- -

Applications of Zeolites to C1 Chemistry: Recent Advances, Challenges, and Opportunities

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by


Applications of Zeolites to C1 Chemistry: Recent Advances, Challenges, and Opportunities

Show full item record

Zhang, Q.; Yu, J.; Corma Canós, A. (2020). Applications of Zeolites to C1 Chemistry: Recent Advances, Challenges, and Opportunities. Advanced Materials. 32(44):1-31. https://doi.org/10.1002/adma.202002927

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/165611

Files in this item

Item Metadata

Title: Applications of Zeolites to C1 Chemistry: Recent Advances, Challenges, and Opportunities
Author: Zhang, Qiang Yu, Jihong Corma Canós, Avelino
UPV Unit: Universitat Politècnica de València. Departamento de Química - Departament de Química
Issued date:
[EN] C1 chemistry, which is the catalytic transformation of C1 molecules including CO, CO2, CH4, CH3OH, and HCOOH, plays an important role in providing energy and chemical supplies while meeting environmental requirements. ...[+]
Subjects: C1 chemistry , Catalytic transformations , Hydrocarbons , Oxygenates , Zeolites
Copyrigths: Reserva de todos los derechos
Advanced Materials. (issn: 0935-9648 )
DOI: 10.1002/adma.202002927
John Wiley & Sons
Publisher version: https://doi.org/10.1002/adma.202002927
Project ID:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-101247-B-I00/ES/RECONOCIMIENTO MOLECULAR EN CATALIZADORES SOLIDOS/
The authors thank the National Natural Science Foundation of China (Grants 21920102005, 21835002, and 21621001), the National Key Research and Development Program of China (Grant 2016YFB0701100), the 111 Project of China ...[+]
Type: Artículo


Zhou, W., Cheng, K., Kang, J., Zhou, C., Subramanian, V., Zhang, Q., & Wang, Y. (2019). New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels. Chemical Society Reviews, 48(12), 3193-3228. doi:10.1039/c8cs00502h

Martínez-Vargas, D. X., Sandoval-Rangel, L., Campuzano-Calderon, O., Romero-Flores, M., Lozano, F. J., Nigam, K. D. P., … Montesinos-Castellanos, A. (2019). Recent Advances in Bifunctional Catalysts for the Fischer–Tropsch Process: One-Stage Production of Liquid Hydrocarbons from Syngas. Industrial & Engineering Chemistry Research, 58(35), 15872-15901. doi:10.1021/acs.iecr.9b01141

Du, C., Lu, P., & Tsubaki, N. (2019). Efficient and New Production Methods of Chemicals and Liquid Fuels by Carbon Monoxide Hydrogenation. ACS Omega, 5(1), 49-56. doi:10.1021/acsomega.9b03577 [+]
Zhou, W., Cheng, K., Kang, J., Zhou, C., Subramanian, V., Zhang, Q., & Wang, Y. (2019). New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels. Chemical Society Reviews, 48(12), 3193-3228. doi:10.1039/c8cs00502h

Martínez-Vargas, D. X., Sandoval-Rangel, L., Campuzano-Calderon, O., Romero-Flores, M., Lozano, F. J., Nigam, K. D. P., … Montesinos-Castellanos, A. (2019). Recent Advances in Bifunctional Catalysts for the Fischer–Tropsch Process: One-Stage Production of Liquid Hydrocarbons from Syngas. Industrial & Engineering Chemistry Research, 58(35), 15872-15901. doi:10.1021/acs.iecr.9b01141

Du, C., Lu, P., & Tsubaki, N. (2019). Efficient and New Production Methods of Chemicals and Liquid Fuels by Carbon Monoxide Hydrogenation. ACS Omega, 5(1), 49-56. doi:10.1021/acsomega.9b03577

Tomkins, P., Ranocchiari, M., & van Bokhoven, J. A. (2017). Direct Conversion of Methane to Methanol under Mild Conditions over Cu-Zeolites and beyond. Accounts of Chemical Research, 50(2), 418-425. doi:10.1021/acs.accounts.6b00534

Dai, W., Wang, X., Wu, G., Guan, N., Hunger, M., & Li, L. (2011). Methanol-to-Olefin Conversion on Silicoaluminophosphate Catalysts: Effect of Brønsted Acid Sites and Framework Structures. ACS Catalysis, 1(4), 292-299. doi:10.1021/cs200016u

Galadima, A., & Muraza, O. (2015). Recent Developments on Silicoaluminates and Silicoaluminophosphates in the Methanol-to-Propylene Reaction: A Mini Review. Industrial & Engineering Chemistry Research, 54(18), 4891-4905. doi:10.1021/acs.iecr.5b00338

Preuster, P., & Albert, J. (2018). Biogenic Formic Acid as a Green Hydrogen Carrier. Energy Technology, 6(3), 501-509. doi:10.1002/ente.201700572

Onishi, N., Iguchi, M., Yang, X., Kanega, R., Kawanami, H., Xu, Q., & Himeda, Y. (2018). Development of Effective Catalysts for Hydrogen Storage Technology Using Formic Acid. Advanced Energy Materials, 9(23), 1801275. doi:10.1002/aenm.201801275

Yarulina, I., Chowdhury, A. D., Meirer, F., Weckhuysen, B. M., & Gascon, J. (2018). Recent trends and fundamental insights in the methanol-to-hydrocarbons process. Nature Catalysis, 1(6), 398-411. doi:10.1038/s41929-018-0078-5

Valentini, F., Kozell, V., Petrucci, C., Marrocchi, A., Gu, Y., Gelman, D., & Vaccaro, L. (2019). Formic acid, a biomass-derived source of energy and hydrogen for biomass upgrading. Energy & Environmental Science, 12(9), 2646-2664. doi:10.1039/c9ee01747j

Sun, L., Wang, Y., Guan, N., & Li, L. (2019). Methane Activation and Utilization: Current Status and Future Challenges. Energy Technology, 8(8), 1900826. doi:10.1002/ente.201900826

Liu, J., He, Y., Yan, L., Ma, C., Zhang, C., Xiang, H., … Li, Y. (2020). Nano-ZrO2 as hydrogenation phase in bi-functional catalyst for syngas aromatization. Fuel, 263, 116803. doi:10.1016/j.fuel.2019.116803

Li, W., He, Y., Li, H., Shen, D., Xing, C., & Yang, R. (2017). Spatial confinement effects of zeolite-based micro-capsule catalyst on tuned Fischer-Tropsch synthesis product distribution. Catalysis Communications, 98, 98-101. doi:10.1016/j.catcom.2017.05.008

Lin, Q., Zhang, Q., Yang, G., Chen, Q., Li, J., Wei, Q., … Tsubaki, N. (2016). Insights into the promotional roles of palladium in structure and performance of cobalt-based zeolite capsule catalyst for direct synthesis of C5–C11 iso-paraffins from syngas. Journal of Catalysis, 344, 378-388. doi:10.1016/j.jcat.2016.10.012

Kang, J., Wang, X., Peng, X., Yang, Y., Cheng, K., Zhang, Q., & Wang, Y. (2016). Mesoporous Zeolite Y-Supported Co Nanoparticles as Efficient Fischer–Tropsch Catalysts for Selective Synthesis of Diesel Fuel. Industrial & Engineering Chemistry Research, 55(51), 13008-13019. doi:10.1021/acs.iecr.6b03810

Cai, M., Palčić, A., Subramanian, V., Moldovan, S., Ersen, O., Valtchev, V., … Khodakov, A. Y. (2016). Direct dimethyl ether synthesis from syngas on copper–zeolite hybrid catalysts with a wide range of zeolite particle sizes. Journal of Catalysis, 338, 227-238. doi:10.1016/j.jcat.2016.02.025

Schwach, P., Pan, X., & Bao, X. (2017). Direct Conversion of Methane to Value-Added Chemicals over Heterogeneous Catalysts: Challenges and Prospects. Chemical Reviews, 117(13), 8497-8520. doi:10.1021/acs.chemrev.6b00715

Li, Z., & Xu, Q. (2017). Metal-Nanoparticle-Catalyzed Hydrogen Generation from Formic Acid. Accounts of Chemical Research, 50(6), 1449-1458. doi:10.1021/acs.accounts.7b00132

Corma, A. (1995). Inorganic Solid Acids and Their Use in Acid-Catalyzed Hydrocarbon Reactions. Chemical Reviews, 95(3), 559-614. doi:10.1021/cr00035a006

Martínez, C., & Corma, A. (2011). Inorganic molecular sieves: Preparation, modification and industrial application in catalytic processes. Coordination Chemistry Reviews, 255(13-14), 1558-1580. doi:10.1016/j.ccr.2011.03.014

Li, Y., Li, L., & Yu, J. (2017). Applications of Zeolites in Sustainable Chemistry. Chem, 3(6), 928-949. doi:10.1016/j.chempr.2017.10.009

Database of Zeolite Structures http://www.iza‐structure.org/databases/(accessed: May 2020).

Kasipandi, S., & Bae, J. W. (2019). Recent Advances in Direct Synthesis of Value‐Added Aromatic Chemicals from Syngas by Cascade Reactions over Bifunctional Catalysts. Advanced Materials, 31(34), 1803390. doi:10.1002/adma.201803390

Masudi, A., Jusoh, N. W. C., & Muraza, O. (2020). Opportunities for less-explored zeolitic materials in the syngas-to-olefins pathway over nanoarchitectured catalysts: a mini review. Catalysis Science & Technology, 10(6), 1582-1596. doi:10.1039/c9cy01875a

Saravanan, K., Ham, H., Tsubaki, N., & Bae, J. W. (2017). Recent progress for direct synthesis of dimethyl ether from syngas on the heterogeneous bifunctional hybrid catalysts. Applied Catalysis B: Environmental, 217, 494-522. doi:10.1016/j.apcatb.2017.05.085

Sun, Y., Han, X., & Zhao, Z. (2019). Direct coating copper–zinc–aluminum oxalate with H-ZSM-5 to fabricate a highly efficient capsule-structured bifunctional catalyst for dimethyl ether production from syngas. Catalysis Science & Technology, 9(14), 3763-3770. doi:10.1039/c9cy00980a

Liu, C., Liu, S., Zhou, H., Su, J., Jiao, W., Zhang, L., … Xie, Z. (2019). Selective conversion of syngas to aromatics over metal oxide/HZSM-5 catalyst by matching the activity between CO hydrogenation and aromatization. Applied Catalysis A: General, 585, 117206. doi:10.1016/j.apcata.2019.117206

Friedel, R. A., & Anderson, R. B. (1950). Composition of Synthetic Liquid Fuels. I. Product Distribution and Analysis of C5—C8 Paraffin Isomers from Cobalt Catalyst1. Journal of the American Chemical Society, 72(3), 1212-1215. doi:10.1021/ja01159a039

Puskas, I., & Hurlbut, R. . (2003). Comments about the causes of deviations from the Anderson–Schulz–Flory distribution of the Fischer–Tropsch reaction products. Catalysis Today, 84(1-2), 99-109. doi:10.1016/s0920-5861(03)00305-5

Leckel, D. (2009). Diesel Production from Fischer−Tropsch: The Past, the Present, and New Concepts. Energy & Fuels, 23(5), 2342-2358. doi:10.1021/ef900064c

Torres Galvis, H. M., & de Jong, K. P. (2013). Catalysts for Production of Lower Olefins from Synthesis Gas: A Review. ACS Catalysis, 3(9), 2130-2149. doi:10.1021/cs4003436

Zhu, Y., Pan, X., Jiao, F., Li, J., Yang, J., Ding, M., … Bao, X. (2017). Role of Manganese Oxide in Syngas Conversion to Light Olefins. ACS Catalysis, 7(4), 2800-2804. doi:10.1021/acscatal.7b00221

Xu, Y., Liu, D., & Liu, X. (2018). Conversion of syngas toward aromatics over hybrid Fe-based Fischer-Tropsch catalysts and HZSM-5 zeolites. Applied Catalysis A: General, 552, 168-183. doi:10.1016/j.apcata.2018.01.012

Yang, G., He, J., Zhang, Y., Yoneyama, Y., Tan, Y., Han, Y., … Tsubaki, N. (2008). Design and Modification of Zeolite Capsule Catalyst, A Confined Reaction Field, and its Application in One-Step Isoparaffin Synthesis from Syngas. Energy & Fuels, 22(3), 1463-1468. doi:10.1021/ef700682y

Duyckaerts, N., Trotuş, I.-T., Swertz, A.-C., Schüth, F., & Prieto, G. (2016). In Situ Hydrocracking of Fischer–Tropsch Hydrocarbons: CO-Prompted Diverging Reaction Pathways for Paraffin and α-Olefin Primary Products. ACS Catalysis, 6(7), 4229-4238. doi:10.1021/acscatal.6b00904

Jiao, F., Li, J., Pan, X., Xiao, J., Li, H., Ma, H., … Bao, X. (2016). Selective conversion of syngas to light olefins. Science, 351(6277), 1065-1068. doi:10.1126/science.aaf1835

Mazonde, B., Cheng, S., Zhang, G., Javed, M., Gao, W., Zhang, Y., … Xing, C. (2018). A solvent-free in situ synthesis of a hierarchical Co-based zeolite catalyst and its application to tuning Fischer–Tropsch product selectivity. Catalysis Science & Technology, 8(11), 2802-2808. doi:10.1039/c8cy00243f

Varma, R. L., Bakhshi, N. N., & Mathews, J. F. (1990). Selective synthesis of hydrocarbons from syngas using nickel/ZSM-5 catalysts. Industrial & Engineering Chemistry Research, 29(9), 1753-1757. doi:10.1021/ie00105a002

Wang, N., Sun, Q., & Yu, J. (2018). Ultrasmall Metal Nanoparticles Confined within Crystalline Nanoporous Materials: A Fascinating Class of Nanocatalysts. Advanced Materials, 31(1), 1803966. doi:10.1002/adma.201803966

Nieskens, D. L. S., Lunn, J. D., & Malek, A. (2018). Understanding the Enhanced Lifetime of SAPO-34 in a Direct Syngas-to-Hydrocarbons Process. ACS Catalysis, 9(1), 691-700. doi:10.1021/acscatal.8b03465

Ni, Y., Liu, Y., Chen, Z., Yang, M., Liu, H., He, Y., … Liu, Z. (2018). Realizing and Recognizing Syngas-to-Olefins Reaction via a Dual-Bed Catalyst. ACS Catalysis, 9(2), 1026-1032. doi:10.1021/acscatal.8b04794

Wang, S., Wang, P., Shi, D., He, S., Zhang, L., Yan, W., … Fan, W. (2020). Direct Conversion of Syngas into Light Olefins with Low CO2 Emission. ACS Catalysis, 10(3), 2046-2059. doi:10.1021/acscatal.9b04629

Liu, T., Lu, T., Yang, M., Zhou, L., Yang, X., Gao, B., & Su, Y. (2019). Enhanced Catalytic Performance of CuO–ZnO–Al2O3/SAPO-5 Bifunctional Catalysts for Direct Conversion of Syngas to Light Hydrocarbons and Insights into the Role of Zeolite Acidity. Catalysis Letters, 149(12), 3338-3348. doi:10.1007/s10562-019-02901-9

Li, N., Jiao, F., Pan, X., Ding, Y., Feng, J., & Bao, X. (2018). Size Effects of ZnO Nanoparticles in Bifunctional Catalysts for Selective Syngas Conversion. ACS Catalysis, 9(2), 960-966. doi:10.1021/acscatal.8b04105

Arslan, M. T., Qureshi, B. A., Gilani, S. Z. A., Cai, D., Ma, Y., Usman, M., … Wei, F. (2019). Single-Step Conversion of H2-Deficient Syngas into High Yield of Tetramethylbenzene. ACS Catalysis, 9(3), 2203-2212. doi:10.1021/acscatal.8b04548

Su, J., Wang, D., Wang, Y., Zhou, H., Liu, C., Liu, S., … He, M. (2018). Direct Conversion of Syngas into Light Olefins over Zirconium-Doped Indium(III) Oxide and SAPO-34 Bifunctional Catalysts: Design of Oxide Component and Construction of Reaction Network. ChemCatChem, 10(7), 1536-1541. doi:10.1002/cctc.201702054

Liu, X., Zhou, W., Yang, Y., Cheng, K., Kang, J., Zhang, L., … Wang, Y. (2018). Design of efficient bifunctional catalysts for direct conversion of syngas into lower olefins via methanol/dimethyl ether intermediates. Chemical Science, 9(20), 4708-4718. doi:10.1039/c8sc01597j

Cheng, K., Zhou, W., Kang, J., He, S., Shi, S., Zhang, Q., … Wang, Y. (2017). Bifunctional Catalysts for One-Step Conversion of Syngas into Aromatics with Excellent Selectivity and Stability. Chem, 3(2), 334-347. doi:10.1016/j.chempr.2017.05.007

Plana-Pallejà, J., Abelló, S., Berrueco, C., & Montané, D. (2016). Effect of zeolite acidity and mesoporosity on the activity of Fischer–Tropsch Fe/ZSM-5 bifunctional catalysts. Applied Catalysis A: General, 515, 126-135. doi:10.1016/j.apcata.2016.02.004

Zhao, B., Zhai, P., Wang, P., Li, J., Li, T., Peng, M., … Ma, D. (2017). Direct Transformation of Syngas to Aromatics over Na-Zn-Fe 5 C 2 and Hierarchical HZSM-5 Tandem Catalysts. Chem, 3(2), 323-333. doi:10.1016/j.chempr.2017.06.017

Yang, X., Wang, R., Yang, J., Qian, W., Zhang, Y., Li, X., … Chen, D. (2020). Exploring the Reaction Paths in the Consecutive Fe-Based FT Catalyst–Zeolite Process for Syngas Conversion. ACS Catalysis, 10(6), 3797-3806. doi:10.1021/acscatal.9b05449

Huang, J., Wang, W., Fei, Z., Liu, Q., Chen, X., Zhang, Z., … Qiao, X. (2019). Enhanced Light Olefin Production in Chloromethane Coupling over Mg/Ca Modified Durable HZSM-5 Catalyst. Industrial & Engineering Chemistry Research, 58(13), 5131-5139. doi:10.1021/acs.iecr.8b05544

Li, J., He, Y., Tan, L., Zhang, P., Peng, X., Oruganti, A., … Tsubaki, N. (2018). Integrated tuneable synthesis of liquid fuels via Fischer–Tropsch technology. Nature Catalysis, 1(10), 787-793. doi:10.1038/s41929-018-0144-z

Subramanian, V., Zholobenko, V. L., Cheng, K., Lancelot, C., Heyte, S., Thuriot, J., … Khodakov, A. Y. (2015). The Role of Steric Effects and Acidity in the Direct Synthesis of iso -Paraffins from Syngas on Cobalt Zeolite Catalysts. ChemCatChem, 8(2), 380-389. doi:10.1002/cctc.201500777

Jiao, F., Pan, X., Gong, K., Chen, Y., Li, G., & Bao, X. (2018). Shape‐Selective Zeolites Promote Ethylene Formation from Syngas via a Ketene Intermediate. Angewandte Chemie International Edition, 57(17), 4692-4696. doi:10.1002/anie.201801397

Li, N., Jiao, F., Pan, X., Chen, Y., Feng, J., Li, G., & Bao, X. (2019). High‐Quality Gasoline Directly from Syngas by Dual Metal Oxide–Zeolite (OX‐ZEO) Catalysis. Angewandte Chemie International Edition, 58(22), 7400-7404. doi:10.1002/anie.201902990

Boronat, M., & Corma, A. (2019). What Is Measured When Measuring Acidity in Zeolites with Probe Molecules? ACS Catalysis, 9(2), 1539-1548. doi:10.1021/acscatal.8b04317

Li, C., Vidal-Moya, A., Miguel, P. J., Dedecek, J., Boronat, M., & Corma, A. (2018). Selective Introduction of Acid Sites in Different Confined Positions in ZSM-5 and Its Catalytic Implications. ACS Catalysis, 8(8), 7688-7697. doi:10.1021/acscatal.8b02112

Su, J., Zhou, H., Liu, S., Wang, C., Jiao, W., Wang, Y., … He, M. (2019). Syngas to light olefins conversion with high olefin/paraffin ratio using ZnCrOx/AlPO-18 bifunctional catalysts. Nature Communications, 10(1). doi:10.1038/s41467-019-09336-1

Noh, G., Shi, Z., Zones, S. I., & Iglesia, E. (2018). Isomerization and β-scission reactions of alkanes on bifunctional metal-acid catalysts: Consequences of confinement and diffusional constraints on reactivity and selectivity. Journal of Catalysis, 368, 389-410. doi:10.1016/j.jcat.2018.03.033

Noh, G., Zones, S. I., & Iglesia, E. (2018). Consequences of Acid Strength and Diffusional Constraints for Alkane Isomerization and β-Scission Turnover Rates and Selectivities on Bifunctional Metal-Acid Catalysts. The Journal of Physical Chemistry C, 122(44), 25475-25497. doi:10.1021/acs.jpcc.8b08460

Yang, J., Pan, X., Jiao, F., Li, J., & Bao, X. (2017). Direct conversion of syngas to aromatics. Chemical Communications, 53(81), 11146-11149. doi:10.1039/c7cc04768a

Qiu, T., Wang, L., Lv, S., Sun, B., Zhang, Y., Liu, Z., … Li, J. (2017). SAPO-34 zeolite encapsulated Fe3C nanoparticles as highly selective Fischer-Tropsch catalysts for the production of light olefins. Fuel, 203, 811-816. doi:10.1016/j.fuel.2017.05.043

Di, Z., Zhao, T., Feng, X., & Luo, M. (2018). A Newly Designed Core-Shell-Like Zeolite Capsule Catalyst for Synthesis of Light Olefins from Syngas via Fischer–Tropsch Synthesis Reaction. Catalysis Letters, 149(2), 441-448. doi:10.1007/s10562-018-2624-9

Přech, J., Strossi Pedrolo, D. R., Marcilio, N. R., Gu, B., Peregudova, A. S., Mazur, M., … Khodakov, A. Y. (2020). Core–Shell Metal Zeolite Composite Catalysts for In Situ Processing of Fischer–Tropsch Hydrocarbons to Gasoline Type Fuels. ACS Catalysis, 10(4), 2544-2555. doi:10.1021/acscatal.9b04421

Weber, J. L., Krans, N. A., Hofmann, J. P., Hensen, E. J. M., Zecevic, J., de Jongh, P. E., & de Jong, K. P. (2020). Effect of proximity and support material on deactivation of bifunctional catalysts for the conversion of synthesis gas to olefins and aromatics. Catalysis Today, 342, 161-166. doi:10.1016/j.cattod.2019.02.002

Wang, T., Xu, Y., Shi, C., Jiang, F., Liu, B., & Liu, X. (2019). Direct production of aromatics from syngas over a hybrid FeMn Fischer–Tropsch catalyst and HZSM-5 zeolite: local environment effect and mechanism-directed tuning of the aromatic selectivity. Catalysis Science & Technology, 9(15), 3933-3946. doi:10.1039/c9cy00750d

Zhang, Q., Chen, G., Wang, Y., Chen, M., Guo, G., Shi, J., … Yu, J. (2018). High-Quality Single-Crystalline MFI-Type Nanozeolites: A Facile Synthetic Strategy and MTP Catalytic Studies. Chemistry of Materials, 30(8), 2750-2758. doi:10.1021/acs.chemmater.8b00527

Zhang, Q., Mayoral, A., Terasaki, O., Zhang, Q., Ma, B., Zhao, C., … Yu, J. (2019). Amino Acid-Assisted Construction of Single-Crystalline Hierarchical Nanozeolites via Oriented-Aggregation and Intraparticle Ripening. Journal of the American Chemical Society, 141(9), 3772-3776. doi:10.1021/jacs.8b11734

Wen, C., Wang, C., Chen, L., Zhang, X., Liu, Q., & Ma, L. (2019). Effect of hierarchical ZSM-5 zeolite support on direct transformation from syngas to aromatics over the iron-based catalyst. Fuel, 244, 492-498. doi:10.1016/j.fuel.2019.02.041

Cheng, K., Zhang, L., Kang, J., Peng, X., Zhang, Q., & Wang, Y. (2014). Selective Transformation of Syngas into Gasoline-Range Hydrocarbons over Mesoporous H-ZSM-5-Supported Cobalt Nanoparticles. Chemistry - A European Journal, 21(5), 1928-1937. doi:10.1002/chem.201405277

Peng, X., Cheng, K., Kang, J., Gu, B., Yu, X., Zhang, Q., & Wang, Y. (2015). Impact of Hydrogenolysis on the Selectivity of the Fischer-Tropsch Synthesis: Diesel Fuel Production over Mesoporous Zeolite-Y-Supported Cobalt Nanoparticles. Angewandte Chemie International Edition, 54(15), 4553-4556. doi:10.1002/anie.201411708

Flores, C., Batalha, N., Ordomsky, V. V., Zholobenko, V. L., Baaziz, W., Marcilio, N. R., & Khodakov, A. Y. (2018). Direct Production of Iso-Paraffins from Syngas over Hierarchical Cobalt-ZSM-5 Nanocomposites Synthetized by using Carbon Nanotubes as Sacrificial Templates. ChemCatChem, 10(10), 2291-2299. doi:10.1002/cctc.201701848

Li, H., Hou, B., Wang, J., Qin, C., Zhong, M., Huang, X., … Li, D. (2018). Direct conversion of syngas to isoparaffins over hierarchical beta zeolite supported cobalt catalyst for Fischer-Tropsch synthesis. Molecular Catalysis, 459, 106-112. doi:10.1016/j.mcat.2018.08.002

Min, J.-E., Kim, S., Kwak, G., Kim, Y. T., Han, S. J., Lee, Y., … Kim, S. K. (2018). Role of mesopores in Co/ZSM-5 for the direct synthesis of liquid fuel by Fischer–Tropsch synthesis. Catalysis Science & Technology, 8(24), 6346-6359. doi:10.1039/c8cy01931b

Wang, Y., Gao, W., Kazumi, S., Fang, Y., Shi, L., Yoneyama, Y., … Tsubaki, N. (2019). Solvent-free anchoring nano-sized zeolite on layered double hydroxide for highly selective transformation of syngas to gasoline-range hydrocarbons. Fuel, 253, 249-256. doi:10.1016/j.fuel.2019.05.022

Xu, Y., Liu, J., Wang, J., Ma, G., Lin, J., Yang, Y., … Ding, M. (2019). Selective Conversion of Syngas to Aromatics over Fe3O4@MnO2 and Hollow HZSM-5 Bifunctional Catalysts. ACS Catalysis, 9(6), 5147-5156. doi:10.1021/acscatal.9b01045

Xu, Y., Wang, J., Ma, G., Lin, J., & Ding, M. (2019). Designing of Hollow ZSM-5 with Controlled Mesopore Sizes To Boost Gasoline Production from Syngas. ACS Sustainable Chemistry & Engineering, 7(21), 18125-18132. doi:10.1021/acssuschemeng.9b05217

Javed, M., Cheng, S., Zhang, G., Dai, P., Cao, Y., Lu, C., … Shan, S. (2018). Complete encapsulation of zeolite supported Co based core with silicalite-1 shell to achieve high gasoline selectivity in Fischer-Tropsch synthesis. Fuel, 215, 226-231. doi:10.1016/j.fuel.2017.10.042

Javed, M., Zhang, G., Gao, W., Cao, Y., Dai, P., Ji, X., … Sun, J. (2019). From hydrophilic to hydrophobic: A promising approach to tackle high CO2 selectivity of Fe-based Fischer-Tropsch microcapsule catalysts. Catalysis Today, 330, 39-45. doi:10.1016/j.cattod.2018.08.010

Luk, H. T., Mondelli, C., Ferré, D. C., Stewart, J. A., & Pérez-Ramírez, J. (2017). Status and prospects in higher alcohols synthesis from syngas. Chemical Society Reviews, 46(5), 1358-1426. doi:10.1039/c6cs00324a

Zhou, W., Kang, J., Cheng, K., He, S., Shi, J., Zhou, C., … Wang, Y. (2018). Direct Conversion of Syngas into Methyl Acetate, Ethanol, and Ethylene by Relay Catalysis via the Intermediate Dimethyl Ether. Angewandte Chemie International Edition, 57(37), 12012-12016. doi:10.1002/anie.201807113

Cao, Z., Hu, T., Guo, J., Xie, J., Zhang, N., Zheng, J., … Chen, B. H. (2019). Stable and facile ethanol synthesis from syngas in one reactor by tandem combination CuZnAl-HZSM-5, modified-H-Mordenite with CuZnAl catalyst. Fuel, 254, 115542. doi:10.1016/j.fuel.2019.05.125

Wang, C., Zhang, J., Qin, G., Wang, L., Zuidema, E., Yang, Q., … Xiao, F.-S. (2020). Direct Conversion of Syngas to Ethanol within Zeolite Crystals. Chem, 6(3), 646-657. doi:10.1016/j.chempr.2019.12.007

Zhou, H., Zhu, W., Shi, L., Liu, H., Liu, S., Ni, Y., … Liu, Z. (2016). In situ DRIFT study of dimethyl ether carbonylation to methyl acetate on H-mordenite. Journal of Molecular Catalysis A: Chemical, 417, 1-9. doi:10.1016/j.molcata.2016.02.032

Reule, A. A. C., Sawada, J. A., & Semagina, N. (2017). Effect of selective 4-membered ring dealumination on mordenite-catalyzed dimethyl ether carbonylation. Journal of Catalysis, 349, 98-109. doi:10.1016/j.jcat.2017.03.010

Kang, J., He, S., Zhou, W., Shen, Z., Li, Y., Chen, M., … Wang, Y. (2020). Single-pass transformation of syngas into ethanol with high selectivity by triple tandem catalysis. Nature Communications, 11(1). doi:10.1038/s41467-020-14672-8

Boronat, M., Martínez-Sánchez, C., Law, D., & Corma, A. (2008). Enzyme-like Specificity in Zeolites: A Unique Site Position in Mordenite for Selective Carbonylation of Methanol and Dimethyl Ether with CO. Journal of the American Chemical Society, 130(48), 16316-16323. doi:10.1021/ja805607m

CHEUNG, P., BHAN, A., SUNLEY, G., LAW, D., & IGLESIA, E. (2007). Site requirements and elementary steps in dimethyl ether carbonylation catalyzed by acidic zeolites. Journal of Catalysis, 245(1), 110-123. doi:10.1016/j.jcat.2006.09.020

Blasco, T., Boronat, M., Concepción, P., Corma, A., Law, D., & Vidal-Moya, J. A. (2007). Carbonylation of Methanol on Metal–Acid Zeolites: Evidence for a Mechanism Involving a Multisite Active Center. Angewandte Chemie International Edition, 46(21), 3938-3941. doi:10.1002/anie.200700029

LIU, J., XUE, H., HUANG, X., WU, P.-H., HUANG, S.-J., LIU, S.-B., & SHEN, W. (2010). Stability Enhancement of H-Mordenite in Dimethyl Ether Carbonylation to Methyl Acetate by Pre-adsorption of Pyridine. Chinese Journal of Catalysis, 31(7), 729-738. doi:10.1016/s1872-2067(09)60081-4

Xue, H., Huang, X., Zhan, E., Ma, M., & Shen, W. (2013). Selective dealumination of mordenite for enhancing its stability in dimethyl ether carbonylation. Catalysis Communications, 37, 75-79. doi:10.1016/j.catcom.2013.03.033

Li, Y., Sun, Q., Huang, S., Cheng, Z., Cai, K., Lv, J., & Ma, X. (2018). Dimethyl ether carbonylation over pyridine-modified MOR: Enhanced stability influenced by acidity. Catalysis Today, 311, 81-88. doi:10.1016/j.cattod.2017.08.050

Lu, P., Chen, Q., Yang, G., Tan, L., Feng, X., Yao, J., … Tsubaki, N. (2019). Space-Confined Self-Regulation Mechanism from a Capsule Catalyst to Realize an Ethanol Direct Synthesis Strategy. ACS Catalysis, 10(2), 1366-1374. doi:10.1021/acscatal.9b02891

K.Karl B. B.South (Maverick Synfuels) US8779215B2 2014.

Wang, N., Sun, Q., Bai, R., Li, X., Guo, G., & Yu, J. (2016). In Situ Confinement of Ultrasmall Pd Clusters within Nanosized Silicalite-1 Zeolite for Highly Efficient Catalysis of Hydrogen Generation. Journal of the American Chemical Society, 138(24), 7484-7487. doi:10.1021/jacs.6b03518

Liu, L., Lopez-Haro, M., Lopes, C. W., Li, C., Concepcion, P., Simonelli, L., … Corma, A. (2019). Regioselective generation and reactivity control of subnanometric platinum clusters in zeolites for high-temperature catalysis. Nature Materials, 18(8), 866-873. doi:10.1038/s41563-019-0412-6

Liu, L., Díaz, U., Arenal, R., Agostini, G., Concepción, P., & Corma, A. (2016). Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D. Nature Materials, 16(1), 132-138. doi:10.1038/nmat4757

Bacariza, M. C., Graça, I., Lopes, J. M., & Henriques, C. (2019). Tuning Zeolite Properties towards CO 2 Methanation: An Overview. ChemCatChem, 11(10), 2388-2400. doi:10.1002/cctc.201900229

Ronda‐Lloret, M., Rothenberg, G., & Shiju, N. R. (2019). A Critical Look at Direct Catalytic Hydrogenation of Carbon Dioxide to Olefins. ChemSusChem, 12(17), 3896-3914. doi:10.1002/cssc.201900915

Sreedhar, I., Varun, Y., Singh, S. A., Venugopal, A., & Reddy, B. M. (2019). Developmental trends in CO2 methanation using various catalysts. Catalysis Science & Technology, 9(17), 4478-4504. doi:10.1039/c9cy01234f

Grim, R. G., Huang, Z., Guarnieri, M. T., Ferrell, J. R., Tao, L., & Schaidle, J. A. (2020). Transforming the carbon economy: challenges and opportunities in the convergence of low-cost electricity and reductive CO2 utilization. Energy & Environmental Science, 13(2), 472-494. doi:10.1039/c9ee02410g

Zhong, J., Yang, X., Wu, Z., Liang, B., Huang, Y., & Zhang, T. (2020). State of the art and perspectives in heterogeneous catalysis of CO2 hydrogenation to methanol. Chemical Society Reviews, 49(5), 1385-1413. doi:10.1039/c9cs00614a

Ma, Z., & Porosoff, M. D. (2019). Development of Tandem Catalysts for CO2 Hydrogenation to Olefins. ACS Catalysis, 9(3), 2639-2656. doi:10.1021/acscatal.8b05060

Álvarez, A., Bansode, A., Urakawa, A., Bavykina, A. V., Wezendonk, T. A., Makkee, M., … Kapteijn, F. (2017). Challenges in the Greener Production of Formates/Formic Acid, Methanol, and DME by Heterogeneously Catalyzed CO2 Hydrogenation Processes. Chemical Reviews, 117(14), 9804-9838. doi:10.1021/acs.chemrev.6b00816

Ye, R.-P., Ding, J., Gong, W., Argyle, M. D., Zhong, Q., Wang, Y., … Yao, Y.-G. (2019). CO2 hydrogenation to high-value products via heterogeneous catalysis. Nature Communications, 10(1). doi:10.1038/s41467-019-13638-9

Schneck, F., Schendzielorz, F., Hatami, N., Finger, M., Würtele, C., & Schneider, S. (2018). Photochemically Driven Reverse Water-Gas Shift at Ambient Conditions mediated by a Nickel Pincer Complex. Angewandte Chemie International Edition, 57(44), 14482-14487. doi:10.1002/anie.201803396

Van Santen, R. A., Markvoort, A. J., Filot, I. A. W., Ghouri, M. M., & Hensen, E. J. M. (2013). Mechanism and microkinetics of the Fischer–Tropsch reaction. Physical Chemistry Chemical Physics, 15(40), 17038. doi:10.1039/c3cp52506f

Zhou, C., Shi, J., Zhou, W., Cheng, K., Zhang, Q., Kang, J., & Wang, Y. (2019). Highly Active ZnO-ZrO2 Aerogels Integrated with H-ZSM-5 for Aromatics Synthesis from Carbon Dioxide. ACS Catalysis, 10(1), 302-310. doi:10.1021/acscatal.9b04309

Li, H., Zhang, P., Guo, L., He, Y., Zeng, Y., Thongkam, M., … Tsubaki, N. (2020). A Well‐Defined Core–Shell‐Structured Capsule Catalyst for Direct Conversion of CO 2 into Liquefied Petroleum Gas. ChemSusChem, 13(8), 2060-2065. doi:10.1002/cssc.201903576

Zhang, X., Zhang, A., Jiang, X., Zhu, J., Liu, J., Li, J., … Guo, X. (2019). Utilization of CO2 for aromatics production over ZnO/ZrO2-ZSM-5 tandem catalyst. Journal of CO2 Utilization, 29, 140-145. doi:10.1016/j.jcou.2018.12.002

Chen, J., Wang, X., Wu, D., Zhang, J., Ma, Q., Gao, X., … Zhao, T.-S. (2019). Hydrogenation of CO2 to light olefins on CuZnZr@(Zn-)SAPO-34 catalysts: Strategy for product distribution. Fuel, 239, 44-52. doi:10.1016/j.fuel.2018.10.148

Gao, P., Dang, S., Li, S., Bu, X., Liu, Z., Qiu, M., … Sun, Y. (2017). Direct Production of Lower Olefins from CO2 Conversion via Bifunctional Catalysis. ACS Catalysis, 8(1), 571-578. doi:10.1021/acscatal.7b02649

Gao, J., Jia, C., & Liu, B. (2017). Direct and selective hydrogenation of CO2 to ethylene and propene by bifunctional catalysts. Catalysis Science & Technology, 7(23), 5602-5607. doi:10.1039/c7cy01549f

Dang, S., Li, S., Yang, C., Chen, X., Li, X., Zhong, L., … Sun, Y. (2019). Selective Transformation of CO 2 and H 2 into Lower Olefins over In 2 O 3 ‐ZnZrO x /SAPO‐34 Bifunctional Catalysts. ChemSusChem, 12(15), 3582-3591. doi:10.1002/cssc.201900958

Hwang, A., Le, T. T., Shi, Z., Dai, H., Rimer, J. D., & Bhan, A. (2019). Effects of diffusional constraints on lifetime and selectivity in methanol-to-olefins catalysis on HSAPO-34. Journal of Catalysis, 369, 122-132. doi:10.1016/j.jcat.2018.10.031

Wang, Y., Gao, W., Kazumi, S., Li, H., Yang, G., & Tsubaki, N. (2019). Direct and Oriented Conversion of CO 2 into Value‐Added Aromatics. Chemistry – A European Journal, 25(20), 5149-5153. doi:10.1002/chem.201806165

Wang, Y., Tan, L., Tan, M., Zhang, P., Fang, Y., Yoneyama, Y., … Tsubaki, N. (2018). Rationally Designing Bifunctional Catalysts as an Efficient Strategy To Boost CO2 Hydrogenation Producing Value-Added Aromatics. ACS Catalysis, 9(2), 895-901. doi:10.1021/acscatal.8b01344

Shoinkhorova, T., Dikhtiarenko, A., Ramirez, A., Dutta Chowdhury, A., Caglayan, M., Vittenet, J., … Gascon, J. (2019). Shaping of ZSM-5-Based Catalysts via Spray Drying: Effect on Methanol-to-Olefins Performance. ACS Applied Materials & Interfaces, 11(47), 44133-44143. doi:10.1021/acsami.9b14082

Dokania, A., Dutta Chowdhury, A., Ramirez, A., Telalovic, S., Abou-Hamad, E., Gevers, L., … Gascon, J. (2020). Acidity modification of ZSM-5 for enhanced production of light olefins from CO2. Journal of Catalysis, 381, 347-354. doi:10.1016/j.jcat.2019.11.015

Zhang, J., Zhang, M., Chen, S., Wang, X., Zhou, Z., Wu, Y., … Tan, Y. (2019). Hydrogenation of CO2 into aromatics over a ZnCrOx–zeolite composite catalyst. Chemical Communications, 55(7), 973-976. doi:10.1039/c8cc09019j

Wang, C., Guan, E., Wang, L., Chu, X., Wu, Z., Zhang, J., … Xiao, F.-S. (2019). Product Selectivity Controlled by Nanoporous Environments in Zeolite Crystals Enveloping Rhodium Nanoparticle Catalysts for CO2 Hydrogenation. Journal of the American Chemical Society, 141(21), 8482-8488. doi:10.1021/jacs.9b01555

Chen, Y., Qiu, B., Liu, Y., & Zhang, Y. (2020). An active and stable nickel-based catalyst with embedment structure for CO2 methanation. Applied Catalysis B: Environmental, 269, 118801. doi:10.1016/j.apcatb.2020.118801

Wei, J., Yao, R., Ge, Q., Wen, Z., Ji, X., Fang, C., … Sun, J. (2018). Catalytic Hydrogenation of CO2 to Isoparaffins over Fe-Based Multifunctional Catalysts. ACS Catalysis, 8(11), 9958-9967. doi:10.1021/acscatal.8b02267

Li, Z., Qu, Y., Wang, J., Liu, H., Li, M., Miao, S., & Li, C. (2019). Highly Selective Conversion of Carbon Dioxide to Aromatics over Tandem Catalysts. Joule, 3(2), 570-583. doi:10.1016/j.joule.2018.10.027

Ramirez, A., Dutta Chowdhury, A., Dokania, A., Cnudde, P., Caglayan, M., Yarulina, I., … Gascon, J. (2019). Effect of Zeolite Topology and Reactor Configuration on the Direct Conversion of CO2 to Light Olefins and Aromatics. ACS Catalysis, 9(7), 6320-6334. doi:10.1021/acscatal.9b01466

Bacariza, M. C., Maleval, M., Graça, I., Lopes, J. M., & Henriques, C. (2019). Power-to-methane over Ni/zeolites: Influence of the framework type. Microporous and Mesoporous Materials, 274, 102-112. doi:10.1016/j.micromeso.2018.07.037

Goel, S., Wu, Z., Zones, S. I., & Iglesia, E. (2012). Synthesis and Catalytic Properties of Metal Clusters Encapsulated within Small-Pore (SOD, GIS, ANA) Zeolites. Journal of the American Chemical Society, 134(42), 17688-17695. doi:10.1021/ja307370z

Goodarzi, F., Kang, L., Wang, F. R., Joensen, F., Kegnaes, S., & Mielby, J. (2018). Methanation of Carbon Dioxide over Zeolite-Encapsulated Nickel Nanoparticles. ChemCatChem, 10(7), 1566-1570. doi:10.1002/cctc.201701946

Sápi, A., Kashaboina, U., Ábrahámné, K. B., Gómez-Pérez, J. F., Szenti, I., Halasi, G., … Kónya, Z. (2019). Synergetic of Pt Nanoparticles and H-ZSM-5 Zeolites for Efficient CO2 Activation: Role of Interfacial Sites in High Activity. Frontiers in Materials, 6. doi:10.3389/fmats.2019.00127

Guo, L., Cui, Y., Li, H., Fang, Y., Prasert, R., Wu, J., … Tsubaki, N. (2019). Selective formation of linear-alpha olefins (LAOs) by CO2 hydrogenation over bimetallic Fe/Co-Y catalyst. Catalysis Communications, 130, 105759. doi:10.1016/j.catcom.2019.105759

Quindimil, A., De-La-Torre, U., Pereda-Ayo, B., González-Marcos, J. A., & González-Velasco, J. R. (2018). Ni catalysts with La as promoter supported over Y- and BETA- zeolites for CO2 methanation. Applied Catalysis B: Environmental, 238, 393-403. doi:10.1016/j.apcatb.2018.07.034

Chen, H., Mu, Y., Shao, Y., Chansai, S., Xu, S., Stere, C. E., … Fan, X. (2019). Coupling non-thermal plasma with Ni catalysts supported on BETA zeolite for catalytic CO2 methanation. Catalysis Science & Technology, 9(15), 4135-4145. doi:10.1039/c9cy00590k

Wei, J., Ge, Q., Yao, R., Wen, Z., Fang, C., Guo, L., … Sun, J. (2017). Directly converting CO2 into a gasoline fuel. Nature Communications, 8(1). doi:10.1038/ncomms15174

Gao, P., Li, S., Bu, X., Dang, S., Liu, Z., Wang, H., … Sun, Y. (2017). Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst. Nature Chemistry, 9(10), 1019-1024. doi:10.1038/nchem.2794

Bacariza, M. C., Bértolo, R., Graça, I., Lopes, J. M., & Henriques, C. (2017). The effect of the compensating cation on the catalytic performances of Ni/USY zeolites towards CO2 methanation. Journal of CO2 Utilization, 21, 280-291. doi:10.1016/j.jcou.2017.07.020

Gomez, E., Nie, X., Lee, J. H., Xie, Z., & Chen, J. G. (2019). Tandem Reactions of CO2 Reduction and Ethane Aromatization. Journal of the American Chemical Society, 141(44), 17771-17782. doi:10.1021/jacs.9b08538

Westermann, A., Azambre, B., Bacariza, M. C., Graça, I., Ribeiro, M. F., Lopes, J. M., & Henriques, C. (2015). Insight into CO2 methanation mechanism over NiUSY zeolites: An operando IR study. Applied Catalysis B: Environmental, 174-175, 120-125. doi:10.1016/j.apcatb.2015.02.026

Walspurger, S., Elzinga, G. D., Dijkstra, J. W., Sarić, M., & Haije, W. G. (2014). Sorption enhanced methanation for substitute natural gas production: Experimental results and thermodynamic considerations. Chemical Engineering Journal, 242, 379-386. doi:10.1016/j.cej.2013.12.045

Bacariza, M. C., Graça, I., Lopes, J. M., & Henriques, C. (2018). Enhanced activity of CO2 hydrogenation to CH4 over Ni based zeolites through the optimization of the Si/Al ratio. Microporous and Mesoporous Materials, 267, 9-19. doi:10.1016/j.micromeso.2018.03.010

Ge, H., Zhang, B., Liang, H., Zhang, M., Fang, K., Chen, Y., & Qin, Y. (2020). Photocatalytic conversion of CO2 into light olefins over TiO2 nanotube confined Cu clusters with high ratio of Cu+. Applied Catalysis B: Environmental, 263, 118133. doi:10.1016/j.apcatb.2019.118133

Chen, Z., Hu, Y., Wang, J., Shen, Q., Zhang, Y., Ding, C., … Gaponik, N. (2020). Boosting Photocatalytic CO2 Reduction on CsPbBr3 Perovskite Nanocrystals by Immobilizing Metal Complexes. Chemistry of Materials, 32(4), 1517-1525. doi:10.1021/acs.chemmater.9b04582

Zhou, M., Wang, S., Yang, P., Huang, C., & Wang, X. (2018). Boron Carbon Nitride Semiconductors Decorated with CdS Nanoparticles for Photocatalytic Reduction of CO2. ACS Catalysis, 8(6), 4928-4936. doi:10.1021/acscatal.8b00104

Tong, Y., Zhang, Y., Tong, N., Zhang, Z., Wang, Y., Zhang, X., … Wang, X. (2016). HZSM-5 zeolites containing impurity iron species for the photocatalytic reduction of CO2 with H2O. Catalysis Science & Technology, 6(20), 7579-7585. doi:10.1039/c6cy01237j

Zhu, S., Liang, S., Wang, Y., Zhang, X., Li, F., Lin, H., … Wang, X. (2016). Ultrathin nanosheets of molecular sieve SAPO-5: A new photocatalyst for efficient photocatalytic reduction of CO 2 with H 2 O to methane. Applied Catalysis B: Environmental, 187, 11-18. doi:10.1016/j.apcatb.2016.01.002

Kianička, J., Čík, G., Šeršeň, F., Špánik, I., Sokolík, R., & Filo, J. (2019). Photo-Reduction of CO2 by VIS Light on Polythiophene-ZSM-5 Zeolite Hybrid Photo-Catalyst. Molecules, 24(5), 992. doi:10.3390/molecules24050992

Tong, Y., Chen, L., Ning, S., Tong, N., Zhang, Z., Lin, H., … Wang, X. (2017). Photocatalytic reduction of CO2 to CO over the Ti–Highly dispersed HZSM-5 zeolite containing Fe. Applied Catalysis B: Environmental, 203, 725-730. doi:10.1016/j.apcatb.2016.10.065

Hu, Y., Rakhmawaty, D., Matsuoka, M., Takeuchi, M., & Anpo, M. (2006). Synthesis, characterization and photocatalytic reactivity of Ti-containing micro- and mesoporous materials. Journal of Porous Materials, 13(3-4), 335-340. doi:10.1007/s10934-006-8027-0

Jia, W., Liu, T., Li, Q., & Yang, J. (2019). Highly efficient photocatalytic reduction of CO2 on surface-modified Ti-MCM-41 zeolite. Catalysis Today, 335, 221-227. doi:10.1016/j.cattod.2018.11.046

Olah, G. A. (2005). Beyond Oil and Gas: The Methanol Economy. Angewandte Chemie International Edition, 44(18), 2636-2639. doi:10.1002/anie.200462121

Bonura, G., Migliori, M., Frusteri, L., Cannilla, C., Catizzone, E., Giordano, G., & Frusteri, F. (2018). Acidity control of zeolite functionality on activity and stability of hybrid catalysts during DME production via CO2 hydrogenation. Journal of CO2 Utilization, 24, 398-406. doi:10.1016/j.jcou.2018.01.028

Frusteri, F., Bonura, G., Cannilla, C., Drago Ferrante, G., Aloise, A., Catizzone, E., … Giordano, G. (2015). Stepwise tuning of metal-oxide and acid sites of CuZnZr-MFI hybrid catalysts for the direct DME synthesis by CO2 hydrogenation. Applied Catalysis B: Environmental, 176-177, 522-531. doi:10.1016/j.apcatb.2015.04.032

Bonura, G., Cannilla, C., Frusteri, L., Mezzapica, A., & Frusteri, F. (2017). DME production by CO2 hydrogenation: Key factors affecting the behaviour of CuZnZr/ferrierite catalysts. Catalysis Today, 281, 337-344. doi:10.1016/j.cattod.2016.05.057

Ateka, A., Ereña, J., Bilbao, J., & Aguayo, A. T. (2019). Strategies for the Intensification of CO2 Valorization in the One-Step Dimethyl Ether Synthesis Process. Industrial & Engineering Chemistry Research, 59(2), 713-722. doi:10.1021/acs.iecr.9b05749

Sánchez-Contador, M., Ateka, A., Aguayo, A. T., & Bilbao, J. (2018). Direct synthesis of dimethyl ether from CO and CO2 over a core-shell structured CuO-ZnO-ZrO2@SAPO-11 catalyst. Fuel Processing Technology, 179, 258-268. doi:10.1016/j.fuproc.2018.07.009

Frusteri, F., Migliori, M., Cannilla, C., Frusteri, L., Catizzone, E., Aloise, A., … Bonura, G. (2017). Direct CO 2 -to-DME hydrogenation reaction: New evidences of a superior behaviour of FER-based hybrid systems to obtain high DME yield. Journal of CO2 Utilization, 18, 353-361. doi:10.1016/j.jcou.2017.01.030

Dubois, J.-L., Sayama, K., & Arakawa, H. (1992). Conversion of CO2to Dimethylether and Methanol over Hybrid Catalysts. Chemistry Letters, 21(7), 1115-1118. doi:10.1246/cl.1992.1115

Graciani, J., Mudiyanselage, K., Xu, F., Baber, A. E., Evans, J., Senanayake, S. D., … Rodriguez, J. A. (2014). Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO 2. Science, 345(6196), 546-550. doi:10.1126/science.1253057

Shih, C. F., Zhang, T., Li, J., & Bai, C. (2018). Powering the Future with Liquid Sunshine. Joule, 2(10), 1925-1949. doi:10.1016/j.joule.2018.08.016

Tackett, B. M., Gomez, E., & Chen, J. G. (2019). Net reduction of CO2 via its thermocatalytic and electrocatalytic transformation reactions in standard and hybrid processes. Nature Catalysis, 2(5), 381-386. doi:10.1038/s41929-019-0266-y

Li, H., Qiu, C., Ren, S., Dong, Q., Zhang, S., Zhou, F., … Yu, M. (2020). Na + -gated water-conducting nanochannels for boosting CO 2 conversion to liquid fuels. Science, 367(6478), 667-671. doi:10.1126/science.aaz6053

Moore, T. A. (2012). Coalbed methane: A review. International Journal of Coal Geology, 101, 36-81. doi:10.1016/j.coal.2012.05.011

Konno, Y., Fujii, T., Sato, A., Akamine, K., Naiki, M., Masuda, Y., … Nagao, J. (2017). Key Findings of the World’s First Offshore Methane Hydrate Production Test off the Coast of Japan: Toward Future Commercial Production. Energy & Fuels, 31(3), 2607-2616. doi:10.1021/acs.energyfuels.6b03143

Hammond, C., Jenkins, R. L., Dimitratos, N., Lopez-Sanchez, J. A., ab Rahim, M. H., Forde, M. M., … Hutchings, G. J. (2012). Catalytic and Mechanistic Insights of the Low-Temperature Selective Oxidation of Methane over Cu-Promoted Fe-ZSM-5. Chemistry - A European Journal, 18(49), 15735-15745. doi:10.1002/chem.201202802

Raynes, S., Shah, M. A., & Taylor, R. A. (2019). Direct conversion of methane to methanol with zeolites: towards understanding the role of extra-framework d-block metal and zeolite framework type. Dalton Transactions, 48(28), 10364-10384. doi:10.1039/c9dt00922a

Ravi, M., Ranocchiari, M., & van Bokhoven, J. A. (2017). The Direct Catalytic Oxidation of Methane to Methanol-A Critical Assessment. Angewandte Chemie International Edition, 56(52), 16464-16483. doi:10.1002/anie.201702550

Mahyuddin, M. H., Shiota, Y., Staykov, A., & Yoshizawa, K. (2018). Theoretical Overview of Methane Hydroxylation by Copper–Oxygen Species in Enzymatic and Zeolitic Catalysts. Accounts of Chemical Research, 51(10), 2382-2390. doi:10.1021/acs.accounts.8b00236

Mahyuddin, M. H., Shiota, Y., & Yoshizawa, K. (2019). Methane selective oxidation to methanol by metal-exchanged zeolites: a review of active sites and their reactivity. Catalysis Science & Technology, 9(8), 1744-1768. doi:10.1039/c8cy02414f

Park, H. N., Park, S. H., Shin, J. H., Jeong, S.-H., & Song, J. Y. (2019). Template-Free Electrochemical Growth of Ni-Decorated ZnO Nanorod Array: Application to an Anode of Lithium Ion Battery. Frontiers in Chemistry, 7. doi:10.3389/fchem.2019.00415

Zhao, G., Adesina, A., Kennedy, E., & Stockenhuber, M. (2019). Formation of Surface Oxygen Species and the Conversion of Methane to Value-Added Products with N2O as Oxidant over Fe-Ferrierite Catalysts. ACS Catalysis, 10(2), 1406-1416. doi:10.1021/acscatal.9b03466

Zhang, P., Yang, X., Hou, X., Mi, J., Yuan, Z., Huang, J., & Stampfl, C. (2019). Active sites and mechanism of the direct conversion of methane and carbon dioxide to acetic acid over the zinc-modified H-ZSM-5 zeolite. Catalysis Science & Technology, 9(22), 6297-6307. doi:10.1039/c9cy01749f

Wang, S., Guo, S., Luo, Y., Qin, Z., Chen, Y., Dong, M., … Wang, J. (2019). Direct synthesis of acetic acid from carbon dioxide and methane over Cu-modulated BEA, MFI, MOR and TON zeolites: a density functional theory study. Catalysis Science & Technology, 9(23), 6613-6626. doi:10.1039/c9cy01803d

Shahami, M., & Shantz, D. F. (2019). Zeolite acidity strongly influences hydrogen peroxide activation and oxygenate selectivity in the partial oxidation of methane over M,Fe-MFI (M: Ga, Al, B) zeolites. Catalysis Science & Technology, 9(11), 2945-2951. doi:10.1039/c9cy00619b

Fang, Z., Murayama, H., Zhao, Q., Liu, B., Jiang, F., Xu, Y., … Liu, X. (2019). Selective mild oxidation of methane to methanol or formic acid on Fe–MOR catalysts. Catalysis Science & Technology, 9(24), 6946-6956. doi:10.1039/c9cy01640f

Shen, Y., Zhan, Y., Li, S., Ning, F., Du, Y., Huang, Y., … Zhou, X. (2017). Hydrogen generation from methanol at near-room temperature. Chem. Sci., 8(11), 7498-7504. doi:10.1039/c7sc01778b

Yang, M., Fan, D., Wei, Y., Tian, P., & Liu, Z. (2019). Recent Progress in Methanol‐to‐Olefins (MTO) Catalysts. Advanced Materials, 31(50), 1902181. doi:10.1002/adma.201902181

Rosenzweig, A. C., Frederick, C. A., Lippard, S. J., & Nordlund, P. auml;r. (1993). Crystal structure of a bacterial non-haem iron hydroxylase that catalyses the biological oxidation of methane. Nature, 366(6455), 537-543. doi:10.1038/366537a0

Sirajuddin, S., & Rosenzweig, A. C. (2015). Enzymatic Oxidation of Methane. Biochemistry, 54(14), 2283-2294. doi:10.1021/acs.biochem.5b00198

Gabrienko, A. A., Yashnik, S. A., Kolganov, A. A., Sheveleva, A. M., Arzumanov, S. S., Fedin, M. V., … Stepanov, A. G. (2020). Methane Activation on H-ZSM-5 Zeolite with Low Copper Loading. The Nature of Active Sites and Intermediates Identified with the Combination of Spectroscopic Methods. Inorganic Chemistry, 59(3), 2037-2050. doi:10.1021/acs.inorgchem.9b03462

Wang, G., Chen, W., Huang, L., Liu, Z., Sun, X., & Zheng, A. (2019). Reactivity descriptors of diverse copper-oxo species on ZSM-5 zeolite towards methane activation. Catalysis Today, 338, 108-116. doi:10.1016/j.cattod.2019.05.007

Burnett, L., Rysakova, M., Wang, K., González-Carballo, J., Tooze, R. P., & García-García, F. R. (2019). Isothermal cyclic conversion of methane to methanol using copper-exchanged ZSM-5 zeolite materials under mild conditions. Applied Catalysis A: General, 587, 117272. doi:10.1016/j.apcata.2019.117272

Sushkevich, V. L., Palagin, D., & van Bokhoven, J. A. (2018). The Effect of the Active-Site Structure on the Activity of Copper Mordenite in the Aerobic and Anaerobic Conversion of Methane into Methanol. Angewandte Chemie International Edition, 57(29), 8906-8910. doi:10.1002/anie.201802922

Dinh, K. T., Sullivan, M. M., Narsimhan, K., Serna, P., Meyer, R. J., Dincă, M., & Román-Leshkov, Y. (2019). Continuous Partial Oxidation of Methane to Methanol Catalyzed by Diffusion-Paired Copper Dimers in Copper-Exchanged Zeolites. Journal of the American Chemical Society, 141(29), 11641-11650. doi:10.1021/jacs.9b04906

Sushkevich, V. L., Verel, R., & Bokhoven, J. A. (2020). Pathways of Methane Transformation over Copper‐Exchanged Mordenite as Revealed by In Situ NMR and IR Spectroscopy. Angewandte Chemie International Edition, 59(2), 910-918. doi:10.1002/anie.201912668

Pappas, D. K., Martini, A., Dyballa, M., Kvande, K., Teketel, S., Lomachenko, K. A., … Borfecchia, E. (2018). The Nuclearity of the Active Site for Methane to Methanol Conversion in Cu-Mordenite: A Quantitative Assessment. Journal of the American Chemical Society, 140(45), 15270-15278. doi:10.1021/jacs.8b08071

Ross, M. O., MacMillan, F., Wang, J., Nisthal, A., Lawton, T. J., Olafson, B. D., … Hoffman, B. M. (2019). Particulate methane monooxygenase contains only mononuclear copper centers. Science, 364(6440), 566-570. doi:10.1126/science.aav2572

Ravi, M., Sushkevich, V. L., Knorpp, A. J., Newton, M. A., Palagin, D., Pinar, A. B., … van Bokhoven, J. A. (2019). Misconceptions and challenges in methane-to-methanol over transition-metal-exchanged zeolites. Nature Catalysis, 2(6), 485-494. doi:10.1038/s41929-019-0273-z

Sushkevich, V. L., & van Bokhoven, J. A. (2018). Effect of Brønsted acid sites on the direct conversion of methane into methanol over copper-exchanged mordenite. Catalysis Science & Technology, 8(16), 4141-4150. doi:10.1039/c8cy01055b

Narsimhan, K., Michaelis, V. K., Mathies, G., Gunther, W. R., Griffin, R. G., & Román-Leshkov, Y. (2015). Methane to Acetic Acid over Cu-Exchanged Zeolites: Mechanistic Insights from a Site-Specific Carbonylation Reaction. Journal of the American Chemical Society, 137(5), 1825-1832. doi:10.1021/ja5106927

Shan, J., Li, M., Allard, L. F., Lee, S., & Flytzani-Stephanopoulos, M. (2017). Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts. Nature, 551(7682), 605-608. doi:10.1038/nature24640

Wulfers, M. J., Teketel, S., Ipek, B., & Lobo, R. F. (2015). Conversion of methane to methanol on copper-containing small-pore zeolites and zeotypes. Chemical Communications, 51(21), 4447-4450. doi:10.1039/c4cc09645b

Park, M. B., Ahn, S. H., Mansouri, A., Ranocchiari, M., & van Bokhoven, J. A. (2017). Comparative Study of Diverse Copper Zeolites for the Conversion of Methane into Methanol. ChemCatChem, 9(19), 3705-3713. doi:10.1002/cctc.201700768

Mahyuddin, M. H., Staykov, A., Shiota, Y., Miyanishi, M., & Yoshizawa, K. (2017). Roles of Zeolite Confinement and Cu–O–Cu Angle on the Direct Conversion of Methane to Methanol by [Cu2(μ-O)]2+-Exchanged AEI, CHA, AFX, and MFI Zeolites. ACS Catalysis, 7(6), 3741-3751. doi:10.1021/acscatal.7b00588

Narsimhan, K., Iyoki, K., Dinh, K., & Román-Leshkov, Y. (2016). Catalytic Oxidation of Methane into Methanol over Copper-Exchanged Zeolites with Oxygen at Low Temperature. ACS Central Science, 2(6), 424-429. doi:10.1021/acscentsci.6b00139

Hori, Y., Shiota, Y., Tsuji, T., Kodera, M., & Yoshizawa, K. (2017). Catalytic Performance of a Dicopper–Oxo Complex for Methane Hydroxylation. Inorganic Chemistry, 57(1), 8-11. doi:10.1021/acs.inorgchem.7b02563

Xiao, P., Wang, Y., Nishitoba, T., Kondo, J. N., & Yokoi, T. (2019). Selective oxidation of methane to methanol with H2O2 over an Fe-MFI zeolite catalyst using sulfolane solvent. Chemical Communications, 55(20), 2896-2899. doi:10.1039/c8cc10026h

Szécsényi, Á., Li, G., Gascon, J., & Pidko, E. A. (2018). Mechanistic Complexity of Methane Oxidation with H2O2 by Single-Site Fe/ZSM-5 Catalyst. ACS Catalysis, 8(9), 7961-7972. doi:10.1021/acscatal.8b01672

Sushkevich, V. L., Palagin, D., Ranocchiari, M., & van Bokhoven, J. A. (2017). Selective anaerobic oxidation of methane enables direct synthesis of methanol. Science, 356(6337), 523-527. doi:10.1126/science.aam9035

Vogiatzis, K. D., Li, G., Hensen, E. J. M., Gagliardi, L., & Pidko, E. A. (2017). Electronic Structure of the [Cu3(μ-O)3]2+ Cluster in Mordenite Zeolite and Its Effects on the Methane to Methanol Oxidation. The Journal of Physical Chemistry C, 121(40), 22295-22302. doi:10.1021/acs.jpcc.7b08714

Dandu, N. K., Reed, J. A., & Odoh, S. O. (2018). Performance of Density Functional Theory for Predicting Methane-to-Methanol Conversion by a Tri-Copper Complex. The Journal of Physical Chemistry C, 122(2), 1024-1036. doi:10.1021/acs.jpcc.7b09284

Mahyuddin, M. H., Tanaka, T., Staykov, A., Shiota, Y., & Yoshizawa, K. (2018). Dioxygen Activation on Cu-MOR Zeolite: Theoretical Insights into the Formation of Cu2O and Cu3O3 Active Species. Inorganic Chemistry, 57(16), 10146-10152. doi:10.1021/acs.inorgchem.8b01329

Snyder, B. E. R., Vanelderen, P., Schoonheydt, R. A., Sels, B. F., & Solomon, E. I. (2018). Second-Sphere Effects on Methane Hydroxylation in Cu-Zeolites. Journal of the American Chemical Society, 140(29), 9236-9243. doi:10.1021/jacs.8b05320

Le, H. V., Parishan, S., Sagaltchik, A., Göbel, C., Schlesiger, C., Malzer, W., … Thomas, A. (2017). Solid-State Ion-Exchanged Cu/Mordenite Catalysts for the Direct Conversion of Methane to Methanol. ACS Catalysis, 7(2), 1403-1412. doi:10.1021/acscatal.6b02372

Ikuno, T., Grundner, S., Jentys, A., Li, G., Pidko, E., Fulton, J., … Lercher, J. A. (2019). Formation of Active Cu-oxo Clusters for Methane Oxidation in Cu-Exchanged Mordenite. The Journal of Physical Chemistry C, 123(14), 8759-8769. doi:10.1021/acs.jpcc.8b10293

Tomkins, P., Mansouri, A., Bozbag, S. E., Krumeich, F., Park, M. B., Alayon, E. M. C., … van Bokhoven, J. A. (2016). Isothermal Cyclic Conversion of Methane into Methanol over Copper‐Exchanged Zeolite at Low Temperature. Angewandte Chemie International Edition, 55(18), 5467-5471. doi:10.1002/anie.201511065

Zhao, G., Benhelal, E., Adesina, A., Kennedy, E., & Stockenhuber, M. (2019). Comparison of Direct, Selective Oxidation of Methane by N2O over Fe-ZSM-5, Fe-Beta, and Fe-FER Catalysts. The Journal of Physical Chemistry C, 123(45), 27436-27447. doi:10.1021/acs.jpcc.9b04388

Shah, M. A., Raynes, S., Apperley, D. C., & Taylor, R. A. (2020). Framework Effects on Activation and Functionalisation of Methane in Zinc‐Exchanged Zeolites. ChemPhysChem, 21(7), 673-679. doi:10.1002/cphc.201900973

Snyder, B. E. R., Vanelderen, P., Bols, M. L., Hallaert, S. D., Böttger, L. H., Ungur, L., … Solomon, E. I. (2016). The active site of low-temperature methane hydroxylation in iron-containing zeolites. Nature, 536(7616), 317-321. doi:10.1038/nature19059

Bols, M. L., Hallaert, S. D., Snyder, B. E. R., Devos, J., Plessers, D., Rhoda, H. M., … Sels, B. F. (2018). Spectroscopic Identification of the α-Fe/α-O Active Site in Fe-CHA Zeolite for the Low-Temperature Activation of the Methane C–H Bond. Journal of the American Chemical Society, 140(38), 12021-12032. doi:10.1021/jacs.8b05877

Devos, J., Bols, M. L., Plessers, D., Goethem, C. V., Seo, J. W., Hwang, S.-J., … Dusselier, M. (2019). Synthesis–Structure–Activity Relations in Fe-CHA for C–H Activation: Control of Al Distribution by Interzeolite Conversion. Chemistry of Materials, 32(1), 273-285. doi:10.1021/acs.chemmater.9b03738

Engedahl, U., Grönbeck, H., & Hellman, A. (2019). First-Principles Study of Oxidation State and Coordination of Cu-Dimers in Cu-SSZ-13 during Methane-to-Methanol Reaction Conditions. The Journal of Physical Chemistry C, 123(43), 26145-26150. doi:10.1021/acs.jpcc.9b07954

Oord, R., Schmidt, J. E., & Weckhuysen, B. M. (2018). Methane-to-methanol conversion over zeolite Cu-SSZ-13, and its comparison with the selective catalytic reduction of NOx with NH3. Catalysis Science & Technology, 8(4), 1028-1038. doi:10.1039/c7cy02461d

Pappas, D. K., Borfecchia, E., Dyballa, M., Pankin, I. A., Lomachenko, K. A., Martini, A., … Beato, P. (2017). Methane to Methanol: Structure–Activity Relationships for Cu-CHA. Journal of the American Chemical Society, 139(42), 14961-14975. doi:10.1021/jacs.7b06472

Knorpp, A. J., Newton, M. A., Mizuno, S. C. M., Zhu, J., Mebrate, H., Pinar, A. B., & van Bokhoven, J. A. (2019). Comparative performance of Cu-zeolites in the isothermal conversion of methane to methanol. Chemical Communications, 55(78), 11794-11797. doi:10.1039/c9cc05659a

Knorpp, A. J., Newton, M. A., Sushkevich, V. L., Zimmermann, P. P., Pinar, A. B., & van Bokhoven, J. A. (2019). The influence of zeolite morphology on the conversion of methane to methanol on copper-exchanged omega zeolite (MAZ). Catalysis Science & Technology, 9(11), 2806-2811. doi:10.1039/c9cy00013e

Ipek, B., Wulfers, M. J., Kim, H., Göltl, F., Hermans, I., Smith, J. P., … Lobo, R. F. (2017). Formation of [Cu2O2]2+ and [Cu2O]2+ toward C–H Bond Activation in Cu-SSZ-13 and Cu-SSZ-39. ACS Catalysis, 7(7), 4291-4303. doi:10.1021/acscatal.6b03005

Zhu, J., Sushkevich, V. L., Knorpp, A. J., Newton, M. A., Mizuno, S. C. M., Wakihara, T., … van Bokhoven, J. A. (2020). Cu-Erionite Zeolite Achieves High Yield in Direct Oxidation of Methane to Methanol by Isothermal Chemical Looping. Chemistry of Materials, 32(4), 1448-1453. doi:10.1021/acs.chemmater.9b04223

Wu, J.-F., Gao, X.-D., Wu, L.-M., Wang, W. D., Yu, S.-M., & Bai, S. (2019). Mechanistic Insights on the Direct Conversion of Methane into Methanol over Cu/Na–ZSM-5 Zeolite: Evidence from EPR and Solid-State NMR. ACS Catalysis, 9(9), 8677-8681. doi:10.1021/acscatal.9b02898

Qi, G., Wang, Q., Xu, J., Trébosc, J., Lafon, O., Wang, C., … Deng, F. (2016). Synergic Effect of Active Sites in Zinc-Modified ZSM-5 Zeolites as Revealed by High-Field Solid-State NMR Spectroscopy. Angewandte Chemie International Edition, 55(51), 15826-15830. doi:10.1002/anie.201608322

Agarwal, N., Freakley, S. J., McVicker, R. U., Althahban, S. M., Dimitratos, N., He, Q., … Hutchings, G. J. (2017). Aqueous Au-Pd colloids catalyze selective CH 4 oxidation to CH 3 OH with O 2 under mild conditions. Science, 358(6360), 223-227. doi:10.1126/science.aan6515

Grundner, S., Markovits, M. A. C., Li, G., Tromp, M., Pidko, E. A., Hensen, E. J. M., … Lercher, J. A. (2015). Single-site trinuclear copper oxygen clusters in mordenite for selective conversion of methane to methanol. Nature Communications, 6(1). doi:10.1038/ncomms8546

Xie, J., Jin, R., Li, A., Bi, Y., Ruan, Q., Deng, Y., … Tang, J. (2018). Highly selective oxidation of methane to methanol at ambient conditions by titanium dioxide-supported iron species. Nature Catalysis, 1(11), 889-896. doi:10.1038/s41929-018-0170-x

Jin, Z., Wang, L., Zuidema, E., Mondal, K., Zhang, M., Zhang, J., … Xiao, F.-S. (2020). Hydrophobic zeolite modification for in situ peroxide formation in methane oxidation to methanol. Science, 367(6474), 193-197. doi:10.1126/science.aaw1108

Kato, Y., Yoshida, H., Satsuma, A., & Hattori, T. (2002). Photoinduced non-oxidative coupling of methane over H-zeolites around room temperature. Microporous and Mesoporous Materials, 51(3), 223-231. doi:10.1016/s1387-1811(02)00268-8

Hu, Y., Anpo, M., & Wei, C. (2013). Effect of the local structures of V-oxides in MCM-41 on the photocatalytic properties for the partial oxidation of methane to methanol. Journal of Photochemistry and Photobiology A: Chemistry, 264, 48-55. doi:10.1016/j.jphotochem.2013.05.005

Sastre, F., Fornés, V., Corma, A., & García, H. (2011). Selective, Room-Temperature Transformation of Methane to C1 Oxygenates by Deep UV Photolysis over Zeolites. Journal of the American Chemical Society, 133(43), 17257-17261. doi:10.1021/ja204559z

Murcia-López, S., Bacariza, M. C., Villa, K., Lopes, J. M., Henriques, C., Morante, J. R., & Andreu, T. (2017). Controlled Photocatalytic Oxidation of Methane to Methanol through Surface Modification of Beta Zeolites. ACS Catalysis, 7(4), 2878-2885. doi:10.1021/acscatal.6b03535

Tan, P. (2016). Active phase, catalytic activity, and induction period of Fe/zeolite material in nonoxidative aromatization of methane. Journal of Catalysis, 338, 21-29. doi:10.1016/j.jcat.2016.01.027

Rahman, M., Infantes-Molina, A., Boubnov, A., Bare, S. R., Stavitski, E., Sridhar, A., & Khatib, S. J. (2019). Increasing the catalytic stability by optimizing the formation of zeolite-supported Mo carbide species ex situ for methane dehydroaromatization. Journal of Catalysis, 375, 314-328. doi:10.1016/j.jcat.2019.06.002

Vollmer, I., Ould-Chikh, S., Aguilar-Tapia, A., Li, G., Pidko, E., Hazemann, J.-L., … Gascon, J. (2019). Activity Descriptors Derived from Comparison of Mo and Fe as Active Metal for Methane Conversion to Aromatics. Journal of the American Chemical Society, 141(47), 18814-18824. doi:10.1021/jacs.9b09710

Crabtree, R. H. (1995). Aspects of Methane Chemistry. Chemical Reviews, 95(4), 987-1007. doi:10.1021/cr00036a005

Zheng, X., & Blowers, P. (2006). A computational study of methane catalytic reactions on zeolites. Journal of Molecular Catalysis A: Chemical, 246(1-2), 1-10. doi:10.1016/j.molcata.2005.10.009

Kosinov, N., Wijpkema, A. S. G., Uslamin, E., Rohling, R., Coumans, F. J. A. G., Mezari, B., … Hensen, E. J. M. (2017). Confined Carbon Mediating Dehydroaromatization of Methane over Mo/ZSM-5. Angewandte Chemie International Edition, 57(4), 1016-1020. doi:10.1002/anie.201711098

Vollmer, I., van der Linden, B., Ould-Chikh, S., Aguilar-Tapia, A., Yarulina, I., Abou-Hamad, E., … Gascon, J. (2018). On the dynamic nature of Mo sites for methane dehydroaromatization. Chemical Science, 9(21), 4801-4807. doi:10.1039/c8sc01263f

Martínez, A., & Peris, E. (2016). Non-oxidative methane dehydroaromatization on Mo/HZSM-5 catalysts: Tuning the acidic and catalytic properties through partial exchange of zeolite protons with alkali and alkaline-earth cations. Applied Catalysis A: General, 515, 32-44. doi:10.1016/j.apcata.2016.01.044

Lim, T. H., Nam, K., Song, I. K., Lee, K.-Y., & Kim, D. H. (2018). Effect of Si/Al 2 ratios in Mo/H-MCM-22 on methane dehydroaromatization. Applied Catalysis A: General, 552, 11-20. doi:10.1016/j.apcata.2017.12.021

Zhao, K., Jia, L., Wang, J., Hou, B., & Li, D. (2019). The influence of the Si/Al ratio of Mo/HZSM-5 on methane non-oxidative dehydroaromatization. New Journal of Chemistry, 43(10), 4130-4136. doi:10.1039/c9nj00114j

Gao, J., Zheng, Y., Jehng, J.-M., Tang, Y., Wachs, I. E., & Podkolzin, S. G. (2015). Identification of molybdenum oxide nanostructures on zeolites for natural gas conversion. Science, 348(6235), 686-690. doi:10.1126/science.aaa7048

Morejudo, S. H., Zanón, R., Escolástico, S., Yuste-Tirados, I., Malerød-Fjeld, H., Vestre, P. K., … Kjølseth, C. (2016). Direct conversion of methane to aromatics in a catalytic co-ionic membrane reactor. Science, 353(6299), 563-566. doi:10.1126/science.aag0274

Julian, I., Hueso, J. L., Lara, N., Solé-Daurá, A., Poblet, J. M., Mitchell, S. G., … Santamaría, J. (2019). Polyoxometalates as alternative Mo precursors for methane dehydroaromatization on Mo/ZSM-5 and Mo/MCM-22 catalysts. Catalysis Science & Technology, 9(21), 5927-5942. doi:10.1039/c9cy01490j

Kosinov, N., Uslamin, E. A., Meng, L., Parastaev, A., Liu, Y., & Hensen, E. J. M. (2019). Reversible Nature of Coke Formation on Mo/ZSM‐5 Methane Dehydroaromatization Catalysts. Angewandte Chemie International Edition, 58(21), 7068-7072. doi:10.1002/anie.201902730

Zhu, P., Yang, G., Sun, J., Fan, R., Zhang, P., Yoneyama, Y., & Tsubaki, N. (2017). A hollow Mo/HZSM-5 zeolite capsule catalyst: preparation and enhanced catalytic properties in methane dehydroaromatization. Journal of Materials Chemistry A, 5(18), 8599-8607. doi:10.1039/c7ta02345f

Huang, X., Jiao, X., Lin, M., Wang, K., Jia, L., Hou, B., & Li, D. (2018). Coke distribution determines the lifespan of a hollow Mo/HZSM-5 capsule catalyst in CH4 dehydroaromatization. Catalysis Science & Technology, 8(22), 5740-5749. doi:10.1039/c8cy01391h

Wang, K., Huang, X., & Li, D. (2018). Hollow ZSM-5 zeolite grass ball catalyst in methane dehydroaromatization: One-step synthesis and the exceptional catalytic performance. Applied Catalysis A: General, 556, 10-19. doi:10.1016/j.apcata.2018.02.030

Wu, Y., Emdadi, L., Schulman, E., Shu, Y., Tran, D. T., Wang, X., & Liu, D. (2018). Overgrowth of lamellar silicalite-1 on MFI and BEA zeolites and its consequences on non-oxidative methane aromatization reaction. Microporous and Mesoporous Materials, 263, 1-10. doi:10.1016/j.micromeso.2017.11.040

Tian, P., Wei, Y., Ye, M., & Liu, Z. (2015). Methanol to Olefins (MTO): From Fundamentals to Commercialization. ACS Catalysis, 5(3), 1922-1938. doi:10.1021/acscatal.5b00007

Sun, Q., Xie, Z., & Yu, J. (2017). The state-of-the-art synthetic strategies for SAPO-34 zeolite catalysts in methanol-to-olefin conversion. National Science Review, 5(4), 542-558. doi:10.1093/nsr/nwx103

Olsbye, U., Svelle, S., Bjørgen, M., Beato, P., Janssens, T. V. W., Joensen, F., … Lillerud, K. P. (2012). Conversion of Methanol to Hydrocarbons: How Zeolite Cavity and Pore Size Controls Product Selectivity. Angewandte Chemie International Edition, 51(24), 5810-5831. doi:10.1002/anie.201103657

Schulz, H. (2018). About the Mechanism of Methanol Conversion on Zeolites. Catalysis Letters, 148(5), 1263-1280. doi:10.1007/s10562-018-2342-3

Ali, M. A., Ahmed, S., Al-Baghli, N., Malaibari, Z., Abutaleb, A., & Yousef, A. (2019). A Comprehensive Review Covering Conventional and Structured Catalysis for Methanol to Propylene Conversion. Catalysis Letters, 149(12), 3395-3424. doi:10.1007/s10562-019-02914-4

Wu, X., Xu, S., Zhang, W., Huang, J., Li, J., Yu, B., … Liu, Z. (2017). Direct Mechanism of the First Carbon-Carbon Bond Formation in the Methanol-to-Hydrocarbons Process. Angewandte Chemie International Edition, 56(31), 9039-9043. doi:10.1002/anie.201703902

Wu, X., Xu, S., Wei, Y., Zhang, W., Huang, J., Xu, S., … Liu, Z. (2018). Evolution of C–C Bond Formation in the Methanol-to-Olefins Process: From Direct Coupling to Autocatalysis. ACS Catalysis, 8(8), 7356-7361. doi:10.1021/acscatal.8b02385

Svelle, S., Joensen, F., Nerlov, J., Olsbye, U., Lillerud, K.-P., Kolboe, S., & Bjørgen, M. (2006). Conversion of Methanol into Hydrocarbons over Zeolite H-ZSM-5:  Ethene Formation Is Mechanistically Separated from the Formation of Higher Alkenes. Journal of the American Chemical Society, 128(46), 14770-14771. doi:10.1021/ja065810a

BJORGEN, M., SVELLE, S., JOENSEN, F., NERLOV, J., KOLBOE, S., BONINO, F., … OLSBYE, U. (2007). Conversion of methanol to hydrocarbons over zeolite H-ZSM-5: On the origin of the olefinic species. Journal of Catalysis, 249(2), 195-207. doi:10.1016/j.jcat.2007.04.006

Ferri, P., Li, C., Paris, C., Vidal-Moya, A., Moliner, M., Boronat, M., & Corma, A. (2019). Chemical and Structural Parameter Connecting Cavity Architecture, Confined Hydrocarbon Pool Species, and MTO Product Selectivity in Small-Pore Cage-Based Zeolites. ACS Catalysis, 9(12), 11542-11551. doi:10.1021/acscatal.9b04588

Guo, H., Ge, T., Lv, J., Du, C., Zhou, J., Liu, Z., & Hua, Z. (2018). Mesoporogen-Free Synthesis of High-Silica Hierarchically Structured ZSM-5 Zeolites and their Superior Performance for the Methanol-to-Propylene Reaction. European Journal of Inorganic Chemistry, 2019(1), 51-58. doi:10.1002/ejic.201800926

Zhang, J., Xu, L., Zhang, Y., Huang, Z., Zhang, X., Zhang, X., … Xu, L. (2018). Hydrogen transfer versus olefins methylation: On the formation trend of propene in the methanol-to-hydrocarbons reaction over Beta zeolites. Journal of Catalysis, 368, 248-260. doi:10.1016/j.jcat.2018.10.015

Liu, Y., Kirchberger, F. M., Müller, S., Eder, M., Tonigold, M., Sanchez-Sanchez, M., & Lercher, J. A. (2019). Critical role of formaldehyde during methanol conversion to hydrocarbons. Nature Communications, 10(1). doi:10.1038/s41467-019-09449-7

Chen, J., Li, J., Yuan, C., Xu, S., Wei, Y., Wang, Q., … Liu, Z. (2014). Elucidating the olefin formation mechanism in the methanol to olefin reaction over AlPO-18 and SAPO-18. Catalysis Science & Technology, 4(9), 3268. doi:10.1039/c4cy00551a

Jiao, X., Huang, X., & Wang, K. (2019). In situ UV-Raman spectroscopy of the coking-caused deactivation mechanism over an Mo/HMCM-22 catalyst in methane dehydroaromatization. Catalysis Science & Technology, 9(23), 6552-6555. doi:10.1039/c9cy01932d

Wang, S., Wang, P., Qin, Z., Chen, Y., Dong, M., Li, J., … Fan, W. (2018). Relation of Catalytic Performance to the Aluminum Siting of Acidic Zeolites in the Conversion of Methanol to Olefins, Viewed via a Comparison between ZSM-5 and ZSM-11. ACS Catalysis, 8(6), 5485-5505. doi:10.1021/acscatal.8b01054

Wang, C., Chu, Y., Xu, J., Wang, Q., Qi, G., Gao, P., … Deng, F. (2018). Extra-Framework Aluminum-Assisted Initial C−C Bond Formation in Methanol-to-Olefins Conversion on Zeolite H-ZSM-5. Angewandte Chemie International Edition, 57(32), 10197-10201. doi:10.1002/anie.201805609

Nishitoba, T., Yoshida, N., Kondo, J. N., & Yokoi, T. (2018). Control of Al Distribution in the CHA-Type Aluminosilicate Zeolites and Its Impact on the Hydrothermal Stability and Catalytic Properties. Industrial & Engineering Chemistry Research, 57(11), 3914-3922. doi:10.1021/acs.iecr.7b04985

Zhang, L., Wang, S., Shi, D., Qin, Z., Wang, P., Wang, G., … Wang, J. (2020). Methanol to olefins over H-RUB-13 zeolite: regulation of framework aluminum siting and acid density and their relationship to the catalytic performance. Catalysis Science & Technology, 10(6), 1835-1847. doi:10.1039/c9cy02419k

Molino, A., Holzinger, J., Łukaszuk, K. A., Rojo-Gama, D., Gunnæs, A. E., Skibsted, J., … Lillerud, K. P. (2019). Synthesis of ZSM-23 (MTT) zeolites with different crystal morphology and intergrowths: effects on the catalytic performance in the conversion of methanol to hydrocarbons. Catalysis Science & Technology, 9(23), 6782-6792. doi:10.1039/c9cy01068h

Yarulina, I., De Wispelaere, K., Bailleul, S., Goetze, J., Radersma, M., Abou-Hamad, E., … Gascon, J. (2018). Structure–performance descriptors and the role of Lewis acidity in the methanol-to-propylene process. Nature Chemistry, 10(8), 804-812. doi:10.1038/s41557-018-0081-0

Moliner, M., Martínez, C., & Corma, A. (2013). Synthesis Strategies for Preparing Useful Small Pore Zeolites and Zeotypes for Gas Separations and Catalysis. Chemistry of Materials, 26(1), 246-258. doi:10.1021/cm4015095

Dusselier, M., & Davis, M. E. (2018). Small-Pore Zeolites: Synthesis and Catalysis. Chemical Reviews, 118(11), 5265-5329. doi:10.1021/acs.chemrev.7b00738

Zhang, J., Huang, Z., Xu, L., Zhang, X., Zhang, X., Yuan, Y., & Xu, L. (2019). Verifying the olefin formation mechanism of the methanol-to-hydrocarbons reaction over H-ZSM-48. Catalysis Science & Technology, 9(9), 2132-2143. doi:10.1039/c8cy02621a

Liu, Z., Dong, X., Zhu, Y., Emwas, A.-H., Zhang, D., Tian, Q., & Han, Y. (2015). Investigating the Influence of Mesoporosity in Zeolite Beta on Its Catalytic Performance for the Conversion of Methanol to Hydrocarbons. ACS Catalysis, 5(10), 5837-5845. doi:10.1021/acscatal.5b01350

Ruddy, D. A., Hensley, J. E., Nash, C. P., Tan, E. C. D., Christensen, E., Farberow, C. A., … Schaidle, J. A. (2019). Methanol to high-octane gasoline within a market-responsive biorefinery concept enabled by catalysis. Nature Catalysis, 2(7), 632-640. doi:10.1038/s41929-019-0319-2

Yang, M., Li, B., Gao, M., Lin, S., Wang, Y., Xu, S., … Liu, Z. (2020). High Propylene Selectivity in Methanol Conversion over a Small-Pore SAPO Molecular Sieve with Ultra-Small Cage. ACS Catalysis, 10(6), 3741-3749. doi:10.1021/acscatal.9b04703

Wang, J., Li, J., Xu, S., Zhi, Y., Wei, Y., He, Y., … Liu, Z. (2015). Methanol to hydrocarbons reaction over HZSM-22 and SAPO-11: Effect of catalyst acid strength on reaction and deactivation mechanism. Chinese Journal of Catalysis, 36(8), 1392-1402. doi:10.1016/s1872-2067(15)60953-6

Gallego, E. M., Portilla, M. T., Paris, C., León-Escamilla, A., Boronat, M., Moliner, M., & Corma, A. (2017). «Ab initio» synthesis of zeolites for preestablished catalytic reactions. Science, 355(6329), 1051-1054. doi:10.1126/science.aal0121

Li, C., Paris, C., Martínez-Triguero, J., Boronat, M., Moliner, M., & Corma, A. (2018). Synthesis of reaction‐adapted zeolites as methanol-to-olefins catalysts with mimics of reaction intermediates as organic structure‐directing agents. Nature Catalysis, 1(7), 547-554. doi:10.1038/s41929-018-0104-7

Sun, C., Wang, Y., Zhao, A., Wang, X., Wang, C., Zhang, X., … Zhao, T. (2020). Synthesis of nano-sized SAPO-34 with morpholine-treated micrometer-seeds and their catalytic performance in methanol-to-olefin reactions. Applied Catalysis A: General, 589, 117314. doi:10.1016/j.apcata.2019.117314

Zhang, L., Liu, H., Yue, Y., Olsbye, U., & Bao, X. (2019). Design and in situ synthesis of hierarchical SAPO-34@kaolin composites as catalysts for methanol to olefins. Catalysis Science & Technology, 9(22), 6438-6451. doi:10.1039/c9cy01663e

Xu, Z., Li, J., Huang, Y., Ma, H., Qian, W., Zhang, H., & Ying, W. (2019). Size control of SSZ-13 crystals with APAM and its influence on the coking behaviour during MTO reaction. Catalysis Science & Technology, 9(11), 2888-2897. doi:10.1039/c9cy00412b

Shao, J., Fu, T., Ma, Z., Zhang, C., Li, H., Cui, L., & Li, Z. (2019). Facile creation of hierarchical nano-sized ZSM-5 with a large external surface area via desilication–recrystallization of silicalite-1 for conversion of methanol to hydrocarbons. Catalysis Science & Technology, 9(23), 6647-6658. doi:10.1039/c9cy01053j

Sun, Q., Wang, N., Bai, R., Chen, G., Shi, Z., Zou, Y., & Yu, J. (2018). Mesoporogen-Free Synthesis of Hierarchical SAPO-34 with Low Template Consumption and Excellent Methanol-to-Olefin Conversion. ChemSusChem, 11(21), 3812-3820. doi:10.1002/cssc.201801486

Zhang, Q., Xiang, S., Zhang, Q., Wang, B., Mayoral, A., Liu, W., … Yu, J. (2019). Breaking the Si/Al Limit of Nanosized β Zeolites: Promoting Catalytic Production of Lactide. Chemistry of Materials, 32(2), 751-758. doi:10.1021/acs.chemmater.9b04023

Bai, R., Song, Y., Li, Y., & Yu, J. (2019). Creating Hierarchical Pores in Zeolite Catalysts. Trends in Chemistry, 1(6), 601-611. doi:10.1016/j.trechm.2019.05.010

Gallego, E. M., Paris, C., Díaz-Rey, M. R., Martínez-Armero, M. E., Martínez-Triguero, J., Martínez, C., … Corma, A. (2017). Simple organic structure directing agents for synthesizing nanocrystalline zeolites. Chemical Science, 8(12), 8138-8149. doi:10.1039/c7sc02858j

Margarit, V. J., Díaz-Rey, M. R., Navarro, M. T., Martínez, C., & Corma, A. (2018). Direct Synthesis of Nano-Ferrierite along the 10-Ring-Channel Direction Boosts Their Catalytic Behavior. Angewandte Chemie International Edition, 57(13), 3459-3463. doi:10.1002/anie.201711418

Martínez-Franco, R., Paris, C., Martínez-Armero, M. E., Martínez, C., Moliner, M., & Corma, A. (2016). High-silica nanocrystalline Beta zeolites: efficient synthesis and catalytic application. Chemical Science, 7(1), 102-108. doi:10.1039/c5sc03019f

Gallego, E. M., Paris, C., Martínez, C., Moliner, M., & Corma, A. (2018). Nanosized MCM-22 zeolite using simple non-surfactant organic growth modifiers: synthesis and catalytic applications. Chemical Communications, 54(71), 9989-9992. doi:10.1039/c8cc05356a

Zhu, Y.-L., Dai, H., Duan, Y., Chen, Q., & Zhang, M. (2020). Excellent Methanol to Olefin Performance of SAPO-34 Crystal Deriving from the Mixed Micropore, Mesopore, and Macropore Architecture. Crystal Growth & Design, 20(4), 2623-2631. doi:10.1021/acs.cgd.0c00002

Wang, N., Hou, Y., Sun, W., Cai, D., Chen, Z., Liu, L., … Wei, F. (2019). Modulation of b-axis thickness within MFI zeolite: Correlation with variation of product diffusion and coke distribution in the methanol-to-hydrocarbons conversion. Applied Catalysis B: Environmental, 243, 721-733. doi:10.1016/j.apcatb.2018.11.023

Kim, S., Park, G., Woo, M. H., Kwak, G., & Kim, S. K. (2019). Control of Hierarchical Structure and Framework-Al Distribution of ZSM-5 via Adjusting Crystallization Temperature and Their Effects on Methanol Conversion. ACS Catalysis, 9(4), 2880-2892. doi:10.1021/acscatal.8b04493

Gallego, E. M., Li, C., Paris, C., Martín, N., Martínez-Triguero, J., Boronat, M., … Corma, A. (2018). Making Nanosized CHA Zeolites with Controlled Al Distribution for Optimizing Methanol-to-Olefin Performance. Chemistry - A European Journal, 24(55), 14631-14635. doi:10.1002/chem.201803637

Martín, N., Li, Z., Martínez-Triguero, J., Yu, J., Moliner, M., & Corma, A. (2016). Nanocrystalline SSZ-39 zeolite as an efficient catalyst for the methanol-to-olefin (MTO) process. Chemical Communications, 52(36), 6072-6075. doi:10.1039/c5cc09719c

Martínez-Franco, R., Li, Z., Martínez-Triguero, J., Moliner, M., & Corma, A. (2016). Improving the catalytic performance of SAPO-18 for the methanol-to-olefins (MTO) reaction by controlling the Si distribution and crystal size. Catalysis Science & Technology, 6(8), 2796-2806. doi:10.1039/c5cy02298c

Li, Z., Martínez-Triguero, J., Yu, J., & Corma, A. (2015). Conversion of methanol to olefins: Stabilization of nanosized SAPO-34 by hydrothermal treatment. Journal of Catalysis, 329, 379-388. doi:10.1016/j.jcat.2015.05.025

Li, Z., Martínez-Triguero, J., Concepción, P., Yu, J., & Corma, A. (2013). Methanol to olefins: activity and stability of nanosized SAPO-34 molecular sieves and control of selectivity by silicon distribution. Physical Chemistry Chemical Physics, 15(35), 14670. doi:10.1039/c3cp52247d

Schlapbach, L., & Züttel, A. (2001). Hydrogen-storage materials for mobile applications. Nature, 414(6861), 353-358. doi:10.1038/35104634

Mellmann, D., Sponholz, P., Junge, H., & Beller, M. (2016). Formic acid as a hydrogen storage material – development of homogeneous catalysts for selective hydrogen release. Chemical Society Reviews, 45(14), 3954-3988. doi:10.1039/c5cs00618j

Zhu, Q.-L., & Xu, Q. (2015). Liquid organic and inorganic chemical hydrides for high-capacity hydrogen storage. Energy & Environmental Science, 8(2), 478-512. doi:10.1039/c4ee03690e

Grasemann, M., & Laurenczy, G. (2012). Formic acid as a hydrogen source – recent developments and future trends. Energy & Environmental Science, 5(8), 8171. doi:10.1039/c2ee21928j

He, T., Pachfule, P., Wu, H., Xu, Q., & Chen, P. (2016). Hydrogen carriers. Nature Reviews Materials, 1(12). doi:10.1038/natrevmats.2016.59

Gu, X., Lu, Z.-H., Jiang, H.-L., Akita, T., & Xu, Q. (2011). Synergistic Catalysis of Metal–Organic Framework-Immobilized Au–Pd Nanoparticles in Dehydrogenation of Formic Acid for Chemical Hydrogen Storage. Journal of the American Chemical Society, 133(31), 11822-11825. doi:10.1021/ja200122f

Martis, M., Mori, K., Fujiwara, K., Ahn, W.-S., & Yamashita, H. (2013). Amine-Functionalized MIL-125 with Imbedded Palladium Nanoparticles as an Efficient Catalyst for Dehydrogenation of Formic Acid at Ambient Temperature. The Journal of Physical Chemistry C, 117(44), 22805-22810. doi:10.1021/jp4069027

Ke, F., Wang, L., & Zhu, J. (2015). An efficient room temperature core–shell AgPd@MOF catalyst for hydrogen production from formic acid. Nanoscale, 7(18), 8321-8325. doi:10.1039/c4nr07582j

Dai, H., Xia, B., Wen, L., Du, C., Su, J., Luo, W., & Cheng, G. (2015). Synergistic catalysis of AgPd@ZIF-8 on dehydrogenation of formic acid. Applied Catalysis B: Environmental, 165, 57-62. doi:10.1016/j.apcatb.2014.09.065

Ojeda, M., & Iglesia, E. (2009). Formic Acid Dehydrogenation on Au-Based Catalysts at Near-Ambient Temperatures. Angewandte Chemie International Edition, 48(26), 4800-4803. doi:10.1002/anie.200805723

Song, F.-Z., Zhu, Q.-L., Tsumori, N., & Xu, Q. (2015). Diamine-Alkalized Reduced Graphene Oxide: Immobilization of Sub-2 nm Palladium Nanoparticles and Optimization of Catalytic Activity for Dehydrogenation of Formic Acid. ACS Catalysis, 5(9), 5141-5144. doi:10.1021/acscatal.5b01411

Wang, Z.-L., Wang, H.-L., Yan, J.-M., Ping, Y., O, S.-I., Li, S.-J., & Jiang, Q. (2014). DNA-directed growth of ultrafine CoAuPd nanoparticles on graphene as efficient catalysts for formic acid dehydrogenation. Chemical Communications, 50(21), 2732. doi:10.1039/c3cc49821b

Zhu, Q.-L., Tsumori, N., & Xu, Q. (2014). Sodium hydroxide-assisted growth of uniform Pd nanoparticles on nanoporous carbon MSC-30 for efficient and complete dehydrogenation of formic acid under ambient conditions. Chem. Sci., 5(1), 195-199. doi:10.1039/c3sc52448e

Cheng, J., Gu, X., Sheng, X., Liu, P., & Su, H. (2016). Exceptional size-dependent catalytic activity enhancement in the room-temperature hydrogen generation from formic acid over bimetallic nanoparticles supported by porous carbon. Journal of Materials Chemistry A, 4(5), 1887-1894. doi:10.1039/c5ta08534a

Navlani-García, M., Martis, M., Lozano-Castelló, D., Cazorla-Amorós, D., Mori, K., & Yamashita, H. (2015). Investigation of Pd nanoparticles supported on zeolites for hydrogen production from formic acid dehydrogenation. Catalysis Science & Technology, 5(1), 364-371. doi:10.1039/c4cy00667d

Gallas-Hulin, A., Mielby, J., & Kegnaes, S. (2016). Efficient Production of Hydrogen from Decomposition of Formic Acid over Zeolite Incorporated Gold Nanoparticles. ChemistrySelect, 1(13), 3942-3945. doi:10.1002/slct.201600831

Amos, R. I. J., Heinroth, F., Chan, B., Ward, A. J., Zheng, S., Haynes, B. S., … Radom, L. (2015). Hydrogen from Formic Acid via Its Selective Disproportionation over Nanodomain-Modified Zeolites. ACS Catalysis, 5(7), 4353-4362. doi:10.1021/cs501677b

Supronowicz, W., Ignatyev, I. A., Lolli, G., Wolf, A., Zhao, L., & Mleczko, L. (2015). Formic acid: a future bridge between the power and chemical industries. Green Chemistry, 17(5), 2904-2911. doi:10.1039/c5gc00249d

Sun, Q., Wang, N., Bing, Q., Si, R., Liu, J., Bai, R., … Yu, J. (2017). Subnanometric Hybrid Pd-M(OH)2, M = Ni, Co, Clusters in Zeolites as Highly Efficient Nanocatalysts for Hydrogen Generation. Chem, 3(3), 477-493. doi:10.1016/j.chempr.2017.07.001

Corma, A. (2016). Heterogeneous Catalysis: Understanding for Designing, and Designing for Applications. Angewandte Chemie International Edition, 55(21), 6112-6113. doi:10.1002/anie.201601231

Yang, W., Fidelis, T. T., & Sun, W.-H. (2019). Machine Learning in Catalysis, From Proposal to Practicing. ACS Omega, 5(1), 83-88. doi:10.1021/acsomega.9b03673

Moliner, M., Román-Leshkov, Y., & Corma, A. (2019). Machine Learning Applied to Zeolite Synthesis: The Missing Link for Realizing High-Throughput Discovery. Accounts of Chemical Research, 52(10), 2971-2980. doi:10.1021/acs.accounts.9b00399

Li, Y., Li, X., Liu, J., Duan, F., & Yu, J. (2015). In silico prediction and screening of modular crystal structures via a high-throughput genomic approach. Nature Communications, 6(1). doi:10.1038/ncomms9328

Kumar, A., Song, K., Liu, L., Han, Y., & Bhan, A. (2018). Absorptive Hydrogen Scavenging for Enhanced Aromatics Yield During Non‐oxidative Methane Dehydroaromatization on Mo/H‐ZSM‐5 Catalysts. Angewandte Chemie International Edition, 57(47), 15577-15582. doi:10.1002/anie.201809433

Li, Y., & Yu, J. (2016). Genetic engineering of inorganic functional modular materials. Chemical Science, 7(6), 3472-3481. doi:10.1039/c6sc00123h

Gaillac, R., Chibani, S., & Coudert, F.-X. (2020). Speeding Up Discovery of Auxetic Zeolite Frameworks by Machine Learning. Chemistry of Materials, 32(6), 2653-2663. doi:10.1021/acs.chemmater.0c00434

Li, J., Qi, M., Kong, J., Wang, J., Yan, Y., Huo, W., … Xu, Y. (2010). Computational prediction of the formation of microporous aluminophosphates with desired structural features. Microporous and Mesoporous Materials, 129(1-2), 251-255. doi:10.1016/j.micromeso.2009.10.001

Hajjar, Z., Khodadadi, A., Mortazavi, Y., Tayyebi, S., & Soltanali, S. (2016). Artificial intelligence modeling of DME conversion to gasoline and light olefins over modified nano ZSM-5 catalysts. Fuel, 179, 79-86. doi:10.1016/j.fuel.2016.03.046

Tran, K., & Ulissi, Z. W. (2018). Active learning across intermetallics to guide discovery of electrocatalysts for CO2 reduction and H2 evolution. Nature Catalysis, 1(9), 696-703. doi:10.1038/s41929-018-0142-1

Wang, S., Li, R., Li, D., Zhang, Z.-Y., Liu, G., Liang, H., … Li, Y. (2018). Fabrication of bioactive 3D printed porous titanium implants with Sr ion-incorporated zeolite coatings for bone ingrowth. Journal of Materials Chemistry B, 6(20), 3254-3261. doi:10.1039/c8tb00328a




This item appears in the following Collection(s)

Show full item record