- -

Metal-Specific Reactivity in Single-Atom Catalysts: CO Oxidation on 4d and 5d Transition Metals Atomically Dispersed on MgO

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Metal-Specific Reactivity in Single-Atom Catalysts: CO Oxidation on 4d and 5d Transition Metals Atomically Dispersed on MgO

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sarma, Bidyut B. es_ES
dc.contributor.author Plessow, Philipp N. es_ES
dc.contributor.author Agostini, Giovanni es_ES
dc.contributor.author Concepción Heydorn, Patricia es_ES
dc.contributor.author Pfänder, Norbert es_ES
dc.contributor.author Kang, Liqun es_ES
dc.contributor.author Wang, Feng R. es_ES
dc.contributor.author Studt, Felix es_ES
dc.contributor.author Prieto González, Gonzalo es_ES
dc.date.accessioned 2021-04-24T03:31:09Z
dc.date.available 2021-04-24T03:31:09Z
dc.date.issued 2020-09-02 es_ES
dc.identifier.issn 0002-7863 es_ES
dc.identifier.uri http://hdl.handle.net/10251/165560
dc.description.abstract [EN] Understanding and tuning the catalytic properties of metals atomically dispersed on oxides are major stepping-stones toward a rational development of single-atom catalysts (SACs). Beyond individual showcase studies, the design and synthesis of structurally regular series of SACs opens the door to systematic experimental investigations of performance as a function of metal identity. Herein, a series of single-atom catalysts based on various 4d (Ru, Rh, Pd) and Sd (Ir, Pt) transition metals has been synthesized on a common MgO carrier. Complementary experimental (X-ray absorption spectroscopy) and theoretical (Density Functional Theory) studies reveal that, regardless of the metal identity, metal cations occupy preferably octahedral coordination MgO lattice positions under step-edges, hence highly confined by the oxide support. Upon exposure to O-2-lean CO oxidation conditions, FTIR spectroscopy indicates the partial deconfinement of the monatomic metal centers driven by CO at precatalysis temperatures, followed by the development of surface carbonate species under steady-state conditions. These findings are supported by DFT calculations, which show the driving force and final structure for the surface metal protrusion to be metal-dependent, but point to an equivalent octahedral-coordinated M4+ carbonate species as the resting state in all cases. Experimentally, apparent reaction activation energies in the range of 96 +/- 19 kJ/mol are determined, with Pt leading to the lowest energy barrier. The results indicate that, for monatomic sites in SACs, differences in CO oxidation reactivity enforceable via metal selection are of lower magnitude than those evidenced previously through the mechanistic involvement of adjacent redox centers on the oxide carrier, suggesting that tuning of the oxide surface chemistry is as relevant as the selection of the supported metal. es_ES
dc.description.sponsorship XAS experiments were performed at B18 beamline, Diamond Light Source, United Kingdom (proposals Nr. SP17377 and SP19072) and BL22 beamline, ALBA Light Source, Spain (experiment 2019023278). Beamline scientists D. Gianolio (Diamond) and L. Simonelli and C. Marini (ALBA) are acknowledged for their assistance with the beamline setup during XAS experiments. The authors are grateful to M. Garcia, E. Andres, M. E. Martinez, and I. Lopez (ITQ) for assistance during the XAS experiments. J. Ternieden (MPIKOFO) is acknowledged for the performance of XRD experiments. J.M. Salas (ITQ) is acknowledged for his experimental contribution to the CO-FTIR studies, and M.D. Soriano and A. Munoz for the recording of XP spectra. P.N.P. and F.S. acknowledge support by the state of BademWurttemberg through bwHPC (bwUnicluster and JUSTUS, RV bw17D01) and support from the Helmholtz Association is also gratefully acknowledged. This research received funding from the Alexander von Humboldt Foundation (postdoctoral grant to B.B.S.), the Max Planck Society and the Fonds der Chemischen Industry (FCI, Germany). The authors are grateful to Prof. Ferdi Schuth for the provision of lab facilities and support throughout the project. Funding from the Spanish Ministry of Science, Innovation and Universities (projects SEV 2016-0683 and RTI2018-096399-A-100) is also acknowledged. es_ES
dc.language Inglés es_ES
dc.publisher American Chemical Society es_ES
dc.relation.ispartof Journal of the American Chemical Society es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Periodic trends es_ES
dc.subject Surface es_ES
dc.subject Site es_ES
dc.subject Platinum es_ES
dc.subject Oxygen es_ES
dc.subject Identification es_ES
dc.subject Redispersion es_ES
dc.subject Spectroscopy es_ES
dc.subject Energy es_ES
dc.subject Activation es_ES
dc.title Metal-Specific Reactivity in Single-Atom Catalysts: CO Oxidation on 4d and 5d Transition Metals Atomically Dispersed on MgO es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1021/jacs.0c03627 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-096399-A-I00/ES/CLUSTERES MULTIMETALICOS Y SUBNANOMETRICOS SOPORTADOS: SINTESIS, ESTRUCTURA Y DINAMISMO ATOMICO, Y EMPLEO COMO CATALIZADORES EN LA VALORIZACION DE METANO Y ALCANOS LIGEROS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Baden-Württemberg Landesregierung//RV bw17D01/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Sarma, BB.; Plessow, PN.; Agostini, G.; Concepción Heydorn, P.; Pfänder, N.; Kang, L.; Wang, FR.... (2020). Metal-Specific Reactivity in Single-Atom Catalysts: CO Oxidation on 4d and 5d Transition Metals Atomically Dispersed on MgO. Journal of the American Chemical Society. 142(35):14890-14902. https://doi.org/10.1021/jacs.0c03627 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1021/jacs.0c03627 es_ES
dc.description.upvformatpinicio 14890 es_ES
dc.description.upvformatpfin 14902 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 142 es_ES
dc.description.issue 35 es_ES
dc.identifier.pmid 32786735 es_ES
dc.relation.pasarela S\429627 es_ES
dc.contributor.funder Max Planck Society es_ES
dc.contributor.funder Alexander von Humboldt Foundation es_ES
dc.contributor.funder Baden-Württemberg Landesregierung es_ES
dc.contributor.funder Fonds der Chemischen Industrie, Alemania es_ES
dc.contributor.funder Helmholtz Association of German Research Centers es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Ruckenstein, E., & Hu, X. D. (1985). Mechanism of redispersion of supported metal catalysts in oxidative atmospheres. Langmuir, 1(6), 756-760. doi:10.1021/la00066a019 es_ES
dc.description.references Szymura, J. A. (1986). Studies on Redispersion and Stability of Platinum in Pt/MgO System during Oxygen Treatment at High Temperatures. Zeitschrift f�r anorganische und allgemeine Chemie, 542(11), 232-240. doi:10.1002/zaac.19865421130 es_ES
dc.description.references Morgan, K., Goguet, A., & Hardacre, C. (2015). Metal Redispersion Strategies for Recycling of Supported Metal Catalysts: A Perspective. ACS Catalysis, 5(6), 3430-3445. doi:10.1021/acscatal.5b00535 es_ES
dc.description.references Qiao, B., Wang, A., Yang, X., Allard, L. F., Jiang, Z., Cui, Y., … Zhang, T. (2011). Single-atom catalysis of CO oxidation using Pt1/FeOx. Nature Chemistry, 3(8), 634-641. doi:10.1038/nchem.1095 es_ES
dc.description.references Jones, J., Xiong, H., DeLaRiva, A. T., Peterson, E. J., Pham, H., Challa, S. R., … Datye, A. K. (2016). Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science, 353(6295), 150-154. doi:10.1126/science.aaf8800 es_ES
dc.description.references Kunwar, D., Zhou, S., DeLaRiva, A., Peterson, E. J., Xiong, H., Pereira-Hernández, X. I., … Datye, A. K. (2019). Stabilizing High Metal Loadings of Thermally Stable Platinum Single Atoms on an Industrial Catalyst Support. ACS Catalysis, 9(5), 3978-3990. doi:10.1021/acscatal.8b04885 es_ES
dc.description.references Liu, L., Zakharov, D. N., Arenal, R., Concepcion, P., Stach, E. A., & Corma, A. (2018). Evolution and stabilization of subnanometric metal species in confined space by in situ TEM. Nature Communications, 9(1). doi:10.1038/s41467-018-03012-6 es_ES
dc.description.references Sarma, B. B., Kim, J., Amsler, J., Agostini, G., Weidenthaler, C., Pfänder, N., … Prieto, G. (2020). One‐Pot Cooperation of Single‐Atom Rh and Ru Solid Catalysts for a Selective Tandem Olefin Isomerization‐Hydrosilylation Process. Angewandte Chemie International Edition, 59(14), 5806-5815. doi:10.1002/anie.201915255 es_ES
dc.description.references Yang, X.-F., Wang, A., Qiao, B., Li, J., Liu, J., & Zhang, T. (2013). Single-Atom Catalysts: A New Frontier in Heterogeneous Catalysis. Accounts of Chemical Research, 46(8), 1740-1748. doi:10.1021/ar300361m es_ES
dc.description.references Gates, B. C., Flytzani-Stephanopoulos, M., Dixon, D. A., & Katz, A. (2017). Atomically dispersed supported metal catalysts: perspectives and suggestions for future research. Catalysis Science & Technology, 7(19), 4259-4275. doi:10.1039/c7cy00881c es_ES
dc.description.references Wang, A., Li, J., & Zhang, T. (2018). Heterogeneous single-atom catalysis. Nature Reviews Chemistry, 2(6), 65-81. doi:10.1038/s41570-018-0010-1 es_ES
dc.description.references Amsler, J., Sarma, B. B., Agostini, G., Prieto, G., Plessow, P. N., & Studt, F. (2020). Prospects of Heterogeneous Hydroformylation with Supported Single Atom Catalysts. Journal of the American Chemical Society, 142(11), 5087-5096. doi:10.1021/jacs.9b12171 es_ES
dc.description.references Cui, X., Li, W., Ryabchuk, P., Junge, K., & Beller, M. (2018). Bridging homogeneous and heterogeneous catalysis by heterogeneous single-metal-site catalysts. Nature Catalysis, 1(6), 385-397. doi:10.1038/s41929-018-0090-9 es_ES
dc.description.references Uzun, A., Ortalan, V., Browning, N. D., & Gates, B. C. (2010). A site-isolated mononuclear iridium complex catalyst supported on MgO: Characterization by spectroscopy and aberration-corrected scanning transmission electron microscopy. Journal of Catalysis, 269(2), 318-328. doi:10.1016/j.jcat.2009.11.017 es_ES
dc.description.references Chen, Y., Ji, S., Sun, W., Chen, W., Dong, J., Wen, J., … Li, Y. (2018). Discovering Partially Charged Single-Atom Pt for Enhanced Anti-Markovnikov Alkene Hydrosilylation. Journal of the American Chemical Society, 140(24), 7407-7410. doi:10.1021/jacs.8b03121 es_ES
dc.description.references Zhang, X., Sun, Z., Wang, B., Tang, Y., Nguyen, L., Li, Y., & Tao, F. F. (2018). C–C Coupling on Single-Atom-Based Heterogeneous Catalyst. Journal of the American Chemical Society, 140(3), 954-962. doi:10.1021/jacs.7b09314 es_ES
dc.description.references Chen, Z., Vorobyeva, E., Mitchell, S., Fako, E., Ortuño, M. A., López, N., … Pérez-Ramírez, J. (2018). A heterogeneous single-atom palladium catalyst surpassing homogeneous systems for Suzuki coupling. Nature Nanotechnology, 13(8), 702-707. doi:10.1038/s41565-018-0167-2 es_ES
dc.description.references Millet, M.-M., Algara-Siller, G., Wrabetz, S., Mazheika, A., Girgsdies, F., Teschner, D., … Frei, E. (2019). Ni Single Atom Catalysts for CO2 Activation. Journal of the American Chemical Society, 141(6), 2451-2461. doi:10.1021/jacs.8b11729 es_ES
dc.description.references Li, J., Guan, Q., Wu, H., Liu, W., Lin, Y., Sun, Z., … Lu, J. (2019). Highly Active and Stable Metal Single-Atom Catalysts Achieved by Strong Electronic Metal–Support Interactions. Journal of the American Chemical Society, 141(37), 14515-14519. doi:10.1021/jacs.9b06482 es_ES
dc.description.references Tang, Y., Wei, Y., Wang, Z., Zhang, S., Li, Y., Nguyen, L., … Hu, P. (2019). Synergy of Single-Atom Ni1 and Ru1 Sites on CeO2 for Dry Reforming of CH4. Journal of the American Chemical Society, 141(18), 7283-7293. doi:10.1021/jacs.8b10910 es_ES
dc.description.references Malta, G., Kondrat, S. A., Freakley, S. J., Davies, C. J., Lu, L., Dawson, S., … Hutchings, G. J. (2017). Identification of single-site gold catalysis in acetylene hydrochlorination. Science, 355(6332), 1399-1403. doi:10.1126/science.aal3439 es_ES
dc.description.references Falsig, H., Hvolbæk, B., Kristensen, I. S., Jiang, T., Bligaard, T., Christensen, C. H., & Nørskov, J. K. (2008). Trends in the Catalytic CO Oxidation Activity of Nanoparticles. Angewandte Chemie International Edition, 47(26), 4835-4839. doi:10.1002/anie.200801479 es_ES
dc.description.references Latimer, A. A., Kulkarni, A. R., Aljama, H., Montoya, J. H., Yoo, J. S., Tsai, C., … Nørskov, J. K. (2016). Understanding trends in C–H bond activation in heterogeneous catalysis. Nature Materials, 16(2), 225-229. doi:10.1038/nmat4760 es_ES
dc.description.references Hensen, E. J. M., Brans, H. J. A., Lardinois, G. M. H. J., de Beer, V. H. J., van Veen, J. A. R., & van Santen, R. A. (2000). Periodic Trends in Hydrotreating Catalysis: Thiophene Hydrodesulfurization over Carbon-Supported 4d Transition Metal Sulfides. Journal of Catalysis, 192(1), 98-107. doi:10.1006/jcat.2000.2824 es_ES
dc.description.references Thornburg, N. E., Thompson, A. B., & Notestein, J. M. (2015). Periodic Trends in Highly Dispersed Groups IV and V Supported Metal Oxide Catalysts for Alkene Epoxidation with H2O2. ACS Catalysis, 5(9), 5077-5088. doi:10.1021/acscatal.5b01105 es_ES
dc.description.references Yang, T., Fukuda, R., Hosokawa, S., Tanaka, T., Sakaki, S., & Ehara, M. (2017). A Theoretical Investigation on CO Oxidation by Single-Atom Catalysts M1 /γ-Al2 O3 (M=Pd, Fe, Co, and Ni). ChemCatChem, 9(7), 1222-1229. doi:10.1002/cctc.201601713 es_ES
dc.description.references Kropp, T., Lu, Z., Li, Z., Chin, Y.-H. C., & Mavrikakis, M. (2019). Anionic Single-Atom Catalysts for CO Oxidation: Support-Independent Activity at Low Temperatures. ACS Catalysis, 9(2), 1595-1604. doi:10.1021/acscatal.8b03298 es_ES
dc.description.references O’Connor, N. J., Jonayat, A. S. M., Janik, M. J., & Senftle, T. P. (2018). Interaction trends between single metal atoms and oxide supports identified with density functional theory and statistical learning. Nature Catalysis, 1(7), 531-539. doi:10.1038/s41929-018-0094-5 es_ES
dc.description.references Tanaka, I., Oba, F., Tatsumi, K., Kunisu, M., Nakano, M., & Adachi, H. (2002). Theoretical Formation Energy of Oxygen-Vacancies in Oxides. MATERIALS TRANSACTIONS, 43(7), 1426-1429. doi:10.2320/matertrans.43.1426 es_ES
dc.description.references Therrien, A. J., Hensley, A. J. R., Marcinkowski, M. D., Zhang, R., Lucci, F. R., Coughlin, B., … Sykes, E. C. H. (2018). An atomic-scale view of single-site Pt catalysis for low-temperature CO oxidation. Nature Catalysis, 1(3), 192-198. doi:10.1038/s41929-018-0028-2 es_ES
dc.description.references Lu, Y., Wang, J., Yu, L., Kovarik, L., Zhang, X., Hoffman, A. S., … Karim, A. M. (2018). Identification of the active complex for CO oxidation over single-atom Ir-on-MgAl2O4 catalysts. Nature Catalysis, 2(2), 149-156. doi:10.1038/s41929-018-0192-4 es_ES
dc.description.references Zhang, B., Asakura, H., & Yan, N. (2017). Atomically Dispersed Rhodium on Self-Assembled Phosphotungstic Acid: Structural Features and Catalytic CO Oxidation Properties. Industrial & Engineering Chemistry Research, 56(13), 3578-3587. doi:10.1021/acs.iecr.7b00376 es_ES
dc.description.references Wang, H., Liu, J.-X., Allard, L. F., Lee, S., Liu, J., Li, H., … Yang, M. (2019). Surpassing the single-atom catalytic activity limit through paired Pt-O-Pt ensemble built from isolated Pt1 atoms. Nature Communications, 10(1). doi:10.1038/s41467-019-11856-9 es_ES
dc.description.references Ravel, B., & Newville, M. (2005). ATHENA,ARTEMIS,HEPHAESTUS: data analysis for X-ray absorption spectroscopy usingIFEFFIT. Journal of Synchrotron Radiation, 12(4), 537-541. doi:10.1107/s0909049505012719 es_ES
dc.description.references Perdew, J. P., Burke, K., & Ernzerhof, M. (1997). Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)]. Physical Review Letters, 78(7), 1396-1396. doi:10.1103/physrevlett.78.1396 es_ES
dc.description.references Grimme, S., Antony, J., Ehrlich, S., & Krieg, H. (2010). A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. The Journal of Chemical Physics, 132(15), 154104. doi:10.1063/1.3382344 es_ES
dc.description.references Kresse, G., & Furthmüller, J. (1996). Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set. Physical Review B, 54(16), 11169-11186. doi:10.1103/physrevb.54.11169 es_ES
dc.description.references Kresse, G., & Joubert, D. (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 59(3), 1758-1775. doi:10.1103/physrevb.59.1758 es_ES
dc.description.references Plessow, P. N. (2018). Efficient Transition State Optimization of Periodic Structures through Automated Relaxed Potential Energy Surface Scans. Journal of Chemical Theory and Computation, 14(2), 981-990. doi:10.1021/acs.jctc.7b01070 es_ES
dc.description.references Hoffman, A. S., Debefve, L. M., Zhang, S., Perez-Aguilar, J. E., Conley, E. T., Justl, K. R., … Gates, B. C. (2018). Beating Heterogeneity of Single-Site Catalysts: MgO-Supported Iridium Complexes. ACS Catalysis, 8(4), 3489-3498. doi:10.1021/acscatal.8b00143 es_ES
dc.description.references Ren, Y., Tang, Y., Zhang, L., Liu, X., Li, L., Miao, S., … Zhang, T. (2019). Unraveling the coordination structure-performance relationship in Pt1/Fe2O3 single-atom catalyst. Nature Communications, 10(1). doi:10.1038/s41467-019-12459-0 es_ES
dc.description.references Gatla, S., Aubert, D., Agostini, G., Mathon, O., Pascarelli, S., Lunkenbein, T., … Kaper, H. (2016). Room-Temperature CO Oxidation Catalyst: Low-Temperature Metal–Support Interaction between Platinum Nanoparticles and Nanosized Ceria. ACS Catalysis, 6(9), 6151-6155. doi:10.1021/acscatal.6b00677 es_ES
dc.description.references Guan, H., Lin, J., Qiao, B., Yang, X., Li, L., Miao, S., … Zhang, T. (2016). Catalytically Active Rh Sub-Nanoclusters on TiO2 for CO Oxidation at Cryogenic Temperatures. Angewandte Chemie International Edition, 55(8), 2820-2824. doi:10.1002/anie.201510643 es_ES
dc.description.references Gaudet, J. R., de la Riva, A., Peterson, E. J., Bolin, T., & Datye, A. K. (2013). Improved Low-Temperature CO Oxidation Performance of Pd Supported on La-Stabilized Alumina. ACS Catalysis, 3(5), 846-855. doi:10.1021/cs400024u es_ES
dc.description.references Gänzler, A. M., Casapu, M., Doronkin, D. E., Maurer, F., Lott, P., Glatzel, P., … Grunwaldt, J.-D. (2019). Unravelling the Different Reaction Pathways for Low Temperature CO Oxidation on Pt/CeO2 and Pt/Al2O3 by Spatially Resolved Structure–Activity Correlations. The Journal of Physical Chemistry Letters, 10(24), 7698-7705. doi:10.1021/acs.jpclett.9b02768 es_ES
dc.description.references Nie, L., Mei, D., Xiong, H., Peng, B., Ren, Z., Hernandez, X. I. P., … Wang, Y. (2017). Activation of surface lattice oxygen in single-atom Pt/CeO 2 for low-temperature CO oxidation. Science, 358(6369), 1419-1423. doi:10.1126/science.aao2109 es_ES
dc.description.references Carrasco, J., Lopez, N., Illas, F., & Freund, H.-J. (2006). Bulk and surface oxygen vacancy formation and diffusion in single crystals, ultrathin films, and metal grown oxide structures. The Journal of Chemical Physics, 125(7), 074711. doi:10.1063/1.2335842 es_ES
dc.description.references Kropp, T., & Mavrikakis, M. (2019). Brønsted–Evans–Polanyi relation for CO oxidation on metal oxides following the Mars–van Krevelen mechanism. Journal of Catalysis, 377, 577-581. doi:10.1016/j.jcat.2019.08.002 es_ES
dc.description.references Martínez, J. I., Hansen, H. A., Rossmeisl, J., & Nørskov, J. K. (2009). Formation energies of rutile metal dioxides using density functional theory. Physical Review B, 79(4). doi:10.1103/physrevb.79.045120 es_ES
dc.description.references Soave, R., & Pacchioni, G. (2000). New bonding mode of CO on stepped MgO surfaces from density functional cluster model calculations. Chemical Physics Letters, 320(3-4), 345-351. doi:10.1016/s0009-2614(00)00246-3 es_ES
dc.description.references Sterrer, M., Risse, T., & Freund, H.-J. (2006). CO adsorption on the surface of MgO(001) thin films. Applied Catalysis A: General, 307(1), 58-61. doi:10.1016/j.apcata.2006.03.007 es_ES
dc.description.references Trionfetti, C., Babich, I. V., Seshan, K., & Lefferts, L. (2008). Presence of Lithium Ions in MgO Lattice: Surface Characterization by Infrared Spectroscopy and Reactivity towards Oxidative Conversion of Propane. Langmuir, 24(15), 8220-8228. doi:10.1021/la8006316 es_ES
dc.description.references Mihaylov, M. Y., Fierro-Gonzalez, J. C., Knözinger, H., Gates, B. C., & Hadjiivanov, K. I. (2006). Formation of Nonclassical Carbonyls of Au3+ in Zeolite NaY:  Characterization by Infrared Spectroscopy. The Journal of Physical Chemistry B, 110(15), 7695-7701. doi:10.1021/jp057426q es_ES
dc.description.references Wang, C., Bley, B., Balzer-Jöllenbeck, G., Lewis, A. R., Siu, S. C., Willner, H., & Aubke, F. (1995). New homoleptic metal carbonyl cations: the syntheses, vibrational and13C MAS NMR spectra of hexacarbonyl-ruthenium(II) and-osmium(II) undecafluorodiantimonate(V), [Ru(CO)6][Sb2F11]2and [Os(CO)6][Sb2F11]2. J. Chem. Soc., Chem. Commun., (20), 2071-2072. doi:10.1039/c39950002071 es_ES
dc.description.references Fukuda, Y., & Tanabe, K. (1973). Infrared Study of Carbon Dioxide Adsorbed on Magnesium and Calcium Oxides. Bulletin of the Chemical Society of Japan, 46(6), 1616-1619. doi:10.1246/bcsj.46.1616 es_ES
dc.description.references Philipp, R., & Fujimoto, K. (1992). FTIR spectroscopic study of carbon dioxide adsorption/desorption on magnesia/calcium oxide catalysts. The Journal of Physical Chemistry, 96(22), 9035-9038. doi:10.1021/j100201a063 es_ES
dc.description.references Busca, G., & Lorenzelli, V. (1982). Infrared spectroscopic identification of species arising from reactive adsorption of carbon oxides on metal oxide surfaces. Materials Chemistry, 7(1), 89-126. doi:10.1016/0390-6035(82)90059-1 es_ES
dc.description.references Cornu, D., Guesmi, H., Krafft, J.-M., & Lauron-Pernot, H. (2012). Lewis Acido-Basic Interactions between CO2 and MgO Surface: DFT and DRIFT Approaches. The Journal of Physical Chemistry C, 116(11), 6645-6654. doi:10.1021/jp211171t es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem