Mostrar el registro sencillo del ítem
dc.contributor.author | Parrilla Bernabé, Eduardo | es_ES |
dc.contributor.author | Armengot, Miguel | es_ES |
dc.contributor.author | Mata, Manuel | es_ES |
dc.contributor.author | Carda, Carmen | es_ES |
dc.contributor.author | Cortijo, Julio | es_ES |
dc.contributor.author | Moratal, David | es_ES |
dc.contributor.author | Ginestar Peiro, Damián | es_ES |
dc.contributor.author | Hueso, José L. | es_ES |
dc.contributor.author | Riera Guasp, Jaime | es_ES |
dc.date.accessioned | 2021-04-23T03:31:58Z | |
dc.date.available | 2021-04-23T03:31:58Z | |
dc.date.issued | 2019-03-01 | es_ES |
dc.identifier.issn | 1945-8924 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/165524 | |
dc.description.abstract | [EN] Background: The respiratory epithelium is frequently infected by the respiratory syncytial virus, resulting in inflammation, a reduction in cilia activity and an increase in the production of mucus. Methods: In this study, an automatic method has been proposed to characterize the ciliary motility from cell cultures by means of a motility index using a dense optical flow algorithm. This method allows us to determine the ciliary beat frequency (CBF) together with a ciliary motility index of the cells in the cultures. The object of this analysis is to automatically distinguish between normal and infected cells in a culture. Results: The method was applied in 2 stages. It was concluded from the first stage that the CBF is not a good enough indicator to discriminate between the control and infected cultures. However, the ciliary motility index does succeed in discriminating between the control and infected cultures using the t test with a value t ¿ 6.46 and P <.001. In the second stage, it has been shown that the ciliary motility index did not differ significantly between patients, and the analysis of variance test gives a ¿ 0.05, F ¿ 1.61, P ¿.20. A threshold for this index has been determined using a receiver operating characteristics analysis that gives an area under the curve of 0.93. Conclusions: We have obtained a ciliary motility index that is able to discriminate between control and infected cultures after the eighth postinfection day. After infection, there is a rapid cilia loss of the cells and the measured CBF corresponds to the remaining noninfected cells. This is why the CBF does not discriminate between the control and the infected cells. | es_ES |
dc.description.sponsorship | The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by grants MAT2016-76039-C4-2-R (C.C.) and PI16/01315 (M.M.) from the Ministry of Economy and Competitiveness of the Spanish Government and by the Instituto de Salud Carlos III (ISCIII). CIBER-BBN and CIBERER are funded by the VI National R&D&I Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program, and CIBER Actions and financed by the ISCIII with the assistance of the European Regional Development Fund. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | SAGE Publishing | es_ES |
dc.relation.ispartof | American Journal of Rhinology and Allergy | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Respiratory epithelium | es_ES |
dc.subject | Respiratory syncytial virus | es_ES |
dc.subject | Dense optical flow | es_ES |
dc.subject | Ciliary motility: Cell cultures | es_ES |
dc.subject | Ciliary beat frequency | es_ES |
dc.subject | Ciliary beat pattern | es_ES |
dc.subject | Motility index | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | A Ciliary Motility Index for Activity Measurement in Cell Cultures With Respiratory Syncytial Virus | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1177/1945892418811324 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MAT2016-76039-C4-2-R/ES/DIFERENCIACION CONDROGENICA DE CELULAS CULTIVADAS EN INTERFASES ELECTRICAMENTE ACTIVAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//PI16%2F01315/ES/Sustitutos traqueales epitelizados generados por ingeniería tisular/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Parrilla Bernabé, E.; Armengot, M.; Mata, M.; Carda, C.; Cortijo, J.; Moratal, D.; Ginestar Peiro, D.... (2019). A Ciliary Motility Index for Activity Measurement in Cell Cultures With Respiratory Syncytial Virus. American Journal of Rhinology and Allergy. 33(2):121-128. https://doi.org/10.1177/1945892418811324 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1177/1945892418811324 | es_ES |
dc.description.upvformatpinicio | 121 | es_ES |
dc.description.upvformatpfin | 128 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 33 | es_ES |
dc.description.issue | 2 | es_ES |
dc.identifier.pmid | 30457015 | es_ES |
dc.relation.pasarela | S\381010 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Instituto de Salud Carlos III | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Collins PL, Chanock RM, Murphy BR. Virology, Chapter Respiratory Syncytial Virus. 4th ed. New York: Raven Press; 2001:1443–1485. | es_ES |
dc.description.references | Krishnan, S., Halonen, M., & Welliver, R. C. (2004). Innate Immune Responses in Respiratory Syncytial Virus Infections. Viral Immunology, 17(2), 220-233. doi:10.1089/0882824041310612 | es_ES |
dc.description.references | Martínez, I., Lombardía, L., García-Barreno, B., Domínguez, O., & Melero, J. A. (2007). Distinct gene subsets are induced at different time points after human respiratory syncytial virus infection of A549 cells. Journal of General Virology, 88(2), 570-581. doi:10.1099/vir.0.82187-0 | es_ES |
dc.description.references | Martínez, I., Lombardía, L., Herranz, C., García-Barreno, B., Domínguez, O., & Melero, J. A. (2009). Cultures of HEp-2 cells persistently infected by human respiratory syncytial virus differ in chemokine expression and resistance to apoptosis as compared to lytic infections of the same cell type. Virology, 388(1), 31-41. doi:10.1016/j.virol.2009.03.008 | es_ES |
dc.description.references | Rosa, F., & Barnaba, V. (1998). Persisting viruses and chronic inflammation: understanding their relation to autoimmunity. Immunological Reviews, 164(1), 17-27. doi:10.1111/j.1600-065x.1998.tb01204.x | es_ES |
dc.description.references | Wedzicha, J. A. (2004). Role of Viruses in Exacerbations of Chronic Obstructive Pulmonary Disease. Proceedings of the American Thoracic Society, 1(2), 115-120. doi:10.1513/pats.2306030 | es_ES |
dc.description.references | Wilkinson, T. M. A., Donaldson, G. C., Johnston, S. L., Openshaw, P. J. M., & Wedzicha, J. A. (2006). Respiratory Syncytial Virus, Airway Inflammation, and FEV1Decline in Patients with Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 173(8), 871-876. doi:10.1164/rccm.200509-1489oc | es_ES |
dc.description.references | Mallia, P., & Johnston, S. L. (2006). How Viral Infections Cause Exacerbation of Airway Diseases. Chest, 130(4), 1203-1210. doi:10.1378/chest.130.4.1203 | es_ES |
dc.description.references | Avadhanula, V., Rodriguez, C. A., DeVincenzo, J. P., Wang, Y., Webby, R. J., Ulett, G. C., & Adderson, E. E. (2006). Respiratory Viruses Augment the Adhesion of Bacterial Pathogens to Respiratory Epithelium in a Viral Species- and Cell Type-Dependent Manner. Journal of Virology, 80(4), 1629-1636. doi:10.1128/jvi.80.4.1629-1636.2006 | es_ES |
dc.description.references | Fishaut, M., Schwartzman, J. D., McIntosh, K., & Mostow, S. R. (1978). Behavior of Respiratory Syncytial Virus in Piglet Tracheal Organ Culture. Journal of Infectious Diseases, 138(5), 644-649. doi:10.1093/infdis/138.5.644 | es_ES |
dc.description.references | TAKEYAMA, K., FAHY, J. V., & NADEL, J. A. (2001). Relationship of Epidermal Growth Factor Receptors to Goblet Cell Production in Human Bronchi. American Journal of Respiratory and Critical Care Medicine, 163(2), 511-516. doi:10.1164/ajrccm.163.2.2001038 | es_ES |
dc.description.references | Tristram, D. A., Hicks, W., & Hard, R. (1998). Respiratory Syncytial Virus and Human Bronchial Epithelium. Archives of Otolaryngology–Head & Neck Surgery, 124(7), 777. doi:10.1001/archotol.124.7.777 | es_ES |
dc.description.references | Jumat, M. R., Yan, Y., Ravi, L. I., Wong, P., Huong, T. N., Li, C., … Sugrue, R. J. (2015). Morphogenesis of respiratory syncytial virus in human primary nasal ciliated epithelial cells occurs at surface membrane microdomains that are distinct from cilia. Virology, 484, 395-411. doi:10.1016/j.virol.2015.05.014 | es_ES |
dc.description.references | Smith, C. M., Kulkarni, H., Radhakrishnan, P., Rutman, A., Bankart, M. J., Williams, G., … O’Callaghan, C. (2013). Ciliary dyskinesia is an early feature of respiratory syncytial virus infection. European Respiratory Journal, 43(2), 485-496. doi:10.1183/09031936.00205312 | es_ES |
dc.description.references | Mata, M., Sarrion, I., Armengot, M., Carda, C., Martinez, I., Melero, J. A., & Cortijo, J. (2012). Respiratory Syncytial Virus Inhibits Ciliagenesis in Differentiated Normal Human Bronchial Epithelial Cells: Effectiveness of N-Acetylcysteine. PLoS ONE, 7(10), e48037. doi:10.1371/journal.pone.0048037 | es_ES |
dc.description.references | Smith, C. M., Sandrini, S., Datta, S., Freestone, P., Shafeeq, S., Radhakrishnan, P., … O’Callaghan, C. (2014). Respiratory Syncytial Virus Increases the Virulence ofStreptococcus pneumoniaeby Binding to Penicillin Binding Protein 1a. A New Paradigm in Respiratory Infection. American Journal of Respiratory and Critical Care Medicine, 190(2), 196-207. doi:10.1164/rccm.201311-2110oc | es_ES |
dc.description.references | Horn, B. K. P., & Schunck, B. G. (1981). Determining optical flow. Artificial Intelligence, 17(1-3), 185-203. doi:10.1016/0004-3702(81)90024-2 | es_ES |
dc.description.references | Mantovani, G., Pifferi, M., & Vozzi, G. (2009). Automated software for analysis of ciliary beat frequency and metachronal wave orientation in primary ciliary dyskinesia. European Archives of Oto-Rhino-Laryngology, 267(6), 897-902. doi:10.1007/s00405-009-1161-y | es_ES |
dc.description.references | Parrilla, E., Armengot, M., Mata, M., Sánchez-Vílchez, J. M., Cortijo, J., Hueso, J. L., … Moratal, D. (2014). Primary ciliary dyskinesia assessment by means of optical flow analysis of phase-contrast microscopy images. Computerized Medical Imaging and Graphics, 38(3), 163-170. doi:10.1016/j.compmedimag.2013.12.010 | es_ES |
dc.description.references | Feriani, L., Juenet, M., Fowler, C. J., Bruot, N., Chioccioli, M., Holland, S. M., … Cicuta, P. (2017). Assessing the Collective Dynamics of Motile Cilia in Cultures of Human Airway Cells by Multiscale DDM. Biophysical Journal, 113(1), 109-119. doi:10.1016/j.bpj.2017.05.028 | es_ES |
dc.description.references | Vig, D. K., Hamby, A. E., & Wolgemuth, C. W. (2016). On the Quantification of Cellular Velocity Fields. Biophysical Journal, 110(7), 1469-1475. doi:10.1016/j.bpj.2016.02.032 | es_ES |
dc.description.references | Dongmin Guo, van de Ven, A. L., & Xiaobo Zhou. (2014). Red Blood Cell Tracking Using Optical Flow Methods. IEEE Journal of Biomedical and Health Informatics, 18(3), 991-998. doi:10.1109/jbhi.2013.2281915 | es_ES |
dc.description.references | Mata, M. (2005). Phosphodiesterase 4 inhibition decreases MUC5AC expression induced by epidermal growth factor in human airway epithelial cells. Thorax, 60(2), 144-152. doi:10.1136/thx.2004.025692 | es_ES |
dc.description.references | Cortijo, J., Milara, J., Mata, M., Donet, E., Gavara, N., Peel, S. E., … Morcillo, E. J. (2010). Nickel induces intracellular calcium mobilization and pathophysiological responses in human cultured airway epithelial cells. Chemico-Biological Interactions, 183(1), 25-33. doi:10.1016/j.cbi.2009.09.011 | es_ES |
dc.description.references | Martínez, I., Melero, J. A., & Dopazo, J. (1997). Antigenic structure of the human respiratory syncytial virus G glycoprotein and relevance of hypermutation events for the generation of antigenic variants. Journal of General Virology, 78(10), 2419-2429. doi:10.1099/0022-1317-78-10-2419 | es_ES |
dc.description.references | García-Barreno, B., Palomo, C., Peñas, C., Delgado, T., Perez-Breña, P., & Melero, J. A. (1989). Marked differences in the antigenic structure of human respiratory syncytial virus F and G glycoproteins. Journal of Virology, 63(2), 925-932. doi:10.1128/jvi.63.2.925-932.1989 | es_ES |
dc.description.references | Mbiguino, A., & Menezes, J. (1991). Purification of human respiratory syncytial virus: superiority of sucrose gradient over percoll, renografin, and metrizamide gradients. Journal of Virological Methods, 31(2-3), 161-170. doi:10.1016/0166-0934(91)90154-r | es_ES |
dc.description.references | Herranz, C., Melero, J. A., & Martínez, I. (2011). Reduced innate immune response, apoptosis, and virus release in cells cured of respiratory syncytial virus persistent infection. Virology, 410(1), 56-63. doi:10.1016/j.virol.2010.10.035 | es_ES |
dc.description.references | Mata, M., Martinez, I., Melero, J. A., Tenor, H., & Cortijo, J. (2013). Roflumilast Inhibits Respiratory Syncytial Virus Infection in Human Differentiated Bronchial Epithelial Cells. PLoS ONE, 8(7), e69670. doi:10.1371/journal.pone.0069670 | es_ES |
dc.description.references | Mirra, V., Werner, C., & Santamaria, F. (2017). Primary Ciliary Dyskinesia: An Update on Clinical Aspects, Genetics, Diagnosis, and Future Treatment Strategies. Frontiers in Pediatrics, 5. doi:10.3389/fped.2017.00135 | es_ES |
dc.description.references | Meste, O., Brau, F., & Guyon, A. (2015). Robust estimation of the motile cilia beating frequency. Medical & Biological Engineering & Computing, 53(10), 1025-1035. doi:10.1007/s11517-015-1345-0 | es_ES |
dc.description.references | Yi, W.-J., Park, K.-S., Lee, C.-H., & Rhee, C.-S. (2003). Correlation between ciliary beat frequency and metachronal wave disorder using image analysis method. Medical & Biological Engineering & Computing, 41(4), 481-485. doi:10.1007/bf02348093 | es_ES |
dc.description.references | Philippou, S., Otto, P., Reinhold, P., Elschner, M., & Streckert, H.-J. (2000). Respiratory syncytial virus-induced chronic bronchiolitis in experimentally infected calves. Virchows Archiv, 436(6), 617-621. doi:10.1007/s004280000197 | es_ES |
dc.description.references | Hirst, R. A., Jackson, C. L., Coles, J. L., Williams, G., Rutman, A., Goggin, P. M., … Lucas, J. S. (2014). Culture of Primary Ciliary Dyskinesia Epithelial Cells at Air-Liquid Interface Can Alter Ciliary Phenotype but Remains a Robust and Informative Diagnostic Aid. PLoS ONE, 9(2), e89675. doi:10.1371/journal.pone.0089675 | es_ES |