- -

Metal-Specific Reactivity in Single-Atom Catalysts: CO Oxidation on 4d and 5d Transition Metals Atomically Dispersed on MgO

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Metal-Specific Reactivity in Single-Atom Catalysts: CO Oxidation on 4d and 5d Transition Metals Atomically Dispersed on MgO

Show full item record

Sarma, BB.; Plessow, PN.; Agostini, G.; Concepción Heydorn, P.; Pfänder, N.; Kang, L.; Wang, FR.... (2020). Metal-Specific Reactivity in Single-Atom Catalysts: CO Oxidation on 4d and 5d Transition Metals Atomically Dispersed on MgO. Journal of the American Chemical Society. 142(35):14890-14902. https://doi.org/10.1021/jacs.0c03627

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/165560

Files in this item

Item Metadata

Title: Metal-Specific Reactivity in Single-Atom Catalysts: CO Oxidation on 4d and 5d Transition Metals Atomically Dispersed on MgO
Author: Sarma, Bidyut B. Plessow, Philipp N. Agostini, Giovanni Concepción Heydorn, Patricia Pfänder, Norbert Kang, Liqun Wang, Feng R. Studt, Felix Prieto González, Gonzalo
UPV Unit: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Issued date:
Abstract:
[EN] Understanding and tuning the catalytic properties of metals atomically dispersed on oxides are major stepping-stones toward a rational development of single-atom catalysts (SACs). Beyond individual showcase studies, ...[+]
Subjects: Periodic trends , Surface , Site , Platinum , Oxygen , Identification , Redispersion , Spectroscopy , Energy , Activation
Copyrigths: Reserva de todos los derechos
Source:
Journal of the American Chemical Society. (issn: 0002-7863 )
DOI: 10.1021/jacs.0c03627
Publisher:
American Chemical Society
Publisher version: https://doi.org/10.1021/jacs.0c03627
Project ID:
info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-096399-A-I00/ES/CLUSTERES MULTIMETALICOS Y SUBNANOMETRICOS SOPORTADOS: SINTESIS, ESTRUCTURA Y DINAMISMO ATOMICO, Y EMPLEO COMO CATALIZADORES EN LA VALORIZACION DE METANO Y ALCANOS LIGEROS/
info:eu-repo/grantAgreement/Baden-Württemberg Landesregierung//RV bw17D01/
Thanks:
XAS experiments were performed at B18 beamline, Diamond Light Source, United Kingdom (proposals Nr. SP17377 and SP19072) and BL22 beamline, ALBA Light Source, Spain (experiment 2019023278). Beamline scientists D. Gianolio ...[+]
Type: Artículo

References

Ruckenstein, E., & Hu, X. D. (1985). Mechanism of redispersion of supported metal catalysts in oxidative atmospheres. Langmuir, 1(6), 756-760. doi:10.1021/la00066a019

Szymura, J. A. (1986). Studies on Redispersion and Stability of Platinum in Pt/MgO System during Oxygen Treatment at High Temperatures. Zeitschrift f�r anorganische und allgemeine Chemie, 542(11), 232-240. doi:10.1002/zaac.19865421130

Morgan, K., Goguet, A., & Hardacre, C. (2015). Metal Redispersion Strategies for Recycling of Supported Metal Catalysts: A Perspective. ACS Catalysis, 5(6), 3430-3445. doi:10.1021/acscatal.5b00535 [+]
Ruckenstein, E., & Hu, X. D. (1985). Mechanism of redispersion of supported metal catalysts in oxidative atmospheres. Langmuir, 1(6), 756-760. doi:10.1021/la00066a019

Szymura, J. A. (1986). Studies on Redispersion and Stability of Platinum in Pt/MgO System during Oxygen Treatment at High Temperatures. Zeitschrift f�r anorganische und allgemeine Chemie, 542(11), 232-240. doi:10.1002/zaac.19865421130

Morgan, K., Goguet, A., & Hardacre, C. (2015). Metal Redispersion Strategies for Recycling of Supported Metal Catalysts: A Perspective. ACS Catalysis, 5(6), 3430-3445. doi:10.1021/acscatal.5b00535

Qiao, B., Wang, A., Yang, X., Allard, L. F., Jiang, Z., Cui, Y., … Zhang, T. (2011). Single-atom catalysis of CO oxidation using Pt1/FeOx. Nature Chemistry, 3(8), 634-641. doi:10.1038/nchem.1095

Jones, J., Xiong, H., DeLaRiva, A. T., Peterson, E. J., Pham, H., Challa, S. R., … Datye, A. K. (2016). Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science, 353(6295), 150-154. doi:10.1126/science.aaf8800

Kunwar, D., Zhou, S., DeLaRiva, A., Peterson, E. J., Xiong, H., Pereira-Hernández, X. I., … Datye, A. K. (2019). Stabilizing High Metal Loadings of Thermally Stable Platinum Single Atoms on an Industrial Catalyst Support. ACS Catalysis, 9(5), 3978-3990. doi:10.1021/acscatal.8b04885

Liu, L., Zakharov, D. N., Arenal, R., Concepcion, P., Stach, E. A., & Corma, A. (2018). Evolution and stabilization of subnanometric metal species in confined space by in situ TEM. Nature Communications, 9(1). doi:10.1038/s41467-018-03012-6

Sarma, B. B., Kim, J., Amsler, J., Agostini, G., Weidenthaler, C., Pfänder, N., … Prieto, G. (2020). One‐Pot Cooperation of Single‐Atom Rh and Ru Solid Catalysts for a Selective Tandem Olefin Isomerization‐Hydrosilylation Process. Angewandte Chemie International Edition, 59(14), 5806-5815. doi:10.1002/anie.201915255

Yang, X.-F., Wang, A., Qiao, B., Li, J., Liu, J., & Zhang, T. (2013). Single-Atom Catalysts: A New Frontier in Heterogeneous Catalysis. Accounts of Chemical Research, 46(8), 1740-1748. doi:10.1021/ar300361m

Gates, B. C., Flytzani-Stephanopoulos, M., Dixon, D. A., & Katz, A. (2017). Atomically dispersed supported metal catalysts: perspectives and suggestions for future research. Catalysis Science & Technology, 7(19), 4259-4275. doi:10.1039/c7cy00881c

Wang, A., Li, J., & Zhang, T. (2018). Heterogeneous single-atom catalysis. Nature Reviews Chemistry, 2(6), 65-81. doi:10.1038/s41570-018-0010-1

Amsler, J., Sarma, B. B., Agostini, G., Prieto, G., Plessow, P. N., & Studt, F. (2020). Prospects of Heterogeneous Hydroformylation with Supported Single Atom Catalysts. Journal of the American Chemical Society, 142(11), 5087-5096. doi:10.1021/jacs.9b12171

Cui, X., Li, W., Ryabchuk, P., Junge, K., & Beller, M. (2018). Bridging homogeneous and heterogeneous catalysis by heterogeneous single-metal-site catalysts. Nature Catalysis, 1(6), 385-397. doi:10.1038/s41929-018-0090-9

Uzun, A., Ortalan, V., Browning, N. D., & Gates, B. C. (2010). A site-isolated mononuclear iridium complex catalyst supported on MgO: Characterization by spectroscopy and aberration-corrected scanning transmission electron microscopy. Journal of Catalysis, 269(2), 318-328. doi:10.1016/j.jcat.2009.11.017

Chen, Y., Ji, S., Sun, W., Chen, W., Dong, J., Wen, J., … Li, Y. (2018). Discovering Partially Charged Single-Atom Pt for Enhanced Anti-Markovnikov Alkene Hydrosilylation. Journal of the American Chemical Society, 140(24), 7407-7410. doi:10.1021/jacs.8b03121

Zhang, X., Sun, Z., Wang, B., Tang, Y., Nguyen, L., Li, Y., & Tao, F. F. (2018). C–C Coupling on Single-Atom-Based Heterogeneous Catalyst. Journal of the American Chemical Society, 140(3), 954-962. doi:10.1021/jacs.7b09314

Chen, Z., Vorobyeva, E., Mitchell, S., Fako, E., Ortuño, M. A., López, N., … Pérez-Ramírez, J. (2018). A heterogeneous single-atom palladium catalyst surpassing homogeneous systems for Suzuki coupling. Nature Nanotechnology, 13(8), 702-707. doi:10.1038/s41565-018-0167-2

Millet, M.-M., Algara-Siller, G., Wrabetz, S., Mazheika, A., Girgsdies, F., Teschner, D., … Frei, E. (2019). Ni Single Atom Catalysts for CO2 Activation. Journal of the American Chemical Society, 141(6), 2451-2461. doi:10.1021/jacs.8b11729

Li, J., Guan, Q., Wu, H., Liu, W., Lin, Y., Sun, Z., … Lu, J. (2019). Highly Active and Stable Metal Single-Atom Catalysts Achieved by Strong Electronic Metal–Support Interactions. Journal of the American Chemical Society, 141(37), 14515-14519. doi:10.1021/jacs.9b06482

Tang, Y., Wei, Y., Wang, Z., Zhang, S., Li, Y., Nguyen, L., … Hu, P. (2019). Synergy of Single-Atom Ni1 and Ru1 Sites on CeO2 for Dry Reforming of CH4. Journal of the American Chemical Society, 141(18), 7283-7293. doi:10.1021/jacs.8b10910

Malta, G., Kondrat, S. A., Freakley, S. J., Davies, C. J., Lu, L., Dawson, S., … Hutchings, G. J. (2017). Identification of single-site gold catalysis in acetylene hydrochlorination. Science, 355(6332), 1399-1403. doi:10.1126/science.aal3439

Falsig, H., Hvolbæk, B., Kristensen, I. S., Jiang, T., Bligaard, T., Christensen, C. H., & Nørskov, J. K. (2008). Trends in the Catalytic CO Oxidation Activity of Nanoparticles. Angewandte Chemie International Edition, 47(26), 4835-4839. doi:10.1002/anie.200801479

Latimer, A. A., Kulkarni, A. R., Aljama, H., Montoya, J. H., Yoo, J. S., Tsai, C., … Nørskov, J. K. (2016). Understanding trends in C–H bond activation in heterogeneous catalysis. Nature Materials, 16(2), 225-229. doi:10.1038/nmat4760

Hensen, E. J. M., Brans, H. J. A., Lardinois, G. M. H. J., de Beer, V. H. J., van Veen, J. A. R., & van Santen, R. A. (2000). Periodic Trends in Hydrotreating Catalysis: Thiophene Hydrodesulfurization over Carbon-Supported 4d Transition Metal Sulfides. Journal of Catalysis, 192(1), 98-107. doi:10.1006/jcat.2000.2824

Thornburg, N. E., Thompson, A. B., & Notestein, J. M. (2015). Periodic Trends in Highly Dispersed Groups IV and V Supported Metal Oxide Catalysts for Alkene Epoxidation with H2O2. ACS Catalysis, 5(9), 5077-5088. doi:10.1021/acscatal.5b01105

Yang, T., Fukuda, R., Hosokawa, S., Tanaka, T., Sakaki, S., & Ehara, M. (2017). A Theoretical Investigation on CO Oxidation by Single-Atom Catalysts M1 /γ-Al2 O3 (M=Pd, Fe, Co, and Ni). ChemCatChem, 9(7), 1222-1229. doi:10.1002/cctc.201601713

Kropp, T., Lu, Z., Li, Z., Chin, Y.-H. C., & Mavrikakis, M. (2019). Anionic Single-Atom Catalysts for CO Oxidation: Support-Independent Activity at Low Temperatures. ACS Catalysis, 9(2), 1595-1604. doi:10.1021/acscatal.8b03298

O’Connor, N. J., Jonayat, A. S. M., Janik, M. J., & Senftle, T. P. (2018). Interaction trends between single metal atoms and oxide supports identified with density functional theory and statistical learning. Nature Catalysis, 1(7), 531-539. doi:10.1038/s41929-018-0094-5

Tanaka, I., Oba, F., Tatsumi, K., Kunisu, M., Nakano, M., & Adachi, H. (2002). Theoretical Formation Energy of Oxygen-Vacancies in Oxides. MATERIALS TRANSACTIONS, 43(7), 1426-1429. doi:10.2320/matertrans.43.1426

Therrien, A. J., Hensley, A. J. R., Marcinkowski, M. D., Zhang, R., Lucci, F. R., Coughlin, B., … Sykes, E. C. H. (2018). An atomic-scale view of single-site Pt catalysis for low-temperature CO oxidation. Nature Catalysis, 1(3), 192-198. doi:10.1038/s41929-018-0028-2

Lu, Y., Wang, J., Yu, L., Kovarik, L., Zhang, X., Hoffman, A. S., … Karim, A. M. (2018). Identification of the active complex for CO oxidation over single-atom Ir-on-MgAl2O4 catalysts. Nature Catalysis, 2(2), 149-156. doi:10.1038/s41929-018-0192-4

Zhang, B., Asakura, H., & Yan, N. (2017). Atomically Dispersed Rhodium on Self-Assembled Phosphotungstic Acid: Structural Features and Catalytic CO Oxidation Properties. Industrial & Engineering Chemistry Research, 56(13), 3578-3587. doi:10.1021/acs.iecr.7b00376

Wang, H., Liu, J.-X., Allard, L. F., Lee, S., Liu, J., Li, H., … Yang, M. (2019). Surpassing the single-atom catalytic activity limit through paired Pt-O-Pt ensemble built from isolated Pt1 atoms. Nature Communications, 10(1). doi:10.1038/s41467-019-11856-9

Ravel, B., & Newville, M. (2005). ATHENA,ARTEMIS,HEPHAESTUS: data analysis for X-ray absorption spectroscopy usingIFEFFIT. Journal of Synchrotron Radiation, 12(4), 537-541. doi:10.1107/s0909049505012719

Perdew, J. P., Burke, K., & Ernzerhof, M. (1997). Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)]. Physical Review Letters, 78(7), 1396-1396. doi:10.1103/physrevlett.78.1396

Grimme, S., Antony, J., Ehrlich, S., & Krieg, H. (2010). A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. The Journal of Chemical Physics, 132(15), 154104. doi:10.1063/1.3382344

Kresse, G., & Furthmüller, J. (1996). Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set. Physical Review B, 54(16), 11169-11186. doi:10.1103/physrevb.54.11169

Kresse, G., & Joubert, D. (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 59(3), 1758-1775. doi:10.1103/physrevb.59.1758

Plessow, P. N. (2018). Efficient Transition State Optimization of Periodic Structures through Automated Relaxed Potential Energy Surface Scans. Journal of Chemical Theory and Computation, 14(2), 981-990. doi:10.1021/acs.jctc.7b01070

Hoffman, A. S., Debefve, L. M., Zhang, S., Perez-Aguilar, J. E., Conley, E. T., Justl, K. R., … Gates, B. C. (2018). Beating Heterogeneity of Single-Site Catalysts: MgO-Supported Iridium Complexes. ACS Catalysis, 8(4), 3489-3498. doi:10.1021/acscatal.8b00143

Ren, Y., Tang, Y., Zhang, L., Liu, X., Li, L., Miao, S., … Zhang, T. (2019). Unraveling the coordination structure-performance relationship in Pt1/Fe2O3 single-atom catalyst. Nature Communications, 10(1). doi:10.1038/s41467-019-12459-0

Gatla, S., Aubert, D., Agostini, G., Mathon, O., Pascarelli, S., Lunkenbein, T., … Kaper, H. (2016). Room-Temperature CO Oxidation Catalyst: Low-Temperature Metal–Support Interaction between Platinum Nanoparticles and Nanosized Ceria. ACS Catalysis, 6(9), 6151-6155. doi:10.1021/acscatal.6b00677

Guan, H., Lin, J., Qiao, B., Yang, X., Li, L., Miao, S., … Zhang, T. (2016). Catalytically Active Rh Sub-Nanoclusters on TiO2 for CO Oxidation at Cryogenic Temperatures. Angewandte Chemie International Edition, 55(8), 2820-2824. doi:10.1002/anie.201510643

Gaudet, J. R., de la Riva, A., Peterson, E. J., Bolin, T., & Datye, A. K. (2013). Improved Low-Temperature CO Oxidation Performance of Pd Supported on La-Stabilized Alumina. ACS Catalysis, 3(5), 846-855. doi:10.1021/cs400024u

Gänzler, A. M., Casapu, M., Doronkin, D. E., Maurer, F., Lott, P., Glatzel, P., … Grunwaldt, J.-D. (2019). Unravelling the Different Reaction Pathways for Low Temperature CO Oxidation on Pt/CeO2 and Pt/Al2O3 by Spatially Resolved Structure–Activity Correlations. The Journal of Physical Chemistry Letters, 10(24), 7698-7705. doi:10.1021/acs.jpclett.9b02768

Nie, L., Mei, D., Xiong, H., Peng, B., Ren, Z., Hernandez, X. I. P., … Wang, Y. (2017). Activation of surface lattice oxygen in single-atom Pt/CeO 2 for low-temperature CO oxidation. Science, 358(6369), 1419-1423. doi:10.1126/science.aao2109

Carrasco, J., Lopez, N., Illas, F., & Freund, H.-J. (2006). Bulk and surface oxygen vacancy formation and diffusion in single crystals, ultrathin films, and metal grown oxide structures. The Journal of Chemical Physics, 125(7), 074711. doi:10.1063/1.2335842

Kropp, T., & Mavrikakis, M. (2019). Brønsted–Evans–Polanyi relation for CO oxidation on metal oxides following the Mars–van Krevelen mechanism. Journal of Catalysis, 377, 577-581. doi:10.1016/j.jcat.2019.08.002

Martínez, J. I., Hansen, H. A., Rossmeisl, J., & Nørskov, J. K. (2009). Formation energies of rutile metal dioxides using density functional theory. Physical Review B, 79(4). doi:10.1103/physrevb.79.045120

Soave, R., & Pacchioni, G. (2000). New bonding mode of CO on stepped MgO surfaces from density functional cluster model calculations. Chemical Physics Letters, 320(3-4), 345-351. doi:10.1016/s0009-2614(00)00246-3

Sterrer, M., Risse, T., & Freund, H.-J. (2006). CO adsorption on the surface of MgO(001) thin films. Applied Catalysis A: General, 307(1), 58-61. doi:10.1016/j.apcata.2006.03.007

Trionfetti, C., Babich, I. V., Seshan, K., & Lefferts, L. (2008). Presence of Lithium Ions in MgO Lattice: Surface Characterization by Infrared Spectroscopy and Reactivity towards Oxidative Conversion of Propane. Langmuir, 24(15), 8220-8228. doi:10.1021/la8006316

Mihaylov, M. Y., Fierro-Gonzalez, J. C., Knözinger, H., Gates, B. C., & Hadjiivanov, K. I. (2006). Formation of Nonclassical Carbonyls of Au3+ in Zeolite NaY:  Characterization by Infrared Spectroscopy. The Journal of Physical Chemistry B, 110(15), 7695-7701. doi:10.1021/jp057426q

Wang, C., Bley, B., Balzer-Jöllenbeck, G., Lewis, A. R., Siu, S. C., Willner, H., & Aubke, F. (1995). New homoleptic metal carbonyl cations: the syntheses, vibrational and13C MAS NMR spectra of hexacarbonyl-ruthenium(II) and-osmium(II) undecafluorodiantimonate(V), [Ru(CO)6][Sb2F11]2and [Os(CO)6][Sb2F11]2. J. Chem. Soc., Chem. Commun., (20), 2071-2072. doi:10.1039/c39950002071

Fukuda, Y., & Tanabe, K. (1973). Infrared Study of Carbon Dioxide Adsorbed on Magnesium and Calcium Oxides. Bulletin of the Chemical Society of Japan, 46(6), 1616-1619. doi:10.1246/bcsj.46.1616

Philipp, R., & Fujimoto, K. (1992). FTIR spectroscopic study of carbon dioxide adsorption/desorption on magnesia/calcium oxide catalysts. The Journal of Physical Chemistry, 96(22), 9035-9038. doi:10.1021/j100201a063

Busca, G., & Lorenzelli, V. (1982). Infrared spectroscopic identification of species arising from reactive adsorption of carbon oxides on metal oxide surfaces. Materials Chemistry, 7(1), 89-126. doi:10.1016/0390-6035(82)90059-1

Cornu, D., Guesmi, H., Krafft, J.-M., & Lauron-Pernot, H. (2012). Lewis Acido-Basic Interactions between CO2 and MgO Surface: DFT and DRIFT Approaches. The Journal of Physical Chemistry C, 116(11), 6645-6654. doi:10.1021/jp211171t

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record