- -

Development of advanced materials guided by numerical simulations to improve performance and cost-efficiency of borehole heat exchangers (BHEs)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Development of advanced materials guided by numerical simulations to improve performance and cost-efficiency of borehole heat exchangers (BHEs)

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Badenes Badenes, Borja es_ES
dc.contributor.author Sanner, Burkhard es_ES
dc.contributor.author Mateo Pla, Miguel Ángel es_ES
dc.contributor.author Cuevas, José Manuel es_ES
dc.contributor.author Bartoli, Flavia es_ES
dc.contributor.author Ciardelli, Francesco es_ES
dc.contributor.author González, Rosa M. es_ES
dc.contributor.author Ghafar, Ali Nejad es_ES
dc.contributor.author Fontana, Patrick es_ES
dc.contributor.author Lemus Zúñiga, Lenin Guillermo es_ES
dc.contributor.author Urchueguía Schölzel, Javier Fermín es_ES
dc.date.accessioned 2021-04-27T03:32:39Z
dc.date.available 2021-04-27T03:32:39Z
dc.date.issued 2020-06-15 es_ES
dc.identifier.issn 0360-5442 es_ES
dc.identifier.uri http://hdl.handle.net/10251/165601
dc.description.abstract [EN] One promising way to improve the efficiency of borehole heat exchangers (BHEs) in shallow geothermal applications is to enhance the thermal properties of the materials involved in its construction. Early attempts, such as using metal tubes in the 1980s or the utilization of thin-foil hoses, did not succeed in being adopted by the market for diverse reasons (cost, corrosion, fragility, etc...). In parallel, the optimization of pipe size, the use of double-U-tubes, thermally enhanced grout, etc. were able to bring the measure for the BHE efficiency, the borehole thermal resistance, from 0.20 to 0.15 K/(Wm) down to 0.08-0.06 K/(Wm) in the best solutions today. A further improvement cannot be expected without development of new, dedicated materials, combining the versatility of plastic like PE with an increased thermal conductivity that matches the respective properties of the rock and soil. This goal was included in the Strategic Research and Innovation Agenda of the European Technology Platform on Renewable Heating and Cooling in 2013. Within an EU supported project, both BHE pipes and grouting materials have been produced prototypically in small amounts, suitable for the first tests in the intended environment. The present work explains the research pathways envisaged and the resulting sensitivity analysis to highlight the influence of some of the most critical parameters that affect the overall performance of a GSHP system. The results have allowed guiding the real development of more efficient new advanced materials for different scenarios representative of different European regions. Finally the developed materials and their properties are discussed, including a comparative assessment about their compliance with reference material properties as currently seen in the BHE market. es_ES
dc.description.sponsorship This article is part of a project that has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 727583. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Energy es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Shallow geothermal energy es_ES
dc.subject Borehole heat exchangers (BHE) es_ES
dc.subject Thermal conductivity es_ES
dc.subject Plastic pipes es_ES
dc.subject Grouting material es_ES
dc.subject Phase-change material (PCM) es_ES
dc.subject Increased efficiency es_ES
dc.subject Cost reduction es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.subject.classification MECANICA DE FLUIDOS es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Development of advanced materials guided by numerical simulations to improve performance and cost-efficiency of borehole heat exchangers (BHEs) es_ES
dc.type Artículo es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.1016/j.energy.2020.117628 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/727583/EU/Advanced materials and processes to improve performance and cost-efficiency of Shallow Geothermal systems and Underground Thermal Storage/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Badenes Badenes, B.; Sanner, B.; Mateo Pla, MÁ.; Cuevas, JM.; Bartoli, F.; Ciardelli, F.; González, RM.... (2020). Development of advanced materials guided by numerical simulations to improve performance and cost-efficiency of borehole heat exchangers (BHEs). Energy. 201:1-17. https://doi.org/10.1016/j.energy.2020.117628 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename Second International Scientific Conference Alternative Energy Sources, Materials and Technologies (AESMT'19) es_ES
dc.relation.conferencedate Junio 03-04,2019 es_ES
dc.relation.conferenceplace Sofia, Bulgaria es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.energy.2020.117628 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 17 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 201 es_ES
dc.relation.pasarela S\408086 es_ES
dc.contributor.funder European Commission es_ES
dc.description.references Alva, G., Lin, Y., & Fang, G. (2018). An overview of thermal energy storage systems. Energy, 144, 341-378. doi:10.1016/j.energy.2017.12.037 es_ES
dc.description.references Li, H., Xu, W., Yu, Z., Wu, J., & Sun, Z. (2017). Application analyze of a ground source heat pump system in a nearly zero energy building in China. Energy, 125, 140-151. doi:10.1016/j.energy.2017.02.108 es_ES
dc.description.references Ozgener, O. (2010). Use of solar assisted geothermal heat pump and small wind turbine systems for heating agricultural and residential buildings. Energy, 35(1), 262-268. doi:10.1016/j.energy.2009.09.018 es_ES
dc.description.references Jensen, J. K., Ommen, T., Markussen, W. B., & Elmegaard, B. (2017). Design of serially connected district heating heat pumps utilising a geothermal heat source. Energy, 137, 865-877. doi:10.1016/j.energy.2017.03.164 es_ES
dc.description.references A. C. Crandall, House heating with earth heat pump, Electr World, 126/19, 94-5 (1946). es_ES
dc.description.references Moegle, E. (2009). Earth- and buildingsided characteristics of a geothermal energy field with five coaxial tubes erected in 1974 in Schoenaich (County of Boeblingen) – a contribution to history for near-surface geothermic drilling in Europe. Jahresberichte und Mitteilungen des Oberrheinischen Geologischen Vereins, 91, 31-35. doi:10.1127/jmogv/91/2009/31 es_ES
dc.description.references Lundh, M., & Dalenbäck, J.-O. (2008). Swedish solar heated residential area with seasonal storage in rock: Initial evaluation. Renewable Energy, 33(4), 703-711. doi:10.1016/j.renene.2007.03.024 es_ES
dc.description.references Ground coupled heat pumps of high technology - groundhit, Funded by FP6-SUSTDEV - sustainable development, global change and ecosystems: thematic priority 6 under the focusing and integrating community research programme 2002-2006. Project ID: 503063. es_ES
dc.description.references Go, G.-H., Lee, S.-R., Yoon, S., Park, H., & Park, Sk. (2014). Estimation and experimental validation of borehole thermal resistance. KSCE Journal of Civil Engineering, 18(4), 992-1000. doi:10.1007/s12205-014-0454-x es_ES
dc.description.references Zhang, S., Huang, Z., Li, G., Wu, X., Peng, C., & Zhang, W. (2018). Numerical analysis of transient conjugate heat transfer and thermal stress distribution in geothermal drilling with high-pressure liquid nitrogen jet. Applied Thermal Engineering, 129, 1348-1357. doi:10.1016/j.applthermaleng.2017.10.042 es_ES
dc.description.references Fossa, M., & Minchio, F. (2013). The effect of borefield geometry and ground thermal load profile on hourly thermal response of geothermal heat pump systems. Energy, 51, 323-329. doi:10.1016/j.energy.2012.12.043 es_ES
dc.description.references SPIN-PET, Via R. Piaggio, 32, 56025, Pontedera ,Italy, http://www.spinpet.it//, [Online; accessed 12-December-2019]. es_ES
dc.description.references SILMA, Via Lombardia 97/00/101, Poggio a Caiano, Italy, http://www.spinpet.it//, [Online; accessed 12-December-2019]. es_ES
dc.description.references AIMPLAS, Plastics Technology Centre, Paterna, Spain, https://www.aimplas.net/aimplas/, [Online; accessed 12-December-2019]. es_ES
dc.description.references CAUDAL - Extruline Systems, Puerto Lumbreras (Murcia), Spain, https://www.caudal.es/index.php/en/, [Online; accessed 12-December-2019]. es_ES
dc.description.references ASTM C 666: [Standard Test Method for Resistance of Concrete to Rapid Freezing and Thawing]. es_ES
dc.description.references ASTM C 531-85: Standard test method for linear shrinkage and coefficient of thermal expansion of chemical-resistant mortars, grouts, monolithic surfacings, and polymer concretes. es_ES
dc.description.references EN 197-1: Cement - Part 1: composition, specifications and conformity criteria for common cements. es_ES
dc.description.references EN 445: Grout for prestressing tendons - test methods. es_ES
dc.description.references SS 137244: Concrete testing – hardened concrete – scaling at freezing. es_ES
dc.description.references RISE Research Institutes of Sweden, Division Samhällsbyggnad – Infrastructure and Concrete Construction, Stockholm, Sweden, https://www.ri.se/sv, [Online; accessed 12-December-2019]. es_ES
dc.description.references UBeG GbR, Wetzlar, Germany, http://www.ubeg.de. [Online; accessed 12-December-2019]. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem