Biguzzi, C., Schlich, P., & Lange, C. (2014). The impact of sugar and fat reduction on perception and liking of biscuits. Food Quality and Preference, 35, 41-47. doi:10.1016/j.foodqual.2014.02.001
Borreani, J., Espert, M., Salvador, A., Sanz, T., Quiles, A., & Hernando, I. (2017). Oil-in-water emulsions stabilised by cellulose ethers: stability, structure and in vitro digestion. Food & Function, 8(4), 1547-1557. doi:10.1039/c7fo00159b
Bouaziz, M., Fki, I., Jemai, H., Ayadi, M., & Sayadi, S. (2008). Effect of storage on refined and husk olive oils composition: Stabilization by addition of natural antioxidants from Chemlali olive leaves. Food Chemistry, 108(1), 253-262. doi:10.1016/j.foodchem.2007.10.074
[+]
Biguzzi, C., Schlich, P., & Lange, C. (2014). The impact of sugar and fat reduction on perception and liking of biscuits. Food Quality and Preference, 35, 41-47. doi:10.1016/j.foodqual.2014.02.001
Borreani, J., Espert, M., Salvador, A., Sanz, T., Quiles, A., & Hernando, I. (2017). Oil-in-water emulsions stabilised by cellulose ethers: stability, structure and in vitro digestion. Food & Function, 8(4), 1547-1557. doi:10.1039/c7fo00159b
Bouaziz, M., Fki, I., Jemai, H., Ayadi, M., & Sayadi, S. (2008). Effect of storage on refined and husk olive oils composition: Stabilization by addition of natural antioxidants from Chemlali olive leaves. Food Chemistry, 108(1), 253-262. doi:10.1016/j.foodchem.2007.10.074
Chang, C., & Zhang, L. (2011). Cellulose-based hydrogels: Present status and application prospects. Carbohydrate Polymers, 84(1), 40-53. doi:10.1016/j.carbpol.2010.12.023
Cho, Y. J., & Lee, S. (2015). Extraction of rutin from Tartary buckwheat milling fractions and evaluation of its thermal stability in an instant fried noodle system. Food Chemistry, 176, 40-44. doi:10.1016/j.foodchem.2014.12.020
Marangoni, A. G. (2012). Organogels: An Alternative Edible Oil-Structuring Method. Journal of the American Oil Chemists’ Society, 89(5), 749-780. doi:10.1007/s11746-012-2049-3
Davidovich-Pinhas, M., Barbut, S., & Marangoni, A. G. (2015). The gelation of oil using ethyl cellulose. Carbohydrate Polymers, 117, 869-878. doi:10.1016/j.carbpol.2014.10.035
De Vries, A., Gomez, Y. L., van der Linden, E., & Scholten, E. (2017). The effect of oil type on network formation by protein aggregates into oleogels. RSC Advances, 7(19), 11803-11812. doi:10.1039/c7ra00396j
Doan, C. D., Patel, A. R., Tavernier, I., De Clercq, N., Van Raemdonck, K., Van de Walle, D., … Dewettinck, K. (2016). The feasibility of wax-based oleogel as a potential co-structurant with palm oil in low-saturated fat confectionery fillings. European Journal of Lipid Science and Technology, 118(12), 1903-1914. doi:10.1002/ejlt.201500172
Estadella, D., da Penha Oller do Nascimento, C. M., Oyama, L. M., Ribeiro, E. B., Dâmaso, A. R., & de Piano, A. (2013). Lipotoxicity: Effects of Dietary Saturated and Transfatty Acids. Mediators of Inflammation, 2013, 1-13. doi:10.1155/2013/137579
Fayaz, G., Goli, S. A. H., Kadivar, M., Valoppi, F., Barba, L., Balducci, C., … Nicoli, M. C. (2017). Pomegranate seed oil organogels structured by propolis wax, beeswax, and their mixture. European Journal of Lipid Science and Technology, 119(10), 1700032. doi:10.1002/ejlt.201700032
Gallego, R., Arteaga, J., Valencia, C., & Franco, J. (2013). Isocyanate-Functionalized Chitin and Chitosan as Gelling Agents of Castor Oil. Molecules, 18(6), 6532-6549. doi:10.3390/molecules18066532
Gravelle, A. J., Barbut, S., & Marangoni, A. G. (2012). Ethylcellulose oleogels: Manufacturing considerations and effects of oil oxidation. Food Research International, 48(2), 578-583. doi:10.1016/j.foodres.2012.05.020
ISO.(2011).Animal and vegetable fats and oils. Determination of ultraviolet absorbance expressed as specific UV extinction. International Organization for Standardization Geneva (ISO 3656).
ISO.(2018).Animal and vegetable fats and oil.Determination of iodine value.Organization for Standardization Geneva (ISO 3961).
Kumar, D., Singh, A., & Tarsikka, P. S. (2011). Interrelationship between viscosity and electrical properties for edible oils. Journal of Food Science and Technology, 50(3), 549-554. doi:10.1007/s13197-011-0346-8
Lee, J., Lee, Y., & Choe, E. (2006). Temperature dependence of the autoxidation and antioxidants of soybean, sunflower, and olive oil. European Food Research and Technology, 226(1-2), 239-246. doi:10.1007/s00217-006-0532-5
Maki, K. C., Reeves, M. S., Carson, M. L., Miller, M. P., Turowski, M., Rains, T. M., … Wilder, D. M. (2009). Dose–Response Characteristics of High-Viscosity Hydroxypropylmethylcellulose in Subjects at Risk for the Development of Type 2 Diabetes Mellitus. Diabetes Technology & Therapeutics, 11(2), 119-125. doi:10.1089/dia.2008.0036
Malheiro, R., Oliveira, I., Vilas-Boas, M., Falcão, S., Bento, A., & Pereira, J. A. (2009). Effect of microwave heating with different exposure times on physical and chemical parameters of olive oil. Food and Chemical Toxicology, 47(1), 92-97. doi:10.1016/j.fct.2008.10.014
Martins, A. J., Cerqueira, M. A., Cunha, R. L., & Vicente, A. A. (2017). Fortified beeswax oleogels: effect of β-carotene on the gel structure and oxidative stability. Food & Function, 8(11), 4241-4250. doi:10.1039/c7fo00953d
Meng, Z., Qi, K., Guo, Y., Wang, Y., & Liu, Y. (2018). Effects of thickening agents on the formation and properties of edible oleogels based on hydroxypropyl methyl cellulose. Food Chemistry, 246, 137-149. doi:10.1016/j.foodchem.2017.10.154
Meng, Z., Qi, K., Guo, Y., Wang, Y., & Liu, Y. (2018). Macro-micro structure characterization and molecular properties of emulsion-templated polysaccharide oleogels. Food Hydrocolloids, 77, 17-29. doi:10.1016/j.foodhyd.2017.09.006
Nishida, C., Uauy, R., Kumanyika, S., & Shetty, P. (2004). The Joint WHO/FAO Expert Consultation on diet, nutrition and the prevention of chronic diseases: process, product and policy implications. Public Health Nutrition, 7(1a), 245-250. doi:10.1079/phn2003592
Oh, I., Lee, J., Lee, H. G., & Lee, S. (2019). Feasibility of hydroxypropyl methylcellulose oleogel as an animal fat replacer for meat patties. Food Research International, 122, 566-572. doi:10.1016/j.foodres.2019.01.012
Onacik-Gür, S., Żbikowska, A., Kapler, E., & Kowalska, H. (2016). Eff ect of barley β-glucan addition as a fat replacer on muffi n quality. Acta Scientiarum Polonorum Technologia Alimentaria, 15(3), 247-256. doi:10.17306/j.afs.2016.3.24
Paglarini, C. de S., Martini, S., & Pollonio, M. A. R. (2019). Using emulsion gels made with sonicated soy protein isolate dispersions to replace fat in frankfurters. LWT, 99, 453-459. doi:10.1016/j.lwt.2018.10.005
Patel, A. R., & Dewettinck, K. (2015). Comparative evaluation of structured oil systems: Shellac oleogel, HPMC oleogel, and HIPE gel. European Journal of Lipid Science and Technology, 117(11), 1772-1781. doi:10.1002/ejlt.201400553
Patel, A. R., Cludts, N., Bin Sintang, M. D., Lewille, B., Lesaffer, A., & Dewettinck, K. (2014). Polysaccharide-Based Oleogels Prepared with an Emulsion-Templated Approach. ChemPhysChem, 15(16), 3435-3439. doi:10.1002/cphc.201402473
Patel, A. R., Cludts, N., Sintang, M. D. B., Lesaffer, A., & Dewettinck, K. (2014). Edible oleogels based on water soluble food polymers: preparation, characterization and potential application. Food Funct., 5(11), 2833-2841. doi:10.1039/c4fo00624k
Pehlivanoğlu, H., Demirci, M., Toker, O. S., Konar, N., Karasu, S., & Sagdic, O. (2017). Oleogels, a promising structured oil for decreasing saturated fatty acid concentrations: Production and food-based applications. Critical Reviews in Food Science and Nutrition, 58(8), 1330-1341. doi:10.1080/10408398.2016.1256866
Romoscanu, A. I., & Mezzenga, R. (2006). Emulsion-Templated Fully Reversible Protein-in-Oil Gels. Langmuir, 22(18), 7812-7818. doi:10.1021/la060878p
Sawalha, H., den Adel, R., Venema, P., Bot, A., Flöter, E., & van der Linden, E. (2012). Organogel-Emulsions with Mixtures of β-Sitosterol and γ-Oryzanol: Influence of Water Activity and Type of Oil Phase on Gelling Capability. Journal of Agricultural and Food Chemistry, 60(13), 3462-3470. doi:10.1021/jf300313f
Scholten, E. (2019). Edible oleogels: how suitable are proteins as a structurant? Current Opinion in Food Science, 27, 36-42. doi:10.1016/j.cofs.2019.05.001
Silalahi, D. K. N., Yuliyanti, D., da Silva, M., Christianti, I., Mulyono, K., & Wassell, P. (2017). The stability of vitamin A in fortified palm olein during extended storage and thermal treatment. International Journal of Food Science & Technology, 52(8), 1869-1877. doi:10.1111/ijfs.13462
Stortz, T. A., Zetzl, A. K., Barbut, S., Cattaruzza, A., & Marangoni, A. G. (2012). Edible oleogels in food products to help maximize health benefits and improve nutritional profiles. Lipid Technology, 24(7), 151-154. doi:10.1002/lite.201200205
Tavernier, I., Doan, C. D., Van der Meeren, P., Heyman, B., & Dewettinck, K. (2018). The Potential of Waxes to Alter the Microstructural Properties of Emulsion-Templated Oleogels. European Journal of Lipid Science and Technology, 120(3), 1700393. doi:10.1002/ejlt.201700393
Torres, L. G., Iturbe, R., Snowden, M. J., Chowdhry, B. Z., & Leharne, S. A. (2007). Preparation of o/w emulsions stabilized by solid particles and their characterization by oscillatory rheology. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 302(1-3), 439-448. doi:10.1016/j.colsurfa.2007.03.009
Valoppi, F., Calligaris, S., Barba, L., Šegatin, N., Poklar Ulrih, N., & Nicoli, M. C. (2016). Influence of oil type on formation, structure, thermal, and physical properties of monoglyceride-based organogel. European Journal of Lipid Science and Technology, 119(2), 1500549. doi:10.1002/ejlt.201500549
Wassell, P., Bonwick, G., Smith, C. J., Almiron-Roig, E., & Young, N. W. G. (2010). Towards a multidisciplinary approach to structuring in reduced saturated fat-based systems - a review. International Journal of Food Science & Technology, 45(4), 642-655. doi:10.1111/j.1365-2621.2010.02212.x
[-]