Fawcett, J. W., & Asher, R. . (1999). The glial scar and central nervous system repair. Brain Research Bulletin, 49(6), 377-391. doi:10.1016/s0361-9230(99)00072-6
Koeppen, A. H. (2004). Wallerian degeneration: history and clinical significance. Journal of the Neurological Sciences, 220(1-2), 115-117. doi:10.1016/j.jns.2004.03.008
Hall, S. (2005). The response to injury in the peripheral nervous system. The Journal of Bone and Joint Surgery. British volume, 87-B(10), 1309-1319. doi:10.1302/0301-620x.87b10.16700
[+]
Fawcett, J. W., & Asher, R. . (1999). The glial scar and central nervous system repair. Brain Research Bulletin, 49(6), 377-391. doi:10.1016/s0361-9230(99)00072-6
Koeppen, A. H. (2004). Wallerian degeneration: history and clinical significance. Journal of the Neurological Sciences, 220(1-2), 115-117. doi:10.1016/j.jns.2004.03.008
Hall, S. (2005). The response to injury in the peripheral nervous system. The Journal of Bone and Joint Surgery. British volume, 87-B(10), 1309-1319. doi:10.1302/0301-620x.87b10.16700
Dubový, P., Klusáková, I., & Hradilová Svíženská, I. (2014). Inflammatory Profiling of Schwann Cells in Contact with Growing Axons Distal to Nerve Injury. BioMed Research International, 2014, 1-7. doi:10.1155/2014/691041
Houschyar, K. S., Momeni, A., Pyles, M. N., Cha, J. Y., Maan, Z. N., Duscher, D., … Schoonhoven, J. van. (2016). The Role of Current Techniques and Concepts in Peripheral Nerve Repair. Plastic Surgery International, 2016, 1-8. doi:10.1155/2016/4175293
Tian, L., Prabhakaran, M. P., & Ramakrishna, S. (2015). Strategies for regeneration of components of nervous system: scaffolds, cells and biomolecules. Regenerative Biomaterials, 2(1), 31-45. doi:10.1093/rb/rbu017
Kehoe, S., Zhang, X. F., & Boyd, D. (2012). FDA approved guidance conduits and wraps for peripheral nerve injury: A review of materials and efficacy. Injury, 43(5), 553-572. doi:10.1016/j.injury.2010.12.030
Collins, M. N., & Birkinshaw, C. (2013). Hyaluronic acid based scaffolds for tissue engineering—A review. Carbohydrate Polymers, 92(2), 1262-1279. doi:10.1016/j.carbpol.2012.10.028
Cowman, M. K., & Matsuoka, S. (2005). Experimental approaches to hyaluronan structure. Carbohydrate Research, 340(5), 791-809. doi:10.1016/j.carres.2005.01.022
Liang, Y., Walczak, P., & Bulte, J. W. M. (2013). The survival of engrafted neural stem cells within hyaluronic acid hydrogels. Biomaterials, 34(22), 5521-5529. doi:10.1016/j.biomaterials.2013.03.095
Wang, T.-W., & Spector, M. (2009). Development of hyaluronic acid-based scaffolds for brain tissue engineering. Acta Biomaterialia, 5(7), 2371-2384. doi:10.1016/j.actbio.2009.03.033
Ma, J., Tian, W.-M., Hou, S.-P., Xu, Q.-Y., Spector, M., & Cui, F.-Z. (2007). An experimental test of stroke recovery by implanting a hyaluronic acid hydrogel carrying a Nogo receptor antibody in a rat model. Biomedical Materials, 2(4), 233-240. doi:10.1088/1748-6041/2/4/005
Tian, W. M., Hou, S. P., Ma, J., Zhang, C. L., Xu, Q. Y., Lee, I. S., … Cui, F. Z. (2005). Hyaluronic Acid–Poly-D-Lysine-Based Three-Dimensional Hydrogel for Traumatic Brain Injury. Tissue Engineering, 11(3-4), 513-525. doi:10.1089/ten.2005.11.513
Vilariño-Feltrer, G., Martínez-Ramos, C., Monleón-de-la-Fuente, A., Vallés-Lluch, A., Moratal, D., Barcia Albacar, J. A., & Monleón Pradas, M. (2016). Schwann-cell cylinders grown inside hyaluronic-acid tubular scaffolds with gradient porosity. Acta Biomaterialia, 30, 199-211. doi:10.1016/j.actbio.2015.10.040
Ortuño-Lizarán, I., Vilariño-Feltrer, G., Martínez-Ramos, C., Pradas, M. M., & Vallés-Lluch, A. (2016). Influence of synthesis parameters on hyaluronic acid hydrogels intended as nerve conduits. Biofabrication, 8(4), 045011. doi:10.1088/1758-5090/8/4/045011
Vepari, C., & Kaplan, D. L. (2007). Silk as a biomaterial. Progress in Polymer Science, 32(8-9), 991-1007. doi:10.1016/j.progpolymsci.2007.05.013
Murphy, A. R., & Kaplan, D. L. (2009). Biomedical applications of chemically-modified silk fibroin. Journal of Materials Chemistry, 19(36), 6443. doi:10.1039/b905802h
Sofia, S., McCarthy, M. B., Gronowicz, G., & Kaplan, D. L. (2000). Functionalized silk-based biomaterials for bone formation. Journal of Biomedical Materials Research, 54(1), 139-148. doi:10.1002/1097-4636(200101)54:1<139::aid-jbm17>3.0.co;2-7
Altman, G. H., Diaz, F., Jakuba, C., Calabro, T., Horan, R. L., Chen, J., … Kaplan, D. L. (2003). Silk-based biomaterials. Biomaterials, 24(3), 401-416. doi:10.1016/s0142-9612(02)00353-8
Horan, R. L., Antle, K., Collette, A. L., Wang, Y., Huang, J., Moreau, J. E., … Altman, G. H. (2005). In vitro degradation of silk fibroin. Biomaterials, 26(17), 3385-3393. doi:10.1016/j.biomaterials.2004.09.020
Chi, N.-H., Yang, M.-C., Chung, T.-W., Chou, N.-K., & Wang, S.-S. (2013). Cardiac repair using chitosan-hyaluronan/silk fibroin patches in a rat heart model with myocardial infarction. Carbohydrate Polymers, 92(1), 591-597. doi:10.1016/j.carbpol.2012.09.012
Chi, N.-H., Yang, M.-C., Chung, T.-W., Chen, J.-Y., Chou, N.-K., & Wang, S.-S. (2012). Cardiac repair achieved by bone marrow mesenchymal stem cells/silk fibroin/hyaluronic acid patches in a rat of myocardial infarction model. Biomaterials, 33(22), 5541-5551. doi:10.1016/j.biomaterials.2012.04.030
Yang, M.-C., Chi, N.-H., Chou, N.-K., Huang, Y.-Y., Chung, T.-W., Chang, Y.-L., … Wang, S.-S. (2010). The influence of rat mesenchymal stem cell CD44 surface markers on cell growth, fibronectin expression, and cardiomyogenic differentiation on silk fibroin – Hyaluronic acid cardiac patches. Biomaterials, 31(5), 854-862. doi:10.1016/j.biomaterials.2009.09.096
Zhou, J., Zhang, B., Liu, X., Shi, L., Zhu, J., Wei, D., … He, D. (2016). Facile method to prepare silk fibroin/hyaluronic acid films for vascular endothelial growth factor release. Carbohydrate Polymers, 143, 301-309. doi:10.1016/j.carbpol.2016.01.023
Yan, S., Li, M., Zhang, Q., & Wang, J. (2013). Blend films based on silk fibroin/hyaluronic acid. Fibers and Polymers, 14(2), 188-194. doi:10.1007/s12221-013-0188-2
Foss, C., Merzari, E., Migliaresi, C., & Motta, A. (2012). Silk Fibroin/Hyaluronic Acid 3D Matrices for Cartilage Tissue Engineering. Biomacromolecules, 14(1), 38-47. doi:10.1021/bm301174x
Jaipaew, J., Wangkulangkul, P., Meesane, J., Raungrut, P., & Puttawibul, P. (2016). Mimicked cartilage scaffolds of silk fibroin/hyaluronic acid with stem cells for osteoarthritis surgery: Morphological, mechanical, and physical clues. Materials Science and Engineering: C, 64, 173-182. doi:10.1016/j.msec.2016.03.063
Fan, Z., Zhang, F., Liu, T., & Zuo, B. Q. (2014). Effect of hyaluronan molecular weight on structure and biocompatibility of silk fibroin/hyaluronan scaffolds. International Journal of Biological Macromolecules, 65, 516-523. doi:10.1016/j.ijbiomac.2014.01.058
Chung, T.-W., & Chang, Y.-L. (2010). Silk fibroin/chitosan–hyaluronic acid versus silk fibroin scaffolds for tissue engineering: promoting cell proliferations in vitro. Journal of Materials Science: Materials in Medicine, 21(4), 1343-1351. doi:10.1007/s10856-009-3876-0
Garcia-Fuentes, M., Meinel, A. J., Hilbe, M., Meinel, L., & Merkle, H. P. (2009). Silk fibroin/hyaluronan scaffolds for human mesenchymal stem cell culture in tissue engineering. Biomaterials, 30(28), 5068-5076. doi:10.1016/j.biomaterials.2009.06.008
Raia, N. R., Partlow, B. P., McGill, M., Kimmerling, E. P., Ghezzi, C. E., & Kaplan, D. L. (2017). Enzymatically crosslinked silk-hyaluronic acid hydrogels. Biomaterials, 131, 58-67. doi:10.1016/j.biomaterials.2017.03.046
Yan, S., Zhang, Q., Wang, J., Liu, Y., Lu, S., Li, M., & Kaplan, D. L. (2013). Silk fibroin/chondroitin sulfate/hyaluronic acid ternary scaffolds for dermal tissue reconstruction. Acta Biomaterialia, 9(6), 6771-6782. doi:10.1016/j.actbio.2013.02.016
Garcia-Fuentes, M., Giger, E., Meinel, L., & Merkle, H. P. (2008). The effect of hyaluronic acid on silk fibroin conformation. Biomaterials, 29(6), 633-642. doi:10.1016/j.biomaterials.2007.10.024
Hu, X., Lu, Q., Sun, L., Cebe, P., Wang, X., Zhang, X., & Kaplan, D. L. (2010). Biomaterials from Ultrasonication-Induced Silk Fibroin−Hyaluronic Acid Hydrogels. Biomacromolecules, 11(11), 3178-3188. doi:10.1021/bm1010504
Ren, Y.-J., Zhou, Z.-Y., Liu, B.-F., Xu, Q.-Y., & Cui, F.-Z. (2009). Preparation and characterization of fibroin/hyaluronic acid composite scaffold. International Journal of Biological Macromolecules, 44(4), 372-378. doi:10.1016/j.ijbiomac.2009.02.004
Cazzaniga, A., Ballin, A., & Brandt, F. (2008). Hyaluronic acid gel fillers in the management of facial aging. Clinical Interventions in Aging, Volume 3, 153-159. doi:10.2147/cia.s2135
Sun, S.-F., Chou, Y.-J., Hsu, C.-W., & Chen, W.-L. (2009). Hyaluronic acid as a treatment for ankle osteoarthritis. Current Reviews in Musculoskeletal Medicine, 2(2), 78-82. doi:10.1007/s12178-009-9048-5
Yucel, T., Lovett, M. L., & Kaplan, D. L. (2014). Silk-based biomaterials for sustained drug delivery. Journal of Controlled Release, 190, 381-397. doi:10.1016/j.jconrel.2014.05.059
Bettinger, C. J., Cyr, K. M., Matsumoto, A., Langer, R., Borenstein, J. T., & Kaplan, D. L. (2007). Silk Fibroin Microfluidic Devices. Advanced Materials, 19(19), 2847-2850. doi:10.1002/adma.200602487
Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., … Cardona, A. (2012). Fiji: an open-source platform for biological-image analysis. Nature Methods, 9(7), 676-682. doi:10.1038/nmeth.2019
Taddei, P., Pavoni, E., & Tsukada, M. (2016). Stability toward alkaline hydrolysis ofB.morisilk fibroin grafted with methacrylamide. Journal of Raman Spectroscopy, 47(6), 731-739. doi:10.1002/jrs.4892
Perea, G. B., Solanas, C., Marí-Buyé, N., Madurga, R., Agulló-Rueda, F., Muinelo, A., … Pérez-Rigueiro, J. (2016). The apparent variability of silkworm ( Bombyx mori ) silk and its relationship with degumming. European Polymer Journal, 78, 129-140. doi:10.1016/j.eurpolymj.2016.03.012
Hu, M., Sabelman, E. E., Tsai, C., Tan, J., & Hentz, V. R. (2000). Improvement of Schwann Cell Attachment and Proliferation on Modified Hyaluronic Acid Strands by Polylysine. Tissue Engineering, 6(6), 585-593. doi:10.1089/10763270050199532
Monteiro, G. A., Fernandes, A. V., Sundararaghavan, H. G., & Shreiber, D. I. (2011). Positively and Negatively Modulating Cell Adhesion to Type I Collagen Via Peptide Grafting. Tissue Engineering Part A, 17(13-14), 1663-1673. doi:10.1089/ten.tea.2008.0346
Ude, A. U., Eshkoor, R. A., Zulkifili, R., Ariffin, A. K., Dzuraidah, A. W., & Azhari, C. H. (2014). Bombyx mori silk fibre and its composite: A review of contemporary developments. Materials & Design, 57, 298-305. doi:10.1016/j.matdes.2013.12.052
Atkins, E. D. T., Phelps, C. F., & Sheehan, J. K. (1972). The conformation of the mucopolysaccharides. Hyaluronates. Biochemical Journal, 128(5), 1255-1263. doi:10.1042/bj1281255
[-]