, J. M., Cortijo, J., Hueso, J. L., … Moratal, D. (2014). Primary ciliary dyskinesia assessment by means of optical flow analysis of phase-contrast microscopy images. Computerized Medical Imaging and Graphics, 38(3), 163-170. doi:10.1016/j.compmedimag.2013.12.010 es_ES
dc.description.references Feriani, L., Juenet, M., Fowler, C. J., Bruot, N., Chioccioli, M., Holland, S. M., … Cicuta, P. (2017). Assessing the Collective Dynamics of Motile Cilia in Cultures of Human Airway Cells by Multiscale DDM. Biophysical Journal, 113(1), 109-119. doi:10.1016/j.bpj.2017.05.028 es_ES
dc.description.references Vig, D. K., Hamby, A. E., & Wolgemuth, C. W. (2016). On the Quantification of Cellular Velocity Fields. Biophysical Journal, 110(7), 1469-1475. doi:10.1016/j.bpj.2016.02.032 es_ES
dc.description.references Dongmin Guo, van de Ven, A. L., & Xiaobo Zhou. (2014). Red Blood Cell Tracking Using Optical Flow Methods. IEEE Journal of Biomedical and Health Informatics, 18(3), 991-998. doi:10.1109/jbhi.2013.2281915 es_ES
dc.description.references Mata, M. (2005). Phosphodiesterase 4 inhibition decreases MUC5AC expression induced by epidermal growth factor in human airway epithelial cells. Thorax, 60(2), 144-152. doi:10.1136/thx.2004.025692 es_ES
dc.description.references Cortijo, J., Milara, J., Mata, M., Donet, E., Gavara, N., Peel, S. E., … Morcillo, E. J. (2010). Nickel induces intracellular calcium mobilization and pathophysiological responses in human cultured airway epithelial cells. Chemico-Biological Interactions, 183(1), 25-33. doi:10.1016/j.cbi.2009.09.011 es_ES
dc.description.references Martínez, I., Melero, J. A., & Dopazo, J. (1997). Antigenic structure of the human respiratory syncytial virus G glycoprotein and relevance of hypermutation events for the generation of antigenic variants. Journal of General Virology, 78(10), 2419-2429. doi:10.1099/0022-1317-78-10-2419 es_ES
dc.description.references García-Barreno, B., Palomo, C., Peñas, C., Delgado, T., Perez-Breña, P., & Melero, J. A. (1989). Marked differences in the antigenic structure of human respiratory syncytial virus F and G glycoproteins. Journal of Virology, 63(2), 925-932. doi:10.1128/jvi.63.2.925-932.1989 es_ES
dc.description.references Mbiguino, A., & Menezes, J. (1991). Purification of human respiratory syncytial virus: superiority of sucrose gradient over percoll, renografin, and metrizamide gradients. Journal of Virological Methods, 31(2-3), 161-170. doi:10.1016/0166-0934(91)90154-r es_ES
dc.description.references Herranz, C., Melero, J. A., & Martínez, I. (2011). Reduced innate immune response, apoptosis, and virus release in cells cured of respiratory syncytial virus persistent infection. Virology, 410(1), 56-63. doi:10.1016/j.virol.2010.10.035 es_ES
dc.description.references Mata, M., Martinez, I., Melero, J. A., Tenor, H., & Cortijo, J. (2013). Roflumilast Inhibits Respiratory Syncytial Virus Infection in Human Differentiated Bronchial Epithelial Cells. PLoS ONE, 8(7), e69670. doi:10.1371/journal.pone.0069670 es_ES
dc.description.references Mirra, V., Werner, C., & Santamaria, F. (2017). Primary Ciliary Dyskinesia: An Update on Clinical Aspects, Genetics, Diagnosis, and Future Treatment Strategies. Frontiers in Pediatrics, 5. doi:10.3389/fped.2017.00135 es_ES
dc.description.references Meste, O., Brau, F., & Guyon, A. (2015). Robust estimation of the motile cilia beating frequency. Medical & Biological Engineering & Computing, 53(10), 1025-1035. doi:10.1007/s11517-015-1345-0 es_ES
dc.description.references Yi, W.-J., Park, K.-S., Lee, C.-H., & Rhee, C.-S. (2003). Correlation between ciliary beat frequency and metachronal wave disorder using image analysis method. Medical & Biological Engineering & Computing, 41(4), 481-485. doi:10.1007/bf02348093 es_ES
dc.description.references Philippou, S., Otto, P., Reinhold, P., Elschner, M., & Streckert, H.-J. (2000). Respiratory syncytial virus-induced chronic bronchiolitis in experimentally infected calves. Virchows Archiv, 436(6), 617-621. doi:10.1007/s004280000197 es_ES
dc.description.references Hirst, R. A., Jackson, C. L., Coles, J. L., Williams, G., Rutman, A., Goggin, P. M., … Lucas, J. S. (2014). Culture of Primary Ciliary Dyskinesia Epithelial Cells at Air-Liquid Interface Can Alter Ciliary Phenotype but Remains a Robust and Informative Diagnostic Aid. PLoS ONE, 9(2), e89675. doi:10.1371/journal.pone.0089675 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem