- -

Conduits based on the combination of hyaluronic acid and silk fibroin: Characterization, in vitro studies and in vivo biocompatibility

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Conduits based on the combination of hyaluronic acid and silk fibroin: Characterization, in vitro studies and in vivo biocompatibility

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gisbert-Roca, Fernando es_ES
dc.contributor.author Lozano Picazo, Paloma es_ES
dc.contributor.author Pérez-Rigueiro, José es_ES
dc.contributor.author Guinea Tortuero, Gustavo Victor es_ES
dc.contributor.author Monleón Pradas, Manuel es_ES
dc.contributor.author Martínez-Ramos, Cristina es_ES
dc.date.accessioned 2021-04-27T03:32:35Z
dc.date.available 2021-04-27T03:32:35Z
dc.date.issued 2020-04-01 es_ES
dc.identifier.issn 0141-8130 es_ES
dc.identifier.uri http://hdl.handle.net/10251/165600
dc.description.abstract [EN] We address the production of structures intended as conduits made from natural biopolymers, capable of promoting the regeneration of axonal tracts. We combine hyaluronic acid (HA) and silk fibroin (SF) with the aim of improving mechanical and biological properties of HA. The results show that SF can be efficiently incorporated into the production process, obtaining conduits with tubular structure with a matrix of HA-SF blend. HA-SF has better mechanical properties than sole HA, which is a very soft hydrogel, facilitating manipulation. Culture of rat Schwann cells shows that cell adhesion and proliferation are higher than in pure HA, maybe due to the binding motifs contributed by the SF protein. This increased proliferation accelerates the formation of a tight cell layer, which covers the inner channel surface of the HA-SF tubes. Biocompatibility of the scaffolds was studied in immunocompetent mice. Both HA and HA-SF scaffolds were accepted by the host with no residual immune response at 8 weeks. New collagen extracellular matrix and new blood vessels were visible and they were present earlier when SF was present. The results show that incorporation of SF enhances the mechanical properties of the materials and results in promising biocompatible conduits for tubulization strategies. es_ES
dc.description.sponsorship The authors acknowledge financing from the Spanish Ministry of Economy and Competitiveness through grants RTI2018-095872-B-C22/ERDF, DPI2015-72863-EXP, MAT2016-79832-R, MAT2016-76847-R and Community of Madrid through grant Neurocentro-B2017/BMD-3760. FGR acknowledges scholarship FPU16/01833 of the Spanish Ministry of Education, Culture and Sports. We thank the Electron Microscopy Service at the UPV, where the FESEM images were obtained es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof International Journal of Biological Macromolecules es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Biomaterials es_ES
dc.subject Hyaluronic acid es_ES
dc.subject Silk fibroin es_ES
dc.subject Tissue engineering es_ES
dc.subject Nerve guidance conduits es_ES
dc.subject.classification TERMODINAMICA APLICADA (UPV) es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Conduits based on the combination of hyaluronic acid and silk fibroin: Characterization, in vitro studies and in vivo biocompatibility es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.ijbiomac.2020.01.149 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2016-79832-R/ES/DESARROLLO DE NUEVOS BIOMATERIALES DE FIBROINA DE SEDA PARA REGENERACION CEREBRAL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2016-76847-R/ES/DEFORMABILIDAD DE LINFOCITOS T COMO BIOMARCADOR MECANICO DE INMUNOSENESCENCIA Y DESARROLLO DE TECNOLOGIA PARA SU APLICACION CLINICA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CAM//B2017%2FBMD-3760/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//DPI2015-72863-EXP/ES/NEUROCABLES MODULARES: MULTIPLICANDO CONEXIONES NEURALES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//FPU16%2F01833/ES/FPU16%2F01833/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-095872-B-C22/ES/NUEVO DISPOSITIVO BIOACTIVO PARA LA REGENERACION DE LESIONES DE LA MEDULA ESPINAL./ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.description.bibliographicCitation Gisbert-Roca, F.; Lozano Picazo, P.; Pérez-Rigueiro, J.; Guinea Tortuero, GV.; Monleón Pradas, M.; Martínez-Ramos, C. (2020). Conduits based on the combination of hyaluronic acid and silk fibroin: Characterization, in vitro studies and in vivo biocompatibility. International Journal of Biological Macromolecules. 148:378-390. https://doi.org/10.1016/j.ijbiomac.2020.01.149 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.ijbiomac.2020.01.149 es_ES
dc.description.upvformatpinicio 378 es_ES
dc.description.upvformatpfin 390 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 148 es_ES
dc.identifier.pmid 31954793 es_ES
dc.relation.pasarela S\404524 es_ES
dc.contributor.funder Comunidad de Madrid es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.description.references Fawcett, J. W., & Asher, R. . (1999). The glial scar and central nervous system repair. Brain Research Bulletin, 49(6), 377-391. doi:10.1016/s0361-9230(99)00072-6 es_ES
dc.description.references Koeppen, A. H. (2004). Wallerian degeneration: history and clinical significance. Journal of the Neurological Sciences, 220(1-2), 115-117. doi:10.1016/j.jns.2004.03.008 es_ES
dc.description.references Hall, S. (2005). The response to injury in the peripheral nervous system. The Journal of Bone and Joint Surgery. British volume, 87-B(10), 1309-1319. doi:10.1302/0301-620x.87b10.16700 es_ES
dc.description.references Dubový, P., Klusáková, I., & Hradilová Svíženská, I. (2014). Inflammatory Profiling of Schwann Cells in Contact with Growing Axons Distal to Nerve Injury. BioMed Research International, 2014, 1-7. doi:10.1155/2014/691041 es_ES
dc.description.references Houschyar, K. S., Momeni, A., Pyles, M. N., Cha, J. Y., Maan, Z. N., Duscher, D., … Schoonhoven, J. van. (2016). The Role of Current Techniques and Concepts in Peripheral Nerve Repair. Plastic Surgery International, 2016, 1-8. doi:10.1155/2016/4175293 es_ES
dc.description.references Tian, L., Prabhakaran, M. P., & Ramakrishna, S. (2015). Strategies for regeneration of components of nervous system: scaffolds, cells and biomolecules. Regenerative Biomaterials, 2(1), 31-45. doi:10.1093/rb/rbu017 es_ES
dc.description.references Kehoe, S., Zhang, X. F., & Boyd, D. (2012). FDA approved guidance conduits and wraps for peripheral nerve injury: A review of materials and efficacy. Injury, 43(5), 553-572. doi:10.1016/j.injury.2010.12.030 es_ES
dc.description.references Collins, M. N., & Birkinshaw, C. (2013). Hyaluronic acid based scaffolds for tissue engineering—A review. Carbohydrate Polymers, 92(2), 1262-1279. doi:10.1016/j.carbpol.2012.10.028 es_ES
dc.description.references Cowman, M. K., & Matsuoka, S. (2005). Experimental approaches to hyaluronan structure. Carbohydrate Research, 340(5), 791-809. doi:10.1016/j.carres.2005.01.022 es_ES
dc.description.references Liang, Y., Walczak, P., & Bulte, J. W. M. (2013). The survival of engrafted neural stem cells within hyaluronic acid hydrogels. Biomaterials, 34(22), 5521-5529. doi:10.1016/j.biomaterials.2013.03.095 es_ES
dc.description.references Wang, T.-W., & Spector, M. (2009). Development of hyaluronic acid-based scaffolds for brain tissue engineering. Acta Biomaterialia, 5(7), 2371-2384. doi:10.1016/j.actbio.2009.03.033 es_ES
dc.description.references Ma, J., Tian, W.-M., Hou, S.-P., Xu, Q.-Y., Spector, M., & Cui, F.-Z. (2007). An experimental test of stroke recovery by implanting a hyaluronic acid hydrogel carrying a Nogo receptor antibody in a rat model. Biomedical Materials, 2(4), 233-240. doi:10.1088/1748-6041/2/4/005 es_ES
dc.description.references Tian, W. M., Hou, S. P., Ma, J., Zhang, C. L., Xu, Q. Y., Lee, I. S., … Cui, F. Z. (2005). Hyaluronic Acid–Poly-D-Lysine-Based Three-Dimensional Hydrogel for Traumatic Brain Injury. Tissue Engineering, 11(3-4), 513-525. doi:10.1089/ten.2005.11.513 es_ES
dc.description.references Vilariño-Feltrer, G., Martínez-Ramos, C., Monleón-de-la-Fuente, A., Vallés-Lluch, A., Moratal, D., Barcia Albacar, J. A., & Monleón Pradas, M. (2016). Schwann-cell cylinders grown inside hyaluronic-acid tubular scaffolds with gradient porosity. Acta Biomaterialia, 30, 199-211. doi:10.1016/j.actbio.2015.10.040 es_ES
dc.description.references Ortuño-Lizarán, I., Vilariño-Feltrer, G., Martínez-Ramos, C., Pradas, M. M., & Vallés-Lluch, A. (2016). Influence of synthesis parameters on hyaluronic acid hydrogels intended as nerve conduits. Biofabrication, 8(4), 045011. doi:10.1088/1758-5090/8/4/045011 es_ES
dc.description.references Vepari, C., & Kaplan, D. L. (2007). Silk as a biomaterial. Progress in Polymer Science, 32(8-9), 991-1007. doi:10.1016/j.progpolymsci.2007.05.013 es_ES
dc.description.references Murphy, A. R., & Kaplan, D. L. (2009). Biomedical applications of chemically-modified silk fibroin. Journal of Materials Chemistry, 19(36), 6443. doi:10.1039/b905802h es_ES
dc.description.references Sofia, S., McCarthy, M. B., Gronowicz, G., & Kaplan, D. L. (2000). Functionalized silk-based biomaterials for bone formation. Journal of Biomedical Materials Research, 54(1), 139-148. doi:10.1002/1097-4636(200101)54:1<139::aid-jbm17>3.0.co;2-7 es_ES
dc.description.references Altman, G. H., Diaz, F., Jakuba, C., Calabro, T., Horan, R. L., Chen, J., … Kaplan, D. L. (2003). Silk-based biomaterials. Biomaterials, 24(3), 401-416. doi:10.1016/s0142-9612(02)00353-8 es_ES
dc.description.references Horan, R. L., Antle, K., Collette, A. L., Wang, Y., Huang, J., Moreau, J. E., … Altman, G. H. (2005). In vitro degradation of silk fibroin. Biomaterials, 26(17), 3385-3393. doi:10.1016/j.biomaterials.2004.09.020 es_ES
dc.description.references Chi, N.-H., Yang, M.-C., Chung, T.-W., Chou, N.-K., & Wang, S.-S. (2013). Cardiac repair using chitosan-hyaluronan/silk fibroin patches in a rat heart model with myocardial infarction. Carbohydrate Polymers, 92(1), 591-597. doi:10.1016/j.carbpol.2012.09.012 es_ES
dc.description.references Chi, N.-H., Yang, M.-C., Chung, T.-W., Chen, J.-Y., Chou, N.-K., & Wang, S.-S. (2012). Cardiac repair achieved by bone marrow mesenchymal stem cells/silk fibroin/hyaluronic acid patches in a rat of myocardial infarction model. Biomaterials, 33(22), 5541-5551. doi:10.1016/j.biomaterials.2012.04.030 es_ES
dc.description.references Yang, M.-C., Chi, N.-H., Chou, N.-K., Huang, Y.-Y., Chung, T.-W., Chang, Y.-L., … Wang, S.-S. (2010). The influence of rat mesenchymal stem cell CD44 surface markers on cell growth, fibronectin expression, and cardiomyogenic differentiation on silk fibroin – Hyaluronic acid cardiac patches. Biomaterials, 31(5), 854-862. doi:10.1016/j.biomaterials.2009.09.096 es_ES
dc.description.references Zhou, J., Zhang, B., Liu, X., Shi, L., Zhu, J., Wei, D., … He, D. (2016). Facile method to prepare silk fibroin/hyaluronic acid films for vascular endothelial growth factor release. Carbohydrate Polymers, 143, 301-309. doi:10.1016/j.carbpol.2016.01.023 es_ES
dc.description.references Yan, S., Li, M., Zhang, Q., & Wang, J. (2013). Blend films based on silk fibroin/hyaluronic acid. Fibers and Polymers, 14(2), 188-194. doi:10.1007/s12221-013-0188-2 es_ES
dc.description.references Foss, C., Merzari, E., Migliaresi, C., & Motta, A. (2012). Silk Fibroin/Hyaluronic Acid 3D Matrices for Cartilage Tissue Engineering. Biomacromolecules, 14(1), 38-47. doi:10.1021/bm301174x es_ES
dc.description.references Jaipaew, J., Wangkulangkul, P., Meesane, J., Raungrut, P., & Puttawibul, P. (2016). Mimicked cartilage scaffolds of silk fibroin/hyaluronic acid with stem cells for osteoarthritis surgery: Morphological, mechanical, and physical clues. Materials Science and Engineering: C, 64, 173-182. doi:10.1016/j.msec.2016.03.063 es_ES
dc.description.references Fan, Z., Zhang, F., Liu, T., & Zuo, B. Q. (2014). Effect of hyaluronan molecular weight on structure and biocompatibility of silk fibroin/hyaluronan scaffolds. International Journal of Biological Macromolecules, 65, 516-523. doi:10.1016/j.ijbiomac.2014.01.058 es_ES
dc.description.references Chung, T.-W., & Chang, Y.-L. (2010). Silk fibroin/chitosan–hyaluronic acid versus silk fibroin scaffolds for tissue engineering: promoting cell proliferations in vitro. Journal of Materials Science: Materials in Medicine, 21(4), 1343-1351. doi:10.1007/s10856-009-3876-0 es_ES
dc.description.references Garcia-Fuentes, M., Meinel, A. J., Hilbe, M., Meinel, L., & Merkle, H. P. (2009). Silk fibroin/hyaluronan scaffolds for human mesenchymal stem cell culture in tissue engineering. Biomaterials, 30(28), 5068-5076. doi:10.1016/j.biomaterials.2009.06.008 es_ES
dc.description.references Raia, N. R., Partlow, B. P., McGill, M., Kimmerling, E. P., Ghezzi, C. E., & Kaplan, D. L. (2017). Enzymatically crosslinked silk-hyaluronic acid hydrogels. Biomaterials, 131, 58-67. doi:10.1016/j.biomaterials.2017.03.046 es_ES
dc.description.references Yan, S., Zhang, Q., Wang, J., Liu, Y., Lu, S., Li, M., & Kaplan, D. L. (2013). Silk fibroin/chondroitin sulfate/hyaluronic acid ternary scaffolds for dermal tissue reconstruction. Acta Biomaterialia, 9(6), 6771-6782. doi:10.1016/j.actbio.2013.02.016 es_ES
dc.description.references Garcia-Fuentes, M., Giger, E., Meinel, L., & Merkle, H. P. (2008). The effect of hyaluronic acid on silk fibroin conformation. Biomaterials, 29(6), 633-642. doi:10.1016/j.biomaterials.2007.10.024 es_ES
dc.description.references Hu, X., Lu, Q., Sun, L., Cebe, P., Wang, X., Zhang, X., & Kaplan, D. L. (2010). Biomaterials from Ultrasonication-Induced Silk Fibroin−Hyaluronic Acid Hydrogels. Biomacromolecules, 11(11), 3178-3188. doi:10.1021/bm1010504 es_ES
dc.description.references Ren, Y.-J., Zhou, Z.-Y., Liu, B.-F., Xu, Q.-Y., & Cui, F.-Z. (2009). Preparation and characterization of fibroin/hyaluronic acid composite scaffold. International Journal of Biological Macromolecules, 44(4), 372-378. doi:10.1016/j.ijbiomac.2009.02.004 es_ES
dc.description.references Cazzaniga, A., Ballin, A., & Brandt, F. (2008). Hyaluronic acid gel fillers in the management of facial aging. Clinical Interventions in Aging, Volume 3, 153-159. doi:10.2147/cia.s2135 es_ES
dc.description.references Sun, S.-F., Chou, Y.-J., Hsu, C.-W., & Chen, W.-L. (2009). Hyaluronic acid as a treatment for ankle osteoarthritis. Current Reviews in Musculoskeletal Medicine, 2(2), 78-82. doi:10.1007/s12178-009-9048-5 es_ES
dc.description.references Yucel, T., Lovett, M. L., & Kaplan, D. L. (2014). Silk-based biomaterials for sustained drug delivery. Journal of Controlled Release, 190, 381-397. doi:10.1016/j.jconrel.2014.05.059 es_ES
dc.description.references Bettinger, C. J., Cyr, K. M., Matsumoto, A., Langer, R., Borenstein, J. T., & Kaplan, D. L. (2007). Silk Fibroin Microfluidic Devices. Advanced Materials, 19(19), 2847-2850. doi:10.1002/adma.200602487 es_ES
dc.description.references Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., … Cardona, A. (2012). Fiji: an open-source platform for biological-image analysis. Nature Methods, 9(7), 676-682. doi:10.1038/nmeth.2019 es_ES
dc.description.references Taddei, P., Pavoni, E., & Tsukada, M. (2016). Stability toward alkaline hydrolysis ofB.morisilk fibroin grafted with methacrylamide. Journal of Raman Spectroscopy, 47(6), 731-739. doi:10.1002/jrs.4892 es_ES
dc.description.references Perea, G. B., Solanas, C., Marí-Buyé, N., Madurga, R., Agulló-Rueda, F., Muinelo, A., … Pérez-Rigueiro, J. (2016). The apparent variability of silkworm ( Bombyx mori ) silk and its relationship with degumming. European Polymer Journal, 78, 129-140. doi:10.1016/j.eurpolymj.2016.03.012 es_ES
dc.description.references Hu, M., Sabelman, E. E., Tsai, C., Tan, J., & Hentz, V. R. (2000). Improvement of Schwann Cell Attachment and Proliferation on Modified Hyaluronic Acid Strands by Polylysine. Tissue Engineering, 6(6), 585-593. doi:10.1089/10763270050199532 es_ES
dc.description.references Monteiro, G. A., Fernandes, A. V., Sundararaghavan, H. G., & Shreiber, D. I. (2011). Positively and Negatively Modulating Cell Adhesion to Type I Collagen Via Peptide Grafting. Tissue Engineering Part A, 17(13-14), 1663-1673. doi:10.1089/ten.tea.2008.0346 es_ES
dc.description.references Ude, A. U., Eshkoor, R. A., Zulkifili, R., Ariffin, A. K., Dzuraidah, A. W., & Azhari, C. H. (2014). Bombyx mori silk fibre and its composite: A review of contemporary developments. Materials & Design, 57, 298-305. doi:10.1016/j.matdes.2013.12.052 es_ES
dc.description.references Atkins, E. D. T., Phelps, C. F., & Sheehan, J. K. (1972). The conformation of the mucopolysaccharides. Hyaluronates. Biochemical Journal, 128(5), 1255-1263. doi:10.1042/bj1281255 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem