- -

Photoelectrocatalyzed degradation of organophosphorus pesticide fenamiphos using WO3 nanorods as photoanode

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Photoelectrocatalyzed degradation of organophosphorus pesticide fenamiphos using WO3 nanorods as photoanode

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Roselló-Márquez, Gemma es_ES
dc.contributor.author Fernández Domene, Ramón Manuel es_ES
dc.contributor.author Sánchez Tovar, Rita es_ES
dc.contributor.author Garcia-Anton, Jose es_ES
dc.date.accessioned 2021-04-27T03:32:53Z
dc.date.available 2021-04-27T03:32:53Z
dc.date.issued 2020-05 es_ES
dc.identifier.issn 0045-6535 es_ES
dc.identifier.uri http://hdl.handle.net/10251/165605
dc.description.abstract [EN] In this study, WO3 nanostructures were synthesized by the electrochemical anodization technique to use them on the degradation of persistent organic compounds such as the pesticide fenamiphos. The acids electrolyte used during the anodization were two different: 1.5 M H2SO4-0.05 M H2O2 and 1.5 M CH4O3S-0.05 M H2O2. Once the samples have been manufactured, they have been subjected to different tests to analyze the properties of the nanostructures. With Field Emission Scanning Electron Microscopy (FESEM) the samples have been examined morphologically, their composition and crystallinity has been studied through Raman Spectroscopy and their photoelectrochemical behaviour by Photoelectrochemical Impedance Spectroscopy (PEIS). Finally, degradation tests have been carried out using the technique known as photoelectrocatalysis (PEC). The conditions that were applied in this technique were a potential of 1 V-Ag/AgCI and simulated solar illumination. The degradation process was monitored by UV-Visible and High-Performance liquid Chromatography (HPLC) to control the course of the experiment. The nanostructures obtained with 1.5 M CH4O3S-0.05 M H2O2 electrolyte showed a better photoelectrochemical behaviour than nanostructures synthesized with 1.5 M H2SO4-0.05 M H2O2. The fenamiphos degradation was achieved at 2 h of experiment and the intermediate formation was noticed at 1 h of PEC experiment. es_ES
dc.description.sponsorship Authors thank for the financial support to the Ministerio de Economia y Competitividad (Project Code: CTQ2016-79203-R; for its help in the Laser Raman Microscope acquisition (UPOV08-3E-012) and for the co-finance by the European Social Fund). Authors would also like to thank the Ministerio de Ciencia, Innovacion y Universidades (Project Code: CTQ2017-90659-REDT) and the Generalitat Valenciana for its help in the Atomic Force Microscope acquisition (IDIFEDER/2018/044). Ramon M. Fernandez Domene also thanks the UPV for the concession of a post-doctoral grant (PAID-10-17) and Gemma Rosello Marquez also thanks the Generalitat Valenciana for the concession of a pre-doctoral grant (ACIF/2018/159). es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Chemosphere es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Fenamiphos es_ES
dc.subject Photoelectrocatalysis es_ES
dc.subject WO3 nanostructure es_ES
dc.subject Pesticide es_ES
dc.subject Degradation es_ES
dc.subject.classification INGENIERIA QUIMICA es_ES
dc.title Photoelectrocatalyzed degradation of organophosphorus pesticide fenamiphos using WO3 nanorods as photoanode es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.chemosphere.2019.125677 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEC//UPOV08-3E-001/ES/Utilización de Desktop Microscopy System (DMS) en el campo de los materiales/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-10-17/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//CTQ2017-90659-REDT/ES/APLICACIONES MEDIOAMBIENTALES Y ENERGETICAS DE LA TECNOLOGIA ELECTROQUIMICA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2016-79203-R/ES/MODIFICACION DE FOTOCATALIZADORES DE OXIDOS METALICOS NANOESTRUCTURADOS PARA LA ELIMINACION DE FARMACOS Y PRODUCCION ENERGETICA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//IDIFEDER%2F2018%2FA%2F044/ES/MODIFICACIÓN DE FOTOCATALIZADORES DE ÓXIDOS METÁLICOS NANOESTRUCTURADOS PARA LA ELIMINACIÓN DE FÁRMACOS Y PRODUCCIÓN ENERGÉTICA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ACIF%2F2018%2F159/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear es_ES
dc.description.bibliographicCitation Roselló-Márquez, G.; Fernández Domene, RM.; Sánchez Tovar, R.; Garcia-Anton, J. (2020). Photoelectrocatalyzed degradation of organophosphorus pesticide fenamiphos using WO3 nanorods as photoanode. Chemosphere. 246:1-9. https://doi.org/10.1016/j.chemosphere.2019.125677 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.chemosphere.2019.125677 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 9 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 246 es_ES
dc.identifier.pmid 31884230 es_ES
dc.relation.pasarela S\405781 es_ES
dc.contributor.funder European Social Fund es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Ministerio de Educación y Ciencia es_ES
dc.description.references Bamwenda, G. R., Sayama, K., & Arakawa, H. (1999). The effect of selected reaction parameters on the photoproduction of oxygen and hydrogen from a WO3–Fe2+–Fe3+ aqueous suspension. Journal of Photochemistry and Photobiology A: Chemistry, 122(3), 175-183. doi:10.1016/s1010-6030(99)00026-x es_ES
dc.description.references Berlett, B. S., Levine, R. L., & Stadtman, E. R. (2000). Use of Isosbestic Point Wavelength Shifts to Estimate the Fraction of a Precursor That Is Converted to a Given Product. Analytical Biochemistry, 287(2), 329-333. doi:10.1006/abio.2000.4876 es_ES
dc.description.references Bertoluzzi, L., & Bisquert, J. (2012). Equivalent Circuit of Electrons and Holes in Thin Semiconductor Films for Photoelectrochemical Water Splitting Applications. The Journal of Physical Chemistry Letters, 3(17), 2517-2522. doi:10.1021/jz3010909 es_ES
dc.description.references Cáceres, T., Megharaj, M., & Naidu, R. (2008). Degradation of fenamiphos in soils collected from different geographical regions: The influence of soil properties and climatic conditions. Journal of Environmental Science and Health, Part B, 43(4), 314-322. doi:10.1080/03601230801941659 es_ES
dc.description.references Chakrapani, V., Thangala, J., & Sunkara, M. K. (2009). WO3 and W2N nanowire arrays for photoelectrochemical hydrogen production. International Journal of Hydrogen Energy, 34(22), 9050-9059. doi:10.1016/j.ijhydene.2009.09.031 es_ES
dc.description.references Chen, S., Sun, D., & Chung, J.-S. (2007). Treatment of pesticide wastewater by moving-bed biofilm reactor combined with Fenton-coagulation pretreatment. Journal of Hazardous Materials, 144(1-2), 577-584. doi:10.1016/j.jhazmat.2006.10.075 es_ES
dc.description.references Daghrir, R., Drogui, P., & Robert, D. (2012). Photoelectrocatalytic technologies for environmental applications. Journal of Photochemistry and Photobiology A: Chemistry, 238, 41-52. doi:10.1016/j.jphotochem.2012.04.009 es_ES
dc.description.references Enesca, A., Duta, A., & Schoonman, J. (2007). Study of photoactivity of tungsten trioxide (WO3) for water splitting. Thin Solid Films, 515(16), 6371-6374. doi:10.1016/j.tsf.2006.11.135 es_ES
dc.description.references Fernández-Domene, R. M., Sánchez-Tovar, R., Lucas-Granados, B., Roselló-Márquez, G., & García-Antón, J. (2017). A simple method to fabricate high-performance nanostructured WO 3 photocatalysts with adjusted morphology in the presence of complexing agents. Materials & Design, 116, 160-170. doi:10.1016/j.matdes.2016.12.016 es_ES
dc.description.references Fernández-Domene, R. M., Roselló-Márquez, G., Sánchez-Tovar, R., Lucas-Granados, B., & García-Antón, J. (2019). Photoelectrochemical removal of chlorfenvinphos by using WO3 nanorods: Influence of annealing temperature and operation pH. Separation and Purification Technology, 212, 458-464. doi:10.1016/j.seppur.2018.11.049 es_ES
dc.description.references Fraga, L. E., Franco, J. H., Orlandi, M. O., & Zanoni, M. V. B. (2013). Photoelectrocatalytic oxidation of hair dye basic red 51 at W/WO3/TiO2 bicomposite photoanode activated by ultraviolet and visible radiation. Journal of Environmental Chemical Engineering, 1(3), 194-199. doi:10.1016/j.jece.2013.04.018 es_ES
dc.description.references Georgieva, J., Sotiropoulos, S., Armyanov, S., Philippidis, N., & Poulios, I. (2010). Photoelectrocatalytic activity of bi-layer TiO2/WO3 coatings for the degradation of 4-chlorophenol: effect of morphology and catalyst loading. Journal of Applied Electrochemistry, 41(2), 173-181. doi:10.1007/s10800-010-0221-8 es_ES
dc.description.references Gernon, M. D., Wu, M., Buszta, T., & Janney, P. (1999). Environmental benefits of methanesulfonic acid. Green Chemistry, 1(3), 127-140. doi:10.1039/a900157c es_ES
dc.description.references Ghaemi, N., Madaeni, S. S., Alizadeh, A., Rajabi, H., & Daraei, P. (2011). Preparation, characterization and performance of polyethersulfone/organically modified montmorillonite nanocomposite membranes in removal of pesticides. Journal of Membrane Science, 382(1-2), 135-147. doi:10.1016/j.memsci.2011.08.004 es_ES
dc.description.references Golash, N., & Gogate, P. R. (2012). Degradation of dichlorvos containing wastewaters using sonochemical reactors. Ultrasonics Sonochemistry, 19(5), 1051-1060. doi:10.1016/j.ultsonch.2012.02.011 es_ES
dc.description.references Guo, Y., Quan, X., Lu, N., Zhao, H., & Chen, S. (2007). High Photocatalytic Capability of Self-Assembled Nanoporous WO3 with Preferential Orientation of (002) Planes. Environmental Science & Technology, 41(12), 4422-4427. doi:10.1021/es062546c es_ES
dc.description.references He, T., & Yao, J. (2007). Photochromic materials based on tungsten oxide. Journal of Materials Chemistry, 17(43), 4547. doi:10.1039/b709380b es_ES
dc.description.references Kim, Y. O., Yu, S.-H., Ahn, K.-S., Lee, S. K., & Kang, S. H. (2015). Enhancing the photoresponse of electrodeposited WO3 film: Structure and thickness effect. Journal of Electroanalytical Chemistry, 752, 25-32. doi:10.1016/j.jelechem.2015.05.031 es_ES
dc.description.references Levinas, R., Tsyntsaru, N., Lelis, M., & Cesiulis, H. (2017). Synthesis, electrochemical impedance spectroscopy study and photoelectrochemical behaviour of as-deposited and annealed WO 3 films. Electrochimica Acta, 225, 29-38. doi:10.1016/j.electacta.2016.12.112 es_ES
dc.description.references Li, W., Li, J., Wang, X., Ma, J., & Chen, Q. (2010). Photoelectrochemical and physical properties of WO3 films obtained by the polymeric precursor method. International Journal of Hydrogen Energy, 35(24), 13137-13145. doi:10.1016/j.ijhydene.2010.09.011 es_ES
dc.description.references Liu, Y., Ohko, Y., Zhang, R., Yang, Y., & Zhang, Z. (2010). Degradation of malachite green on Pd/WO3 photocatalysts under simulated solar light. Journal of Hazardous Materials, 184(1-3), 386-391. doi:10.1016/j.jhazmat.2010.08.047 es_ES
dc.description.references Liu, Y., Xie, C., Li, H., Chen, H., Liao, Y., & Zeng, D. (2011). Low bias photoelectrocatalytic (PEC) performance for organic vapour degradation using TiO2/WO3 nanocomposite. Applied Catalysis B: Environmental, 102(1-2), 157-162. doi:10.1016/j.apcatb.2010.11.037 es_ES
dc.description.references Maldonado, M. I., Passarinho, P. C., Oller, I., Gernjak, W., Fernández, P., Blanco, J., & Malato, S. (2007). Photocatalytic degradation of EU priority substances: A comparison between TiO2 and Fenton plus photo-Fenton in a solar pilot plant. Journal of Photochemistry and Photobiology A: Chemistry, 185(2-3), 354-363. doi:10.1016/j.jphotochem.2006.06.036 es_ES
dc.description.references Mehta, R., Brahmbhatt, H., Saha, N. K., & Bhattacharya, A. (2015). Removal of substituted phenyl urea pesticides by reverse osmosis membranes: Laboratory scale study for field water application. Desalination, 358, 69-75. doi:10.1016/j.desal.2014.12.019 es_ES
dc.description.references Miller, E. L., Marsen, B., Cole, B., & Lum, M. (2006). Low-Temperature Reactively Sputtered Tungsten Oxide Films for Solar-Powered Water Splitting Applications. Electrochemical and Solid-State Letters, 9(7), G248. doi:10.1149/1.2201994 es_ES
dc.description.references Moussavi, G., Hosseini, H., & Alahabadi, A. (2013). The investigation of diazinon pesticide removal from contaminated water by adsorption onto NH4Cl-induced activated carbon. Chemical Engineering Journal, 214, 172-179. doi:10.1016/j.cej.2012.10.034 es_ES
dc.description.references Navarro, S., Fenoll, J., Vela, N., Ruiz, E., & Navarro, G. (2009). Photocatalytic degradation of eight pesticides in leaching water by use of ZnO under natural sunlight. Journal of Hazardous Materials, 172(2-3), 1303-1310. doi:10.1016/j.jhazmat.2009.07.137 es_ES
dc.description.references Ou, L.-T., Thomas, J. E., & Dickson, D. W. (1994). Degradation of Fenamiphos in Soil with a History of Continuous Fenamiphos Applications. Soil Science Society of America Journal, 58(4), 1139-1147. doi:10.2136/sssaj1994.03615995005800040019x es_ES
dc.description.references Paul, B., Martens, W. N., & Frost, R. L. (2012). Immobilised anatase on clay mineral particles as a photocatalyst for herbicides degradation. Applied Clay Science, 57, 49-54. doi:10.1016/j.clay.2011.12.009 es_ES
dc.description.references Plakas, K. V., & Karabelas, A. J. (2012). Removal of pesticides from water by NF and RO membranes — A review. Desalination, 287, 255-265. doi:10.1016/j.desal.2011.08.003 es_ES
dc.description.references Rass-Hansen, J., Falsig, H., Jørgensen, B., & Christensen, C. H. (2007). Bioethanol: fuel or feedstock? Journal of Chemical Technology & Biotechnology, 82(4), 329-333. doi:10.1002/jctb.1665 es_ES
dc.description.references Santato, C., Odziemkowski, M., Ulmann, M., & Augustynski, J. (2001). Crystallographically Oriented Mesoporous WO3 Films:  Synthesis, Characterization, and Applications. Journal of the American Chemical Society, 123(43), 10639-10649. doi:10.1021/ja011315x es_ES
dc.description.references Sarkar, B., Venkateswralu, N., Rao, R. N., Bhattacharjee, C., & Kale, V. (2007). Treatment of pesticide contaminated surface water for production of potable water by a coagulation-adsorption-nanofiltration approach. Desalination, 212(1-3), 129-140. doi:10.1016/j.desal.2006.09.021 es_ES
dc.description.references Singh, B. K., & Walker, A. (2006). Microbial degradation of organophosphorus compounds. FEMS Microbiology Reviews, 30(3), 428-471. doi:10.1111/j.1574-6976.2006.00018.x es_ES
dc.description.references Song, H., Li, Y., Lou, Z., Xiao, M., Hu, L., Ye, Z., & Zhu, L. (2015). Synthesis of Fe-doped WO3 nanostructures with high visible-light-driven photocatalytic activities. Applied Catalysis B: Environmental, 166-167, 112-120. doi:10.1016/j.apcatb.2014.11.020 es_ES
dc.description.references Tajeddine, L., Nemmaoui, M., Mountacer, H., Dahchour, A., & Sarakha, M. (2009). Photodegradation of fenamiphos on the surface of clays and soils. Environmental Chemistry Letters, 8(2), 123-128. doi:10.1007/s10311-008-0198-2 es_ES
dc.description.references Tsuchiya, H., Macak, J. M., Sieber, I., Taveira, L., Ghicov, A., Sirotna, K., & Schmuki, P. (2005). Self-organized porous WO3 formed in NaF electrolytes. Electrochemistry Communications, 7(3), 295-298. doi:10.1016/j.elecom.2005.01.003 es_ES
dc.description.references Vukčević, M. M., Kalijadis, A. M., Vasiljević, T. M., Babić, B. M., Laušević, Z. V., & Laušević, M. D. (2015). Production of activated carbon derived from waste hemp ( Cannabis sativa ) fibers and its performance in pesticide adsorption. Microporous and Mesoporous Materials, 214, 156-165. doi:10.1016/j.micromeso.2015.05.012 es_ES
dc.description.references Wang, C.-K., Lin, C.-K., Wu, C.-L., Wang, S.-C., & Huang, J.-L. (2013). Synthesis and characterization of electrochromic plate-like tungsten oxide films by acidic treatment of electrochemical anodized tungsten. Electrochimica Acta, 112, 24-31. doi:10.1016/j.electacta.2013.07.204 es_ES
dc.description.references Watcharenwong, A., Chanmanee, W., de Tacconi, N. R., Chenthamarakshan, C. R., Kajitvichyanukul, P., & Rajeshwar, K. (2008). Anodic growth of nanoporous WO3 films: Morphology, photoelectrochemical response and photocatalytic activity for methylene blue and hexavalent chrome conversion. Journal of Electroanalytical Chemistry, 612(1), 112-120. doi:10.1016/j.jelechem.2007.09.030 es_ES
dc.description.references Xiao, F.-X., Miao, J., Tao, H. B., Hung, S.-F., Wang, H.-Y., Yang, H. B., … Liu, B. (2015). One-Dimensional Hybrid Nanostructures for Heterogeneous Photocatalysis and Photoelectrocatalysis. Small, 11(18), 2115-2131. doi:10.1002/smll.201402420 es_ES
dc.description.references Yang, C., Zeng, Q., Yang, Y., Xiao, R., Wang, Y., & Shi, H. (2014). The synthesis of humic acids graft copolymer and its adsorption for organic pesticides. Journal of Industrial and Engineering Chemistry, 20(3), 1133-1139. doi:10.1016/j.jiec.2013.07.001 es_ES
dc.description.references Zheng, H., Tachibana, Y., & Kalantar-zadeh, K. (2010). Dye-Sensitized Solar Cells Based on WO3. Langmuir, 26(24), 19148-19152. doi:10.1021/la103692y es_ES
dc.description.references Zhou, J., Ding, Y., Deng, S. Z., Gong, L., Xu, N. S., & Wang, Z. L. (2005). Three-Dimensional Tungsten Oxide Nanowire Networks. Advanced Materials, 17(17), 2107-2110. doi:10.1002/adma.200500885 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem