Houschyar, K. S., Momeni, A., Pyles, M. N., Cha, J. Y., Maan, Z. N., Duscher, D., … Schoonhoven, J. van. (2016). The Role of Current Techniques and Concepts in Peripheral Nerve Repair. Plastic Surgery International, 2016, 1-8. doi:10.1155/2016/4175293
Daly, W., Yao, L., Zeugolis, D., Windebank, A., & Pandit, A. (2011). A biomaterials approach to peripheral nerve regeneration: bridging the peripheral nerve gap and enhancing functional recovery. Journal of The Royal Society Interface, 9(67), 202-221. doi:10.1098/rsif.2011.0438
De Ruiter, G. C. W., Malessy, M. J. A., Yaszemski, M. J., Windebank, A. J., & Spinner, R. J. (2009). Designing ideal conduits for peripheral nerve repair. Neurosurgical Focus, 26(2), E5. doi:10.3171/foc.2009.26.2.e5
[+]
Houschyar, K. S., Momeni, A., Pyles, M. N., Cha, J. Y., Maan, Z. N., Duscher, D., … Schoonhoven, J. van. (2016). The Role of Current Techniques and Concepts in Peripheral Nerve Repair. Plastic Surgery International, 2016, 1-8. doi:10.1155/2016/4175293
Daly, W., Yao, L., Zeugolis, D., Windebank, A., & Pandit, A. (2011). A biomaterials approach to peripheral nerve regeneration: bridging the peripheral nerve gap and enhancing functional recovery. Journal of The Royal Society Interface, 9(67), 202-221. doi:10.1098/rsif.2011.0438
De Ruiter, G. C. W., Malessy, M. J. A., Yaszemski, M. J., Windebank, A. J., & Spinner, R. J. (2009). Designing ideal conduits for peripheral nerve repair. Neurosurgical Focus, 26(2), E5. doi:10.3171/foc.2009.26.2.e5
Tang-Schomer, M. D. (2018). 3D axon growth by exogenous electrical stimulus and soluble factors. Brain Research, 1678, 288-296. doi:10.1016/j.brainres.2017.10.032
Sarker, M. D., Naghieh, S., McInnes, A. D., Schreyer, D. J., & Chen, X. (2018). Regeneration of peripheral nerves by nerve guidance conduits: Influence of design, biopolymers, cells, growth factors, and physical stimuli. Progress in Neurobiology, 171, 125-150. doi:10.1016/j.pneurobio.2018.07.002
Kim, I. A., Park, S. A., Kim, Y. J., Kim, S.-H., Shin, H. J., Lee, Y. J., … Shin, J.-W. (2006). Effects of mechanical stimuli and microfiber-based substrate on neurite outgrowth and guidance. Journal of Bioscience and Bioengineering, 101(2), 120-126. doi:10.1263/jbb.101.120
English, A. W., Schwartz, G., Meador, W., Sabatier, M. J., & Mulligan, A. (2007). Electrical stimulation promotes peripheral axon regeneration by enhanced neuronal neurotrophin signaling. Developmental Neurobiology, 67(2), 158-172. doi:10.1002/dneu.20339
Schmidt, C. E., Shastri, V. R., Vacanti, J. P., & Langer, R. (1997). Stimulation of neurite outgrowth using an electrically conducting polymer. Proceedings of the National Academy of Sciences, 94(17), 8948-8953. doi:10.1073/pnas.94.17.8948
Amani, H., Arzaghi, H., Bayandori, M., Dezfuli, A. S., Pazoki‐Toroudi, H., Shafiee, A., & Moradi, L. (2019). Controlling Cell Behavior through the Design of Biomaterial Surfaces: A Focus on Surface Modification Techniques. Advanced Materials Interfaces, 6(13), 1900572. doi:10.1002/admi.201900572
Zhu, W., Masood, F., O’Brien, J., & Zhang, L. G. (2015). Highly aligned nanocomposite scaffolds by electrospinning and electrospraying for neural tissue regeneration. Nanomedicine: Nanotechnology, Biology and Medicine, 11(3), 693-704. doi:10.1016/j.nano.2014.12.001
Lee, Y.-S., Collins, G., & Livingston Arinzeh, T. (2011). Neurite extension of primary neurons on electrospun piezoelectric scaffolds. Acta Biomaterialia, 7(11), 3877-3886. doi:10.1016/j.actbio.2011.07.013
Lee, J. Y., Bashur, C. A., Goldstein, A. S., & Schmidt, C. E. (2009). Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications. Biomaterials, 30(26), 4325-4335. doi:10.1016/j.biomaterials.2009.04.042
Zou, Y., Qin, J., Huang, Z., Yin, G., Pu, X., & He, D. (2016). Fabrication of Aligned Conducting PPy-PLLA Fiber Films and Their Electrically Controlled Guidance and Orientation for Neurites. ACS Applied Materials & Interfaces, 8(20), 12576-12582. doi:10.1021/acsami.6b00957
Xu, Y., Huang, Z., Pu, X., Yin, G., & Zhang, J. (2019). Fabrication of Chitosan/Polypyrrole‐coated poly(L‐lactic acid)/Polycaprolactone aligned fibre films for enhancement of neural cell compatibility and neurite growth. Cell Proliferation, 52(3), e12588. doi:10.1111/cpr.12588
Wang, H. B., Mullins, M. E., Cregg, J. M., McCarthy, C. W., & Gilbert, R. J. (2010). Varying the diameter of aligned electrospun fibers alters neurite outgrowth and Schwann cell migration. Acta Biomaterialia, 6(8), 2970-2978. doi:10.1016/j.actbio.2010.02.020
Christopherson, G. T., Song, H., & Mao, H.-Q. (2009). The influence of fiber diameter of electrospun substrates on neural stem cell differentiation and proliferation. Biomaterials, 30(4), 556-564. doi:10.1016/j.biomaterials.2008.10.004
Gnavi, S., Fornasari, B. E., Tonda-Turo, C., Ciardelli, G., Zanetti, M., Geuna, S., & Perroteau, I. (2015). The influence of electrospun fibre size on Schwann cell behaviour and axonal outgrowth. Materials Science and Engineering: C, 48, 620-631. doi:10.1016/j.msec.2014.12.055
Bhardwaj, N., & Kundu, S. C. (2010). Electrospinning: A fascinating fiber fabrication technique. Biotechnology Advances, 28(3), 325-347. doi:10.1016/j.biotechadv.2010.01.004
Agarwal, S., Wendorff, J. H., & Greiner, A. (2008). Use of electrospinning technique for biomedical applications. Polymer, 49(26), 5603-5621. doi:10.1016/j.polymer.2008.09.014
Markus, A., Patel, T. D., & Snider, W. D. (2002). Neurotrophic factors and axonal growth. Current Opinion in Neurobiology, 12(5), 523-531. doi:10.1016/s0959-4388(02)00372-0
Lu, P., & Tuszynski, M. H. (2008). Growth factors and combinatorial therapies for CNS regeneration. Experimental Neurology, 209(2), 313-320. doi:10.1016/j.expneurol.2007.08.004
Lykissas, M., Batistatou, A., Charalabopoulos, K., & Beris, A. (2007). The Role of Neurotrophins in Axonal Growth, Guidance, and Regeneration. Current Neurovascular Research, 4(2), 143-151. doi:10.2174/156720207780637216
Bregman, B. S., McAtee, M., Dai, H. N., & Kuhn, P. L. (1997). Neurotrophic Factors Increase Axonal Growth after Spinal Cord Injury and Transplantation in the Adult Rat. Experimental Neurology, 148(2), 475-494. doi:10.1006/exnr.1997.6705
Freeman, M. R. (2006). Sculpting the nervous system: glial control of neuronal development. Current Opinion in Neurobiology, 16(1), 119-125. doi:10.1016/j.conb.2005.12.004
Pompili, E., Ciraci, V., Leone, S., De Franchis, V., Familiari, P., Matassa, R., … Fabrizi, C. (2020). Thrombin regulates the ability of Schwann cells to support neuritogenesis and to maintain the integrity of the nodes of Ranvier. European Journal of Histochemistry, 64(2). doi:10.4081/ejh.2020.3109
El Seblani, N., Welleford, A. S., Quintero, J. E., van Horne, C. G., & Gerhardt, G. A. (2020). Invited review: Utilizing peripheral nerve regenerative elements to repair damage in the CNS. Journal of Neuroscience Methods, 335, 108623. doi:10.1016/j.jneumeth.2020.108623
Jessen, K. R., & Arthur-Farraj, P. (2019). Repair Schwann cell update: Adaptive reprogramming, EMT, and stemness in regenerating nerves. Glia, 67(3), 421-437. doi:10.1002/glia.23532
Jessen, K. R., Mirsky, R., & Lloyd, A. C. (2015). Schwann Cells: Development and Role in Nerve Repair. Cold Spring Harbor Perspectives in Biology, 7(7), a020487. doi:10.1101/cshperspect.a020487
Gomez-Sanchez, J. A., Pilch, K. S., van der Lans, M., Fazal, S. V., Benito, C., Wagstaff, L. J., … Jessen, K. R. (2017). After Nerve Injury, Lineage Tracing Shows That Myelin and Remak Schwann Cells Elongate Extensively and Branch to Form Repair Schwann Cells, Which Shorten Radically on Remyelination. The Journal of Neuroscience, 37(37), 9086-9099. doi:10.1523/jneurosci.1453-17.2017
Wang, L.-X., Li, X.-G., & Yang, Y.-L. (2001). Preparation, properties and applications of polypyrroles. Reactive and Functional Polymers, 47(2), 125-139. doi:10.1016/s1381-5148(00)00079-1
Le, T.-H., Kim, Y., & Yoon, H. (2017). Electrical and Electrochemical Properties of Conducting Polymers. Polymers, 9(12), 150. doi:10.3390/polym9040150
Mattioli-Belmonte, M., Gabbanelli, F., Marcaccio, M., Giantomassi, F., Tarsi, R., Natali, D., … Biagini, G. (2005). Bio-characterisation of tosylate-doped polypyrrole films for biomedical applications. Materials Science and Engineering: C, 25(1), 43-49. doi:10.1016/j.msec.2004.04.002
Sabouraud, G., Sadki, S., & Brodie, N. (2000). The mechanisms of pyrrole electropolymerization. Chemical Society Reviews, 29(5), 283-293. doi:10.1039/a807124a
Li, C., Bai, H., & Shi, G. (2009). Conducting polymer nanomaterials: electrosynthesis and applications. Chemical Society Reviews, 38(8), 2397. doi:10.1039/b816681c
Aznar-Cervantes, S., Roca, M. I., Martinez, J. G., Meseguer-Olmo, L., Cenis, J. L., Moraleda, J. M., & Otero, T. F. (2012). Fabrication of conductive electrospun silk fibroin scaffolds by coating with polypyrrole for biomedical applications. Bioelectrochemistry, 85, 36-43. doi:10.1016/j.bioelechem.2011.11.008
Sun, X., Peng, J., Zhou, J., Wang, Y., Cheng, L., & Wu, Z. (2016). Preparation of polypyrrole-embedded electrospun poly(lactic acid) nanofibrous scaffolds for nerve tissue engineering. Neural Regeneration Research, 11(10), 1644. doi:10.4103/1673-5374.193245
George, P. M., Lyckman, A. W., LaVan, D. A., Hegde, A., Leung, Y., Avasare, R., … Sur, M. (2005). Fabrication and biocompatibility of polypyrrole implants suitable for neural prosthetics. Biomaterials, 26(17), 3511-3519. doi:10.1016/j.biomaterials.2004.09.037
Lunt, J. (1998). Large-scale production, properties and commercial applications of polylactic acid polymers. Polymer Degradation and Stability, 59(1-3), 145-152. doi:10.1016/s0141-3910(97)00148-1
Ramot, Y., Haim-Zada, M., Domb, A. J., & Nyska, A. (2016). Biocompatibility and safety of PLA and its copolymers. Advanced Drug Delivery Reviews, 107, 153-162. doi:10.1016/j.addr.2016.03.012
Da Silva, D., Kaduri, M., Poley, M., Adir, O., Krinsky, N., Shainsky-Roitman, J., & Schroeder, A. (2018). Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic systems. Chemical Engineering Journal, 340, 9-14. doi:10.1016/j.cej.2018.01.010
Wan, Y., & Wen, D. (2005). Preparation and characterization of porous conducting poly(dl-lactide) composite membranes. Journal of Membrane Science, 246(2), 193-201. doi:10.1016/j.memsci.2004.07.032
Shi, G., Rouabhia, M., Wang, Z., Dao, L. H., & Zhang, Z. (2004). A novel electrically conductive and biodegradable composite made of polypyrrole nanoparticles and polylactide. Biomaterials, 25(13), 2477-2488. doi:10.1016/j.biomaterials.2003.09.032
Wang, Z., Roberge, C., Dao, L. H., Wan, Y., Shi, G., Rouabhia, M., … Zhang, Z. (2004). In vivo evaluation of a novel electrically conductive polypyrrole/poly(D,L-lactide) composite and polypyrrole-coated poly(D,L-lactide-co-glycolide) membranes. Journal of Biomedical Materials Research, 70A(1), 28-38. doi:10.1002/jbm.a.30047
Woodruff, M. A., & Hutmacher, D. W. (2010). The return of a forgotten polymer—Polycaprolactone in the 21st century. Progress in Polymer Science, 35(10), 1217-1256. doi:10.1016/j.progpolymsci.2010.04.002
Lam, C. X. F., Hutmacher, D. W., Schantz, J.-T., Woodruff, M. A., & Teoh, S. H. (2009). Evaluation of polycaprolactone scaffold degradation for 6 monthsin vitroandin vivo. Journal of Biomedical Materials Research Part A, 90A(3), 906-919. doi:10.1002/jbm.a.32052
Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., … Cardona, A. (2012). Fiji: an open-source platform for biological-image analysis. Nature Methods, 9(7), 676-682. doi:10.1038/nmeth.2019
Callens, S. J. P., Uyttendaele, R. J. C., Fratila-Apachitei, L. E., & Zadpoor, A. A. (2020). Substrate curvature as a cue to guide spatiotemporal cell and tissue organization. Biomaterials, 232, 119739. doi:10.1016/j.biomaterials.2019.119739
Rolli, C. G., Nakayama, H., Yamaguchi, K., Spatz, J. P., Kemkemer, R., & Nakanishi, J. (2012). Switchable adhesive substrates: Revealing geometry dependence in collective cell behavior. Biomaterials, 33(8), 2409-2418. doi:10.1016/j.biomaterials.2011.12.012
Doxzen, K., Vedula, S. R. K., Leong, M. C., Hirata, H., Gov, N. S., Kabla, A. J., … Lim, C. T. (2013). Guidance of collective cell migration by substrate geometry. Integrative Biology, 5(8), 1026. doi:10.1039/c3ib40054a
Kim, Y., Haftel, V. K., Kumar, S., & Bellamkonda, R. V. (2008). The role of aligned polymer fiber-based constructs in the bridging of long peripheral nerve gaps. Biomaterials, 29(21), 3117-3127. doi:10.1016/j.biomaterials.2008.03.042
Schnell, E., Klinkhammer, K., Balzer, S., Brook, G., Klee, D., Dalton, P., & Mey, J. (2007). Guidance of glial cell migration and axonal growth on electrospun nanofibers of poly-ε-caprolactone and a collagen/poly-ε-caprolactone blend. Biomaterials, 28(19), 3012-3025. doi:10.1016/j.biomaterials.2007.03.009
[-]