- -

Conduits based on the combination of hyaluronic acid and silk fibroin: Characterization, in vitro studies and in vivo biocompatibility

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Conduits based on the combination of hyaluronic acid and silk fibroin: Characterization, in vitro studies and in vivo biocompatibility

Show full item record

Gisbert-Roca, F.; Lozano Picazo, P.; Pérez-Rigueiro, J.; Guinea Tortuero, GV.; Monleón Pradas, M.; Martínez-Ramos, C. (2020). Conduits based on the combination of hyaluronic acid and silk fibroin: Characterization, in vitro studies and in vivo biocompatibility. International Journal of Biological Macromolecules. 148:378-390. https://doi.org/10.1016/j.ijbiomac.2020.01.149

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/165600

Files in this item

Item Metadata

Title: Conduits based on the combination of hyaluronic acid and silk fibroin: Characterization, in vitro studies and in vivo biocompatibility
Author: Gisbert-Roca, Fernando Lozano Picazo, Paloma Pérez-Rigueiro, José Guinea Tortuero, Gustavo Victor Monleón Pradas, Manuel Martínez-Ramos, Cristina
UPV Unit: Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Issued date:
Abstract:
[EN] We address the production of structures intended as conduits made from natural biopolymers, capable of promoting the regeneration of axonal tracts. We combine hyaluronic acid (HA) and silk fibroin (SF) with the aim ...[+]
Subjects: Biomaterials , Hyaluronic acid , Silk fibroin , Tissue engineering , Nerve guidance conduits
Copyrigths: Reserva de todos los derechos
Source:
International Journal of Biological Macromolecules. (issn: 0141-8130 )
DOI: 10.1016/j.ijbiomac.2020.01.149
Publisher:
Elsevier
Publisher version: https://doi.org/10.1016/j.ijbiomac.2020.01.149
Project ID:
info:eu-repo/grantAgreement/MINECO//MAT2016-79832-R/ES/DESARROLLO DE NUEVOS BIOMATERIALES DE FIBROINA DE SEDA PARA REGENERACION CEREBRAL/
...[+]
info:eu-repo/grantAgreement/MINECO//MAT2016-79832-R/ES/DESARROLLO DE NUEVOS BIOMATERIALES DE FIBROINA DE SEDA PARA REGENERACION CEREBRAL/
info:eu-repo/grantAgreement/MINECO//MAT2016-76847-R/ES/DEFORMABILIDAD DE LINFOCITOS T COMO BIOMARCADOR MECANICO DE INMUNOSENESCENCIA Y DESARROLLO DE TECNOLOGIA PARA SU APLICACION CLINICA/
info:eu-repo/grantAgreement/CAM//B2017%2FBMD-3760/
info:eu-repo/grantAgreement/MINECO//DPI2015-72863-EXP/ES/NEUROCABLES MODULARES: MULTIPLICANDO CONEXIONES NEURALES/
info:eu-repo/grantAgreement/MECD//FPU16%2F01833/ES/FPU16%2F01833/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-095872-B-C22/ES/NUEVO DISPOSITIVO BIOACTIVO PARA LA REGENERACION DE LESIONES DE LA MEDULA ESPINAL./
[-]
Thanks:
The authors acknowledge financing from the Spanish Ministry of Economy and Competitiveness through grants RTI2018-095872-B-C22/ERDF, DPI2015-72863-EXP, MAT2016-79832-R, MAT2016-76847-R and Community of Madrid through grant ...[+]
Type: Artículo

References

Fawcett, J. W., & Asher, R. . (1999). The glial scar and central nervous system repair. Brain Research Bulletin, 49(6), 377-391. doi:10.1016/s0361-9230(99)00072-6

Koeppen, A. H. (2004). Wallerian degeneration: history and clinical significance. Journal of the Neurological Sciences, 220(1-2), 115-117. doi:10.1016/j.jns.2004.03.008

Hall, S. (2005). The response to injury in the peripheral nervous system. The Journal of Bone and Joint Surgery. British volume, 87-B(10), 1309-1319. doi:10.1302/0301-620x.87b10.16700 [+]
Fawcett, J. W., & Asher, R. . (1999). The glial scar and central nervous system repair. Brain Research Bulletin, 49(6), 377-391. doi:10.1016/s0361-9230(99)00072-6

Koeppen, A. H. (2004). Wallerian degeneration: history and clinical significance. Journal of the Neurological Sciences, 220(1-2), 115-117. doi:10.1016/j.jns.2004.03.008

Hall, S. (2005). The response to injury in the peripheral nervous system. The Journal of Bone and Joint Surgery. British volume, 87-B(10), 1309-1319. doi:10.1302/0301-620x.87b10.16700

Dubový, P., Klusáková, I., & Hradilová Svíženská, I. (2014). Inflammatory Profiling of Schwann Cells in Contact with Growing Axons Distal to Nerve Injury. BioMed Research International, 2014, 1-7. doi:10.1155/2014/691041

Houschyar, K. S., Momeni, A., Pyles, M. N., Cha, J. Y., Maan, Z. N., Duscher, D., … Schoonhoven, J. van. (2016). The Role of Current Techniques and Concepts in Peripheral Nerve Repair. Plastic Surgery International, 2016, 1-8. doi:10.1155/2016/4175293

Tian, L., Prabhakaran, M. P., & Ramakrishna, S. (2015). Strategies for regeneration of components of nervous system: scaffolds, cells and biomolecules. Regenerative Biomaterials, 2(1), 31-45. doi:10.1093/rb/rbu017

Kehoe, S., Zhang, X. F., & Boyd, D. (2012). FDA approved guidance conduits and wraps for peripheral nerve injury: A review of materials and efficacy. Injury, 43(5), 553-572. doi:10.1016/j.injury.2010.12.030

Collins, M. N., & Birkinshaw, C. (2013). Hyaluronic acid based scaffolds for tissue engineering—A review. Carbohydrate Polymers, 92(2), 1262-1279. doi:10.1016/j.carbpol.2012.10.028

Cowman, M. K., & Matsuoka, S. (2005). Experimental approaches to hyaluronan structure. Carbohydrate Research, 340(5), 791-809. doi:10.1016/j.carres.2005.01.022

Liang, Y., Walczak, P., & Bulte, J. W. M. (2013). The survival of engrafted neural stem cells within hyaluronic acid hydrogels. Biomaterials, 34(22), 5521-5529. doi:10.1016/j.biomaterials.2013.03.095

Wang, T.-W., & Spector, M. (2009). Development of hyaluronic acid-based scaffolds for brain tissue engineering. Acta Biomaterialia, 5(7), 2371-2384. doi:10.1016/j.actbio.2009.03.033

Ma, J., Tian, W.-M., Hou, S.-P., Xu, Q.-Y., Spector, M., & Cui, F.-Z. (2007). An experimental test of stroke recovery by implanting a hyaluronic acid hydrogel carrying a Nogo receptor antibody in a rat model. Biomedical Materials, 2(4), 233-240. doi:10.1088/1748-6041/2/4/005

Tian, W. M., Hou, S. P., Ma, J., Zhang, C. L., Xu, Q. Y., Lee, I. S., … Cui, F. Z. (2005). Hyaluronic Acid–Poly-D-Lysine-Based Three-Dimensional Hydrogel for Traumatic Brain Injury. Tissue Engineering, 11(3-4), 513-525. doi:10.1089/ten.2005.11.513

Vilariño-Feltrer, G., Martínez-Ramos, C., Monleón-de-la-Fuente, A., Vallés-Lluch, A., Moratal, D., Barcia Albacar, J. A., & Monleón Pradas, M. (2016). Schwann-cell cylinders grown inside hyaluronic-acid tubular scaffolds with gradient porosity. Acta Biomaterialia, 30, 199-211. doi:10.1016/j.actbio.2015.10.040

Ortuño-Lizarán, I., Vilariño-Feltrer, G., Martínez-Ramos, C., Pradas, M. M., & Vallés-Lluch, A. (2016). Influence of synthesis parameters on hyaluronic acid hydrogels intended as nerve conduits. Biofabrication, 8(4), 045011. doi:10.1088/1758-5090/8/4/045011

Vepari, C., & Kaplan, D. L. (2007). Silk as a biomaterial. Progress in Polymer Science, 32(8-9), 991-1007. doi:10.1016/j.progpolymsci.2007.05.013

Murphy, A. R., & Kaplan, D. L. (2009). Biomedical applications of chemically-modified silk fibroin. Journal of Materials Chemistry, 19(36), 6443. doi:10.1039/b905802h

Sofia, S., McCarthy, M. B., Gronowicz, G., & Kaplan, D. L. (2000). Functionalized silk-based biomaterials for bone formation. Journal of Biomedical Materials Research, 54(1), 139-148. doi:10.1002/1097-4636(200101)54:1<139::aid-jbm17>3.0.co;2-7

Altman, G. H., Diaz, F., Jakuba, C., Calabro, T., Horan, R. L., Chen, J., … Kaplan, D. L. (2003). Silk-based biomaterials. Biomaterials, 24(3), 401-416. doi:10.1016/s0142-9612(02)00353-8

Horan, R. L., Antle, K., Collette, A. L., Wang, Y., Huang, J., Moreau, J. E., … Altman, G. H. (2005). In vitro degradation of silk fibroin. Biomaterials, 26(17), 3385-3393. doi:10.1016/j.biomaterials.2004.09.020

Chi, N.-H., Yang, M.-C., Chung, T.-W., Chou, N.-K., & Wang, S.-S. (2013). Cardiac repair using chitosan-hyaluronan/silk fibroin patches in a rat heart model with myocardial infarction. Carbohydrate Polymers, 92(1), 591-597. doi:10.1016/j.carbpol.2012.09.012

Chi, N.-H., Yang, M.-C., Chung, T.-W., Chen, J.-Y., Chou, N.-K., & Wang, S.-S. (2012). Cardiac repair achieved by bone marrow mesenchymal stem cells/silk fibroin/hyaluronic acid patches in a rat of myocardial infarction model. Biomaterials, 33(22), 5541-5551. doi:10.1016/j.biomaterials.2012.04.030

Yang, M.-C., Chi, N.-H., Chou, N.-K., Huang, Y.-Y., Chung, T.-W., Chang, Y.-L., … Wang, S.-S. (2010). The influence of rat mesenchymal stem cell CD44 surface markers on cell growth, fibronectin expression, and cardiomyogenic differentiation on silk fibroin – Hyaluronic acid cardiac patches. Biomaterials, 31(5), 854-862. doi:10.1016/j.biomaterials.2009.09.096

Zhou, J., Zhang, B., Liu, X., Shi, L., Zhu, J., Wei, D., … He, D. (2016). Facile method to prepare silk fibroin/hyaluronic acid films for vascular endothelial growth factor release. Carbohydrate Polymers, 143, 301-309. doi:10.1016/j.carbpol.2016.01.023

Yan, S., Li, M., Zhang, Q., & Wang, J. (2013). Blend films based on silk fibroin/hyaluronic acid. Fibers and Polymers, 14(2), 188-194. doi:10.1007/s12221-013-0188-2

Foss, C., Merzari, E., Migliaresi, C., & Motta, A. (2012). Silk Fibroin/Hyaluronic Acid 3D Matrices for Cartilage Tissue Engineering. Biomacromolecules, 14(1), 38-47. doi:10.1021/bm301174x

Jaipaew, J., Wangkulangkul, P., Meesane, J., Raungrut, P., & Puttawibul, P. (2016). Mimicked cartilage scaffolds of silk fibroin/hyaluronic acid with stem cells for osteoarthritis surgery: Morphological, mechanical, and physical clues. Materials Science and Engineering: C, 64, 173-182. doi:10.1016/j.msec.2016.03.063

Fan, Z., Zhang, F., Liu, T., & Zuo, B. Q. (2014). Effect of hyaluronan molecular weight on structure and biocompatibility of silk fibroin/hyaluronan scaffolds. International Journal of Biological Macromolecules, 65, 516-523. doi:10.1016/j.ijbiomac.2014.01.058

Chung, T.-W., & Chang, Y.-L. (2010). Silk fibroin/chitosan–hyaluronic acid versus silk fibroin scaffolds for tissue engineering: promoting cell proliferations in vitro. Journal of Materials Science: Materials in Medicine, 21(4), 1343-1351. doi:10.1007/s10856-009-3876-0

Garcia-Fuentes, M., Meinel, A. J., Hilbe, M., Meinel, L., & Merkle, H. P. (2009). Silk fibroin/hyaluronan scaffolds for human mesenchymal stem cell culture in tissue engineering. Biomaterials, 30(28), 5068-5076. doi:10.1016/j.biomaterials.2009.06.008

Raia, N. R., Partlow, B. P., McGill, M., Kimmerling, E. P., Ghezzi, C. E., & Kaplan, D. L. (2017). Enzymatically crosslinked silk-hyaluronic acid hydrogels. Biomaterials, 131, 58-67. doi:10.1016/j.biomaterials.2017.03.046

Yan, S., Zhang, Q., Wang, J., Liu, Y., Lu, S., Li, M., & Kaplan, D. L. (2013). Silk fibroin/chondroitin sulfate/hyaluronic acid ternary scaffolds for dermal tissue reconstruction. Acta Biomaterialia, 9(6), 6771-6782. doi:10.1016/j.actbio.2013.02.016

Garcia-Fuentes, M., Giger, E., Meinel, L., & Merkle, H. P. (2008). The effect of hyaluronic acid on silk fibroin conformation. Biomaterials, 29(6), 633-642. doi:10.1016/j.biomaterials.2007.10.024

Hu, X., Lu, Q., Sun, L., Cebe, P., Wang, X., Zhang, X., & Kaplan, D. L. (2010). Biomaterials from Ultrasonication-Induced Silk Fibroin−Hyaluronic Acid Hydrogels. Biomacromolecules, 11(11), 3178-3188. doi:10.1021/bm1010504

Ren, Y.-J., Zhou, Z.-Y., Liu, B.-F., Xu, Q.-Y., & Cui, F.-Z. (2009). Preparation and characterization of fibroin/hyaluronic acid composite scaffold. International Journal of Biological Macromolecules, 44(4), 372-378. doi:10.1016/j.ijbiomac.2009.02.004

Cazzaniga, A., Ballin, A., & Brandt, F. (2008). Hyaluronic acid gel fillers in the management of facial aging. Clinical Interventions in Aging, Volume 3, 153-159. doi:10.2147/cia.s2135

Sun, S.-F., Chou, Y.-J., Hsu, C.-W., & Chen, W.-L. (2009). Hyaluronic acid as a treatment for ankle osteoarthritis. Current Reviews in Musculoskeletal Medicine, 2(2), 78-82. doi:10.1007/s12178-009-9048-5

Yucel, T., Lovett, M. L., & Kaplan, D. L. (2014). Silk-based biomaterials for sustained drug delivery. Journal of Controlled Release, 190, 381-397. doi:10.1016/j.jconrel.2014.05.059

Bettinger, C. J., Cyr, K. M., Matsumoto, A., Langer, R., Borenstein, J. T., & Kaplan, D. L. (2007). Silk Fibroin Microfluidic Devices. Advanced Materials, 19(19), 2847-2850. doi:10.1002/adma.200602487

Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., … Cardona, A. (2012). Fiji: an open-source platform for biological-image analysis. Nature Methods, 9(7), 676-682. doi:10.1038/nmeth.2019

Taddei, P., Pavoni, E., & Tsukada, M. (2016). Stability toward alkaline hydrolysis ofB.morisilk fibroin grafted with methacrylamide. Journal of Raman Spectroscopy, 47(6), 731-739. doi:10.1002/jrs.4892

Perea, G. B., Solanas, C., Marí-Buyé, N., Madurga, R., Agulló-Rueda, F., Muinelo, A., … Pérez-Rigueiro, J. (2016). The apparent variability of silkworm ( Bombyx mori ) silk and its relationship with degumming. European Polymer Journal, 78, 129-140. doi:10.1016/j.eurpolymj.2016.03.012

Hu, M., Sabelman, E. E., Tsai, C., Tan, J., & Hentz, V. R. (2000). Improvement of Schwann Cell Attachment and Proliferation on Modified Hyaluronic Acid Strands by Polylysine. Tissue Engineering, 6(6), 585-593. doi:10.1089/10763270050199532

Monteiro, G. A., Fernandes, A. V., Sundararaghavan, H. G., & Shreiber, D. I. (2011). Positively and Negatively Modulating Cell Adhesion to Type I Collagen Via Peptide Grafting. Tissue Engineering Part A, 17(13-14), 1663-1673. doi:10.1089/ten.tea.2008.0346

Ude, A. U., Eshkoor, R. A., Zulkifili, R., Ariffin, A. K., Dzuraidah, A. W., & Azhari, C. H. (2014). Bombyx mori silk fibre and its composite: A review of contemporary developments. Materials & Design, 57, 298-305. doi:10.1016/j.matdes.2013.12.052

Atkins, E. D. T., Phelps, C. F., & Sheehan, J. K. (1972). The conformation of the mucopolysaccharides. Hyaluronates. Biochemical Journal, 128(5), 1255-1263. doi:10.1042/bj1281255

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record