- -

Photoelectrocatalyzed degradation of organophosphorus pesticide fenamiphos using WO3 nanorods as photoanode

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Photoelectrocatalyzed degradation of organophosphorus pesticide fenamiphos using WO3 nanorods as photoanode

Mostrar el registro completo del ítem

Roselló-Márquez, G.; Fernández Domene, RM.; Sánchez Tovar, R.; Garcia-Anton, J. (2020). Photoelectrocatalyzed degradation of organophosphorus pesticide fenamiphos using WO3 nanorods as photoanode. Chemosphere. 246:1-9. https://doi.org/10.1016/j.chemosphere.2019.125677

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/165605

Ficheros en el ítem

Metadatos del ítem

Título: Photoelectrocatalyzed degradation of organophosphorus pesticide fenamiphos using WO3 nanorods as photoanode
Autor: Roselló-Márquez, Gemma Fernández Domene, Ramón Manuel Sánchez Tovar, Rita Garcia-Anton, Jose
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear
Fecha difusión:
Resumen:
[EN] In this study, WO3 nanostructures were synthesized by the electrochemical anodization technique to use them on the degradation of persistent organic compounds such as the pesticide fenamiphos. The acids electrolyte ...[+]
Palabras clave: Fenamiphos , Photoelectrocatalysis , WO3 nanostructure , Pesticide , Degradation
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Chemosphere. (issn: 0045-6535 )
DOI: 10.1016/j.chemosphere.2019.125677
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.chemosphere.2019.125677
Código del Proyecto:
info:eu-repo/grantAgreement/MEC//UPOV08-3E-001/ES/Utilización de Desktop Microscopy System (DMS) en el campo de los materiales/
...[+]
info:eu-repo/grantAgreement/MEC//UPOV08-3E-001/ES/Utilización de Desktop Microscopy System (DMS) en el campo de los materiales/
info:eu-repo/grantAgreement/UPV//PAID-10-17/
info:eu-repo/grantAgreement/AEI//CTQ2017-90659-REDT/ES/APLICACIONES MEDIOAMBIENTALES Y ENERGETICAS DE LA TECNOLOGIA ELECTROQUIMICA/
info:eu-repo/grantAgreement/MINECO//CTQ2016-79203-R/ES/MODIFICACION DE FOTOCATALIZADORES DE OXIDOS METALICOS NANOESTRUCTURADOS PARA LA ELIMINACION DE FARMACOS Y PRODUCCION ENERGETICA/
info:eu-repo/grantAgreement/GVA//IDIFEDER%2F2018%2FA%2F044/ES/MODIFICACIÓN DE FOTOCATALIZADORES DE ÓXIDOS METÁLICOS NANOESTRUCTURADOS PARA LA ELIMINACIÓN DE FÁRMACOS Y PRODUCCIÓN ENERGÉTICA/
info:eu-repo/grantAgreement/GVA//ACIF%2F2018%2F159/
[-]
Agradecimientos:
Authors thank for the financial support to the Ministerio de Economia y Competitividad (Project Code: CTQ2016-79203-R; for its help in the Laser Raman Microscope acquisition (UPOV08-3E-012) and for the co-finance by the ...[+]
Tipo: Artículo

References

Bamwenda, G. R., Sayama, K., & Arakawa, H. (1999). The effect of selected reaction parameters on the photoproduction of oxygen and hydrogen from a WO3–Fe2+–Fe3+ aqueous suspension. Journal of Photochemistry and Photobiology A: Chemistry, 122(3), 175-183. doi:10.1016/s1010-6030(99)00026-x

Berlett, B. S., Levine, R. L., & Stadtman, E. R. (2000). Use of Isosbestic Point Wavelength Shifts to Estimate the Fraction of a Precursor That Is Converted to a Given Product. Analytical Biochemistry, 287(2), 329-333. doi:10.1006/abio.2000.4876

Bertoluzzi, L., & Bisquert, J. (2012). Equivalent Circuit of Electrons and Holes in Thin Semiconductor Films for Photoelectrochemical Water Splitting Applications. The Journal of Physical Chemistry Letters, 3(17), 2517-2522. doi:10.1021/jz3010909 [+]
Bamwenda, G. R., Sayama, K., & Arakawa, H. (1999). The effect of selected reaction parameters on the photoproduction of oxygen and hydrogen from a WO3–Fe2+–Fe3+ aqueous suspension. Journal of Photochemistry and Photobiology A: Chemistry, 122(3), 175-183. doi:10.1016/s1010-6030(99)00026-x

Berlett, B. S., Levine, R. L., & Stadtman, E. R. (2000). Use of Isosbestic Point Wavelength Shifts to Estimate the Fraction of a Precursor That Is Converted to a Given Product. Analytical Biochemistry, 287(2), 329-333. doi:10.1006/abio.2000.4876

Bertoluzzi, L., & Bisquert, J. (2012). Equivalent Circuit of Electrons and Holes in Thin Semiconductor Films for Photoelectrochemical Water Splitting Applications. The Journal of Physical Chemistry Letters, 3(17), 2517-2522. doi:10.1021/jz3010909

Cáceres, T., Megharaj, M., & Naidu, R. (2008). Degradation of fenamiphos in soils collected from different geographical regions: The influence of soil properties and climatic conditions. Journal of Environmental Science and Health, Part B, 43(4), 314-322. doi:10.1080/03601230801941659

Chakrapani, V., Thangala, J., & Sunkara, M. K. (2009). WO3 and W2N nanowire arrays for photoelectrochemical hydrogen production. International Journal of Hydrogen Energy, 34(22), 9050-9059. doi:10.1016/j.ijhydene.2009.09.031

Chen, S., Sun, D., & Chung, J.-S. (2007). Treatment of pesticide wastewater by moving-bed biofilm reactor combined with Fenton-coagulation pretreatment. Journal of Hazardous Materials, 144(1-2), 577-584. doi:10.1016/j.jhazmat.2006.10.075

Daghrir, R., Drogui, P., & Robert, D. (2012). Photoelectrocatalytic technologies for environmental applications. Journal of Photochemistry and Photobiology A: Chemistry, 238, 41-52. doi:10.1016/j.jphotochem.2012.04.009

Enesca, A., Duta, A., & Schoonman, J. (2007). Study of photoactivity of tungsten trioxide (WO3) for water splitting. Thin Solid Films, 515(16), 6371-6374. doi:10.1016/j.tsf.2006.11.135

Fernández-Domene, R. M., Sánchez-Tovar, R., Lucas-Granados, B., Roselló-Márquez, G., & García-Antón, J. (2017). A simple method to fabricate high-performance nanostructured WO 3 photocatalysts with adjusted morphology in the presence of complexing agents. Materials & Design, 116, 160-170. doi:10.1016/j.matdes.2016.12.016

Fernández-Domene, R. M., Roselló-Márquez, G., Sánchez-Tovar, R., Lucas-Granados, B., & García-Antón, J. (2019). Photoelectrochemical removal of chlorfenvinphos by using WO3 nanorods: Influence of annealing temperature and operation pH. Separation and Purification Technology, 212, 458-464. doi:10.1016/j.seppur.2018.11.049

Fraga, L. E., Franco, J. H., Orlandi, M. O., & Zanoni, M. V. B. (2013). Photoelectrocatalytic oxidation of hair dye basic red 51 at W/WO3/TiO2 bicomposite photoanode activated by ultraviolet and visible radiation. Journal of Environmental Chemical Engineering, 1(3), 194-199. doi:10.1016/j.jece.2013.04.018

Georgieva, J., Sotiropoulos, S., Armyanov, S., Philippidis, N., & Poulios, I. (2010). Photoelectrocatalytic activity of bi-layer TiO2/WO3 coatings for the degradation of 4-chlorophenol: effect of morphology and catalyst loading. Journal of Applied Electrochemistry, 41(2), 173-181. doi:10.1007/s10800-010-0221-8

Gernon, M. D., Wu, M., Buszta, T., & Janney, P. (1999). Environmental benefits of methanesulfonic acid. Green Chemistry, 1(3), 127-140. doi:10.1039/a900157c

Ghaemi, N., Madaeni, S. S., Alizadeh, A., Rajabi, H., & Daraei, P. (2011). Preparation, characterization and performance of polyethersulfone/organically modified montmorillonite nanocomposite membranes in removal of pesticides. Journal of Membrane Science, 382(1-2), 135-147. doi:10.1016/j.memsci.2011.08.004

Golash, N., & Gogate, P. R. (2012). Degradation of dichlorvos containing wastewaters using sonochemical reactors. Ultrasonics Sonochemistry, 19(5), 1051-1060. doi:10.1016/j.ultsonch.2012.02.011

Guo, Y., Quan, X., Lu, N., Zhao, H., & Chen, S. (2007). High Photocatalytic Capability of Self-Assembled Nanoporous WO3 with Preferential Orientation of (002) Planes. Environmental Science & Technology, 41(12), 4422-4427. doi:10.1021/es062546c

He, T., & Yao, J. (2007). Photochromic materials based on tungsten oxide. Journal of Materials Chemistry, 17(43), 4547. doi:10.1039/b709380b

Kim, Y. O., Yu, S.-H., Ahn, K.-S., Lee, S. K., & Kang, S. H. (2015). Enhancing the photoresponse of electrodeposited WO3 film: Structure and thickness effect. Journal of Electroanalytical Chemistry, 752, 25-32. doi:10.1016/j.jelechem.2015.05.031

Levinas, R., Tsyntsaru, N., Lelis, M., & Cesiulis, H. (2017). Synthesis, electrochemical impedance spectroscopy study and photoelectrochemical behaviour of as-deposited and annealed WO 3 films. Electrochimica Acta, 225, 29-38. doi:10.1016/j.electacta.2016.12.112

Li, W., Li, J., Wang, X., Ma, J., & Chen, Q. (2010). Photoelectrochemical and physical properties of WO3 films obtained by the polymeric precursor method. International Journal of Hydrogen Energy, 35(24), 13137-13145. doi:10.1016/j.ijhydene.2010.09.011

Liu, Y., Ohko, Y., Zhang, R., Yang, Y., & Zhang, Z. (2010). Degradation of malachite green on Pd/WO3 photocatalysts under simulated solar light. Journal of Hazardous Materials, 184(1-3), 386-391. doi:10.1016/j.jhazmat.2010.08.047

Liu, Y., Xie, C., Li, H., Chen, H., Liao, Y., & Zeng, D. (2011). Low bias photoelectrocatalytic (PEC) performance for organic vapour degradation using TiO2/WO3 nanocomposite. Applied Catalysis B: Environmental, 102(1-2), 157-162. doi:10.1016/j.apcatb.2010.11.037

Maldonado, M. I., Passarinho, P. C., Oller, I., Gernjak, W., Fernández, P., Blanco, J., & Malato, S. (2007). Photocatalytic degradation of EU priority substances: A comparison between TiO2 and Fenton plus photo-Fenton in a solar pilot plant. Journal of Photochemistry and Photobiology A: Chemistry, 185(2-3), 354-363. doi:10.1016/j.jphotochem.2006.06.036

Mehta, R., Brahmbhatt, H., Saha, N. K., & Bhattacharya, A. (2015). Removal of substituted phenyl urea pesticides by reverse osmosis membranes: Laboratory scale study for field water application. Desalination, 358, 69-75. doi:10.1016/j.desal.2014.12.019

Miller, E. L., Marsen, B., Cole, B., & Lum, M. (2006). Low-Temperature Reactively Sputtered Tungsten Oxide Films for Solar-Powered Water Splitting Applications. Electrochemical and Solid-State Letters, 9(7), G248. doi:10.1149/1.2201994

Moussavi, G., Hosseini, H., & Alahabadi, A. (2013). The investigation of diazinon pesticide removal from contaminated water by adsorption onto NH4Cl-induced activated carbon. Chemical Engineering Journal, 214, 172-179. doi:10.1016/j.cej.2012.10.034

Navarro, S., Fenoll, J., Vela, N., Ruiz, E., & Navarro, G. (2009). Photocatalytic degradation of eight pesticides in leaching water by use of ZnO under natural sunlight. Journal of Hazardous Materials, 172(2-3), 1303-1310. doi:10.1016/j.jhazmat.2009.07.137

Ou, L.-T., Thomas, J. E., & Dickson, D. W. (1994). Degradation of Fenamiphos in Soil with a History of Continuous Fenamiphos Applications. Soil Science Society of America Journal, 58(4), 1139-1147. doi:10.2136/sssaj1994.03615995005800040019x

Paul, B., Martens, W. N., & Frost, R. L. (2012). Immobilised anatase on clay mineral particles as a photocatalyst for herbicides degradation. Applied Clay Science, 57, 49-54. doi:10.1016/j.clay.2011.12.009

Plakas, K. V., & Karabelas, A. J. (2012). Removal of pesticides from water by NF and RO membranes — A review. Desalination, 287, 255-265. doi:10.1016/j.desal.2011.08.003

Rass-Hansen, J., Falsig, H., Jørgensen, B., & Christensen, C. H. (2007). Bioethanol: fuel or feedstock? Journal of Chemical Technology & Biotechnology, 82(4), 329-333. doi:10.1002/jctb.1665

Santato, C., Odziemkowski, M., Ulmann, M., & Augustynski, J. (2001). Crystallographically Oriented Mesoporous WO3 Films:  Synthesis, Characterization, and Applications. Journal of the American Chemical Society, 123(43), 10639-10649. doi:10.1021/ja011315x

Sarkar, B., Venkateswralu, N., Rao, R. N., Bhattacharjee, C., & Kale, V. (2007). Treatment of pesticide contaminated surface water for production of potable water by a coagulation-adsorption-nanofiltration approach. Desalination, 212(1-3), 129-140. doi:10.1016/j.desal.2006.09.021

Singh, B. K., & Walker, A. (2006). Microbial degradation of organophosphorus compounds. FEMS Microbiology Reviews, 30(3), 428-471. doi:10.1111/j.1574-6976.2006.00018.x

Song, H., Li, Y., Lou, Z., Xiao, M., Hu, L., Ye, Z., & Zhu, L. (2015). Synthesis of Fe-doped WO3 nanostructures with high visible-light-driven photocatalytic activities. Applied Catalysis B: Environmental, 166-167, 112-120. doi:10.1016/j.apcatb.2014.11.020

Tajeddine, L., Nemmaoui, M., Mountacer, H., Dahchour, A., & Sarakha, M. (2009). Photodegradation of fenamiphos on the surface of clays and soils. Environmental Chemistry Letters, 8(2), 123-128. doi:10.1007/s10311-008-0198-2

Tsuchiya, H., Macak, J. M., Sieber, I., Taveira, L., Ghicov, A., Sirotna, K., & Schmuki, P. (2005). Self-organized porous WO3 formed in NaF electrolytes. Electrochemistry Communications, 7(3), 295-298. doi:10.1016/j.elecom.2005.01.003

Vukčević, M. M., Kalijadis, A. M., Vasiljević, T. M., Babić, B. M., Laušević, Z. V., & Laušević, M. D. (2015). Production of activated carbon derived from waste hemp ( Cannabis sativa ) fibers and its performance in pesticide adsorption. Microporous and Mesoporous Materials, 214, 156-165. doi:10.1016/j.micromeso.2015.05.012

Wang, C.-K., Lin, C.-K., Wu, C.-L., Wang, S.-C., & Huang, J.-L. (2013). Synthesis and characterization of electrochromic plate-like tungsten oxide films by acidic treatment of electrochemical anodized tungsten. Electrochimica Acta, 112, 24-31. doi:10.1016/j.electacta.2013.07.204

Watcharenwong, A., Chanmanee, W., de Tacconi, N. R., Chenthamarakshan, C. R., Kajitvichyanukul, P., & Rajeshwar, K. (2008). Anodic growth of nanoporous WO3 films: Morphology, photoelectrochemical response and photocatalytic activity for methylene blue and hexavalent chrome conversion. Journal of Electroanalytical Chemistry, 612(1), 112-120. doi:10.1016/j.jelechem.2007.09.030

Xiao, F.-X., Miao, J., Tao, H. B., Hung, S.-F., Wang, H.-Y., Yang, H. B., … Liu, B. (2015). One-Dimensional Hybrid Nanostructures for Heterogeneous Photocatalysis and Photoelectrocatalysis. Small, 11(18), 2115-2131. doi:10.1002/smll.201402420

Yang, C., Zeng, Q., Yang, Y., Xiao, R., Wang, Y., & Shi, H. (2014). The synthesis of humic acids graft copolymer and its adsorption for organic pesticides. Journal of Industrial and Engineering Chemistry, 20(3), 1133-1139. doi:10.1016/j.jiec.2013.07.001

Zheng, H., Tachibana, Y., & Kalantar-zadeh, K. (2010). Dye-Sensitized Solar Cells Based on WO3. Langmuir, 26(24), 19148-19152. doi:10.1021/la103692y

Zhou, J., Ding, Y., Deng, S. Z., Gong, L., Xu, N. S., & Wang, Z. L. (2005). Three-Dimensional Tungsten Oxide Nanowire Networks. Advanced Materials, 17(17), 2107-2110. doi:10.1002/adma.200500885

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem