- -

Mean ergodic composition operators in spaces of homogeneous polynomials

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Mean ergodic composition operators in spaces of homogeneous polynomials

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Jornet Casanova, David es_ES
dc.contributor.author Santacreu, Daniel es_ES
dc.contributor.author Sevilla Peris, Pablo es_ES
dc.date.accessioned 2021-04-27T03:32:33Z
dc.date.available 2021-04-27T03:32:33Z
dc.date.issued 2020-03-01 es_ES
dc.identifier.issn 0022-247X es_ES
dc.identifier.uri http://hdl.handle.net/10251/165599
dc.description.abstract [EN] We study some dynamical properties of composition operators defined on the space P(^m X) of m-homogeneous polynomials on a Banach space X when P(^m X) is endowed with two different topologies: the one of uniform convergence on compact sets and the one defined by the usual norm. The situation is quite different for both topologies: while in the case of uniform convergence on compact sets every power bounded composition operator is uniformly mean ergodic, for the topology of the norm there is no relation between the latter properties. Several examples are given. es_ES
dc.description.sponsorship We are indebted to Prof. Jose Bonet and Prof. Daniel Carando for helpful suggestions about this work. The research of the first author was partially supported by the project MTM2016-76647-P. The research of the second author was partially supported by the project GV Prometeo 2017/102. The research of the third author was partially supported by the project MTM2017-83262-C2-1-P es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Mathematical Analysis and Applications es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Space of homogeneous polynomials on a Banach space es_ES
dc.subject Composition operator es_ES
dc.subject Power bounded es_ES
dc.subject Mean ergodic es_ES
dc.subject Cesaro bounded es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Mean ergodic composition operators in spaces of homogeneous polynomials es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.jmaa.2019.123582 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-83262-C2-1-P/ES/ANALISIS COMPLEJO Y GEOMETRIA EN ESPACIOS DE BANACH/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2016-76647-P/ES/ANALISIS FUNCIONAL, TEORIA DE OPERADORES Y ANALISIS TIEMPO-FRECUENCIA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F102/ES/ANALISIS FUNCIONAL, TEORIA DE OPERADORES Y APLICACIONES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada es_ES
dc.description.bibliographicCitation Jornet Casanova, D.; Santacreu, D.; Sevilla Peris, P. (2020). Mean ergodic composition operators in spaces of homogeneous polynomials. Journal of Mathematical Analysis and Applications. 483(1):1-12. https://doi.org/10.1016/j.jmaa.2019.123582 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.jmaa.2019.123582 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 483 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\407460 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Beltrán-Meneu, M. J., Gómez-Collado, M. C., Jordá, E., & Jornet, D. (2016). Mean ergodic composition operators on Banach spaces of holomorphic functions. Journal of Functional Analysis, 270(12), 4369-4385. doi:10.1016/j.jfa.2016.03.003 es_ES
dc.description.references Beltrán-Meneu, M. J., Gómez-Collado, M. C., Jordá, E., & Jornet, D. (2016). Mean ergodicity of weighted composition operators on spaces of holomorphic functions. Journal of Mathematical Analysis and Applications, 444(2), 1640-1651. doi:10.1016/j.jmaa.2016.07.039 es_ES
dc.description.references T. Bermúdez, A. Bonilla, V. Müller, A. Peris, Cesàro bounded operators in Banach spaces, J. Anal. Math. (to appear). es_ES
dc.description.references Bonet, J., de Pagter, B., & Ricker, W. J. (2011). Mean ergodic operators and reflexive Fréchet lattices. Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 141(5), 897-920. doi:10.1017/s0308210510000314 es_ES
dc.description.references Bonet, J., & Domański, P. (2011). A note on mean ergodic composition operators on spaces of holomorphic functions. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 105(2), 389-396. doi:10.1007/s13398-011-0009-7 es_ES
dc.description.references Dineen, S. (1999). Complex Analysis on Infinite Dimensional Spaces. Springer Monographs in Mathematics. doi:10.1007/978-1-4471-0869-6 es_ES
dc.description.references Kalmes, T. (2019). Power bounded weighted composition operators on function spaces defined by local properties. Journal of Mathematical Analysis and Applications, 471(1-2), 211-238. doi:10.1016/j.jmaa.2018.10.073 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem