Mostrar el registro sencillo del ítem
dc.contributor.author | Gisbert-Roca, Fernando | es_ES |
dc.contributor.author | Más Estellés, Jorge | es_ES |
dc.contributor.author | Monleón Pradas, Manuel | es_ES |
dc.contributor.author | Martínez-Ramos, Cristina | es_ES |
dc.date.accessioned | 2021-04-27T03:33:06Z | |
dc.date.available | 2021-04-27T03:33:06Z | |
dc.date.issued | 2020-11-15 | es_ES |
dc.identifier.issn | 0141-8130 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/165608 | |
dc.description.abstract | [EN] The biological behaviour of Schwann cells (SCs) and dorsal root ganglia (DRG) on fibrillar, highly aligned and electroconductive substrates obtained by two different techniques is studied. Mats formed by nanometer-sized fibres of poly(lactic acid) (PLA) are obtained by the electrospinning technique, while bundles formed by micrometer-sized extruded PLA fibres are obtained by grouping microfibres together. Both types of substrates are coated with the electrically conductive polymer polypyrrole (PPy) and their morphological, physical and electrical characterization is carried out. SCs on micrometer-sized substrates show a higher motility and cell-cell interaction, while a higher cell-material interaction with a lower cell motility is observed for nanometer-sized substrates. This higher motility and cell-cell interaction of SCs on the micrometer-sized substrates entails a higher axonal growth from DRG, since the migration of SCs from the DRG body is accelerated and, therefore, the SCs tapestry needed for the axonal growth is formed earlier on the substrate. A higher length and area of the axons is observed for these micrometer-sized substrates, as well as a higher level of axonal sprouting when compared with the nanometer-sized ones. These substrates offer the possibility of being electrically stimulated in different tissue engineering applications of the nervous system. | es_ES |
dc.description.sponsorship | The authors acknowledge financing from the Spanish Government's State Research Agency (AEI) through projects DPI2015-72863-EXP and RTI2018-095872-B-C22/ERDF. FGR acknowledges scholarship FPU16/01833 of the Spanish Ministry of Universities. We thank the Electron Microscopy Service at the UPV, where the FESEM images were obtained | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | International Journal of Biological Macromolecules | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Poly(lactic acid) | es_ES |
dc.subject | Polypyrrole | es_ES |
dc.subject | Aligned substrates | es_ES |
dc.subject | Biological behaviour | es_ES |
dc.subject | Schwann cells | es_ES |
dc.subject | Dorsal root ganglia | es_ES |
dc.subject.classification | TERMODINAMICA APLICADA (UPV) | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | Axonal extension from dorsal root ganglia on fibrillar and highly aligned poly(lactic acid)-polypyrrole substrates obtained by two different techniques: Electrospun nanofibres and extruded microfibres | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.ijbiomac.2020.09.181 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//DPI2015-72863-EXP/ES/NEUROCABLES MODULARES: MULTIPLICANDO CONEXIONES NEURALES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MECD//FPU16%2F01833/ES/FPU16%2F01833/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-095872-B-C22/ES/NUEVO DISPOSITIVO BIOACTIVO PARA LA REGENERACION DE LESIONES DE LA MEDULA ESPINAL./ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada | es_ES |
dc.description.bibliographicCitation | Gisbert-Roca, F.; Más Estellés, J.; Monleón Pradas, M.; Martínez-Ramos, C. (2020). Axonal extension from dorsal root ganglia on fibrillar and highly aligned poly(lactic acid)-polypyrrole substrates obtained by two different techniques: Electrospun nanofibres and extruded microfibres. International Journal of Biological Macromolecules. 163:1959-1969. https://doi.org/10.1016/j.ijbiomac.2020.09.181 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.ijbiomac.2020.09.181 | es_ES |
dc.description.upvformatpinicio | 1959 | es_ES |
dc.description.upvformatpfin | 1969 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 163 | es_ES |
dc.identifier.pmid | 32979445 | es_ES |
dc.relation.pasarela | S\418652 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Ministerio de Educación, Cultura y Deporte | es_ES |
dc.description.references | Houschyar, K. S., Momeni, A., Pyles, M. N., Cha, J. Y., Maan, Z. N., Duscher, D., … Schoonhoven, J. van. (2016). The Role of Current Techniques and Concepts in Peripheral Nerve Repair. Plastic Surgery International, 2016, 1-8. doi:10.1155/2016/4175293 | es_ES |
dc.description.references | Daly, W., Yao, L., Zeugolis, D., Windebank, A., & Pandit, A. (2011). A biomaterials approach to peripheral nerve regeneration: bridging the peripheral nerve gap and enhancing functional recovery. Journal of The Royal Society Interface, 9(67), 202-221. doi:10.1098/rsif.2011.0438 | es_ES |
dc.description.references | De Ruiter, G. C. W., Malessy, M. J. A., Yaszemski, M. J., Windebank, A. J., & Spinner, R. J. (2009). Designing ideal conduits for peripheral nerve repair. Neurosurgical Focus, 26(2), E5. doi:10.3171/foc.2009.26.2.e5 | es_ES |
dc.description.references | Tang-Schomer, M. D. (2018). 3D axon growth by exogenous electrical stimulus and soluble factors. Brain Research, 1678, 288-296. doi:10.1016/j.brainres.2017.10.032 | es_ES |
dc.description.references | Sarker, M. D., Naghieh, S., McInnes, A. D., Schreyer, D. J., & Chen, X. (2018). Regeneration of peripheral nerves by nerve guidance conduits: Influence of design, biopolymers, cells, growth factors, and physical stimuli. Progress in Neurobiology, 171, 125-150. doi:10.1016/j.pneurobio.2018.07.002 | es_ES |
dc.description.references | Kim, I. A., Park, S. A., Kim, Y. J., Kim, S.-H., Shin, H. J., Lee, Y. J., … Shin, J.-W. (2006). Effects of mechanical stimuli and microfiber-based substrate on neurite outgrowth and guidance. Journal of Bioscience and Bioengineering, 101(2), 120-126. doi:10.1263/jbb.101.120 | es_ES |
dc.description.references | English, A. W., Schwartz, G., Meador, W., Sabatier, M. J., & Mulligan, A. (2007). Electrical stimulation promotes peripheral axon regeneration by enhanced neuronal neurotrophin signaling. Developmental Neurobiology, 67(2), 158-172. doi:10.1002/dneu.20339 | es_ES |
dc.description.references | Schmidt, C. E., Shastri, V. R., Vacanti, J. P., & Langer, R. (1997). Stimulation of neurite outgrowth using an electrically conducting polymer. Proceedings of the National Academy of Sciences, 94(17), 8948-8953. doi:10.1073/pnas.94.17.8948 | es_ES |
dc.description.references | Amani, H., Arzaghi, H., Bayandori, M., Dezfuli, A. S., Pazoki‐Toroudi, H., Shafiee, A., & Moradi, L. (2019). Controlling Cell Behavior through the Design of Biomaterial Surfaces: A Focus on Surface Modification Techniques. Advanced Materials Interfaces, 6(13), 1900572. doi:10.1002/admi.201900572 | es_ES |
dc.description.references | Zhu, W., Masood, F., O’Brien, J., & Zhang, L. G. (2015). Highly aligned nanocomposite scaffolds by electrospinning and electrospraying for neural tissue regeneration. Nanomedicine: Nanotechnology, Biology and Medicine, 11(3), 693-704. doi:10.1016/j.nano.2014.12.001 | es_ES |
dc.description.references | Lee, Y.-S., Collins, G., & Livingston Arinzeh, T. (2011). Neurite extension of primary neurons on electrospun piezoelectric scaffolds. Acta Biomaterialia, 7(11), 3877-3886. doi:10.1016/j.actbio.2011.07.013 | es_ES |
dc.description.references | Lee, J. Y., Bashur, C. A., Goldstein, A. S., & Schmidt, C. E. (2009). Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications. Biomaterials, 30(26), 4325-4335. doi:10.1016/j.biomaterials.2009.04.042 | es_ES |
dc.description.references | Zou, Y., Qin, J., Huang, Z., Yin, G., Pu, X., & He, D. (2016). Fabrication of Aligned Conducting PPy-PLLA Fiber Films and Their Electrically Controlled Guidance and Orientation for Neurites. ACS Applied Materials & Interfaces, 8(20), 12576-12582. doi:10.1021/acsami.6b00957 | es_ES |
dc.description.references | Xu, Y., Huang, Z., Pu, X., Yin, G., & Zhang, J. (2019). Fabrication of Chitosan/Polypyrrole‐coated poly(L‐lactic acid)/Polycaprolactone aligned fibre films for enhancement of neural cell compatibility and neurite growth. Cell Proliferation, 52(3), e12588. doi:10.1111/cpr.12588 | es_ES |
dc.description.references | Wang, H. B., Mullins, M. E., Cregg, J. M., McCarthy, C. W., & Gilbert, R. J. (2010). Varying the diameter of aligned electrospun fibers alters neurite outgrowth and Schwann cell migration. Acta Biomaterialia, 6(8), 2970-2978. doi:10.1016/j.actbio.2010.02.020 | es_ES |
dc.description.references | Christopherson, G. T., Song, H., & Mao, H.-Q. (2009). The influence of fiber diameter of electrospun substrates on neural stem cell differentiation and proliferation. Biomaterials, 30(4), 556-564. doi:10.1016/j.biomaterials.2008.10.004 | es_ES |
dc.description.references | Gnavi, S., Fornasari, B. E., Tonda-Turo, C., Ciardelli, G., Zanetti, M., Geuna, S., & Perroteau, I. (2015). The influence of electrospun fibre size on Schwann cell behaviour and axonal outgrowth. Materials Science and Engineering: C, 48, 620-631. doi:10.1016/j.msec.2014.12.055 | es_ES |
dc.description.references | Bhardwaj, N., & Kundu, S. C. (2010). Electrospinning: A fascinating fiber fabrication technique. Biotechnology Advances, 28(3), 325-347. doi:10.1016/j.biotechadv.2010.01.004 | es_ES |
dc.description.references | Agarwal, S., Wendorff, J. H., & Greiner, A. (2008). Use of electrospinning technique for biomedical applications. Polymer, 49(26), 5603-5621. doi:10.1016/j.polymer.2008.09.014 | es_ES |
dc.description.references | Markus, A., Patel, T. D., & Snider, W. D. (2002). Neurotrophic factors and axonal growth. Current Opinion in Neurobiology, 12(5), 523-531. doi:10.1016/s0959-4388(02)00372-0 | es_ES |
dc.description.references | Lu, P., & Tuszynski, M. H. (2008). Growth factors and combinatorial therapies for CNS regeneration. Experimental Neurology, 209(2), 313-320. doi:10.1016/j.expneurol.2007.08.004 | es_ES |
dc.description.references | Lykissas, M., Batistatou, A., Charalabopoulos, K., & Beris, A. (2007). The Role of Neurotrophins in Axonal Growth, Guidance, and Regeneration. Current Neurovascular Research, 4(2), 143-151. doi:10.2174/156720207780637216 | es_ES |
dc.description.references | Bregman, B. S., McAtee, M., Dai, H. N., & Kuhn, P. L. (1997). Neurotrophic Factors Increase Axonal Growth after Spinal Cord Injury and Transplantation in the Adult Rat. Experimental Neurology, 148(2), 475-494. doi:10.1006/exnr.1997.6705 | es_ES |
dc.description.references | Freeman, M. R. (2006). Sculpting the nervous system: glial control of neuronal development. Current Opinion in Neurobiology, 16(1), 119-125. doi:10.1016/j.conb.2005.12.004 | es_ES |
dc.description.references | Pompili, E., Ciraci, V., Leone, S., De Franchis, V., Familiari, P., Matassa, R., … Fabrizi, C. (2020). Thrombin regulates the ability of Schwann cells to support neuritogenesis and to maintain the integrity of the nodes of Ranvier. European Journal of Histochemistry, 64(2). doi:10.4081/ejh.2020.3109 | es_ES |
dc.description.references | El Seblani, N., Welleford, A. S., Quintero, J. E., van Horne, C. G., & Gerhardt, G. A. (2020). Invited review: Utilizing peripheral nerve regenerative elements to repair damage in the CNS. Journal of Neuroscience Methods, 335, 108623. doi:10.1016/j.jneumeth.2020.108623 | es_ES |
dc.description.references | Jessen, K. R., & Arthur-Farraj, P. (2019). Repair Schwann cell update: Adaptive reprogramming, EMT, and stemness in regenerating nerves. Glia, 67(3), 421-437. doi:10.1002/glia.23532 | es_ES |
dc.description.references | Jessen, K. R., Mirsky, R., & Lloyd, A. C. (2015). Schwann Cells: Development and Role in Nerve Repair. Cold Spring Harbor Perspectives in Biology, 7(7), a020487. doi:10.1101/cshperspect.a020487 | es_ES |
dc.description.references | Gomez-Sanchez, J. A., Pilch, K. S., van der Lans, M., Fazal, S. V., Benito, C., Wagstaff, L. J., … Jessen, K. R. (2017). After Nerve Injury, Lineage Tracing Shows That Myelin and Remak Schwann Cells Elongate Extensively and Branch to Form Repair Schwann Cells, Which Shorten Radically on Remyelination. The Journal of Neuroscience, 37(37), 9086-9099. doi:10.1523/jneurosci.1453-17.2017 | es_ES |
dc.description.references | Wang, L.-X., Li, X.-G., & Yang, Y.-L. (2001). Preparation, properties and applications of polypyrroles. Reactive and Functional Polymers, 47(2), 125-139. doi:10.1016/s1381-5148(00)00079-1 | es_ES |
dc.description.references | Le, T.-H., Kim, Y., & Yoon, H. (2017). Electrical and Electrochemical Properties of Conducting Polymers. Polymers, 9(12), 150. doi:10.3390/polym9040150 | es_ES |
dc.description.references | Mattioli-Belmonte, M., Gabbanelli, F., Marcaccio, M., Giantomassi, F., Tarsi, R., Natali, D., … Biagini, G. (2005). Bio-characterisation of tosylate-doped polypyrrole films for biomedical applications. Materials Science and Engineering: C, 25(1), 43-49. doi:10.1016/j.msec.2004.04.002 | es_ES |
dc.description.references | Sabouraud, G., Sadki, S., & Brodie, N. (2000). The mechanisms of pyrrole electropolymerization. Chemical Society Reviews, 29(5), 283-293. doi:10.1039/a807124a | es_ES |
dc.description.references | Li, C., Bai, H., & Shi, G. (2009). Conducting polymer nanomaterials: electrosynthesis and applications. Chemical Society Reviews, 38(8), 2397. doi:10.1039/b816681c | es_ES |
dc.description.references | Aznar-Cervantes, S., Roca, M. I., Martinez, J. G., Meseguer-Olmo, L., Cenis, J. L., Moraleda, J. M., & Otero, T. F. (2012). Fabrication of conductive electrospun silk fibroin scaffolds by coating with polypyrrole for biomedical applications. Bioelectrochemistry, 85, 36-43. doi:10.1016/j.bioelechem.2011.11.008 | es_ES |
dc.description.references | Sun, X., Peng, J., Zhou, J., Wang, Y., Cheng, L., & Wu, Z. (2016). Preparation of polypyrrole-embedded electrospun poly(lactic acid) nanofibrous scaffolds for nerve tissue engineering. Neural Regeneration Research, 11(10), 1644. doi:10.4103/1673-5374.193245 | es_ES |
dc.description.references | George, P. M., Lyckman, A. W., LaVan, D. A., Hegde, A., Leung, Y., Avasare, R., … Sur, M. (2005). Fabrication and biocompatibility of polypyrrole implants suitable for neural prosthetics. Biomaterials, 26(17), 3511-3519. doi:10.1016/j.biomaterials.2004.09.037 | es_ES |
dc.description.references | Lunt, J. (1998). Large-scale production, properties and commercial applications of polylactic acid polymers. Polymer Degradation and Stability, 59(1-3), 145-152. doi:10.1016/s0141-3910(97)00148-1 | es_ES |
dc.description.references | Ramot, Y., Haim-Zada, M., Domb, A. J., & Nyska, A. (2016). Biocompatibility and safety of PLA and its copolymers. Advanced Drug Delivery Reviews, 107, 153-162. doi:10.1016/j.addr.2016.03.012 | es_ES |
dc.description.references | Da Silva, D., Kaduri, M., Poley, M., Adir, O., Krinsky, N., Shainsky-Roitman, J., & Schroeder, A. (2018). Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic systems. Chemical Engineering Journal, 340, 9-14. doi:10.1016/j.cej.2018.01.010 | es_ES |
dc.description.references | Wan, Y., & Wen, D. (2005). Preparation and characterization of porous conducting poly(dl-lactide) composite membranes. Journal of Membrane Science, 246(2), 193-201. doi:10.1016/j.memsci.2004.07.032 | es_ES |
dc.description.references | Shi, G., Rouabhia, M., Wang, Z., Dao, L. H., & Zhang, Z. (2004). A novel electrically conductive and biodegradable composite made of polypyrrole nanoparticles and polylactide. Biomaterials, 25(13), 2477-2488. doi:10.1016/j.biomaterials.2003.09.032 | es_ES |
dc.description.references | Wang, Z., Roberge, C., Dao, L. H., Wan, Y., Shi, G., Rouabhia, M., … Zhang, Z. (2004). In vivo evaluation of a novel electrically conductive polypyrrole/poly(D,L-lactide) composite and polypyrrole-coated poly(D,L-lactide-co-glycolide) membranes. Journal of Biomedical Materials Research, 70A(1), 28-38. doi:10.1002/jbm.a.30047 | es_ES |
dc.description.references | Woodruff, M. A., & Hutmacher, D. W. (2010). The return of a forgotten polymer—Polycaprolactone in the 21st century. Progress in Polymer Science, 35(10), 1217-1256. doi:10.1016/j.progpolymsci.2010.04.002 | es_ES |
dc.description.references | Lam, C. X. F., Hutmacher, D. W., Schantz, J.-T., Woodruff, M. A., & Teoh, S. H. (2009). Evaluation of polycaprolactone scaffold degradation for 6 monthsin vitroandin vivo. Journal of Biomedical Materials Research Part A, 90A(3), 906-919. doi:10.1002/jbm.a.32052 | es_ES |
dc.description.references | Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., … Cardona, A. (2012). Fiji: an open-source platform for biological-image analysis. Nature Methods, 9(7), 676-682. doi:10.1038/nmeth.2019 | es_ES |
dc.description.references | Callens, S. J. P., Uyttendaele, R. J. C., Fratila-Apachitei, L. E., & Zadpoor, A. A. (2020). Substrate curvature as a cue to guide spatiotemporal cell and tissue organization. Biomaterials, 232, 119739. doi:10.1016/j.biomaterials.2019.119739 | es_ES |
dc.description.references | Rolli, C. G., Nakayama, H., Yamaguchi, K., Spatz, J. P., Kemkemer, R., & Nakanishi, J. (2012). Switchable adhesive substrates: Revealing geometry dependence in collective cell behavior. Biomaterials, 33(8), 2409-2418. doi:10.1016/j.biomaterials.2011.12.012 | es_ES |
dc.description.references | Doxzen, K., Vedula, S. R. K., Leong, M. C., Hirata, H., Gov, N. S., Kabla, A. J., … Lim, C. T. (2013). Guidance of collective cell migration by substrate geometry. Integrative Biology, 5(8), 1026. doi:10.1039/c3ib40054a | es_ES |
dc.description.references | Kim, Y., Haftel, V. K., Kumar, S., & Bellamkonda, R. V. (2008). The role of aligned polymer fiber-based constructs in the bridging of long peripheral nerve gaps. Biomaterials, 29(21), 3117-3127. doi:10.1016/j.biomaterials.2008.03.042 | es_ES |
dc.description.references | Schnell, E., Klinkhammer, K., Balzer, S., Brook, G., Klee, D., Dalton, P., & Mey, J. (2007). Guidance of glial cell migration and axonal growth on electrospun nanofibers of poly-ε-caprolactone and a collagen/poly-ε-caprolactone blend. Biomaterials, 28(19), 3012-3025. doi:10.1016/j.biomaterials.2007.03.009 | es_ES |