- -

Applications of Zeolites to C1 Chemistry: Recent Advances, Challenges, and Opportunities

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Applications of Zeolites to C1 Chemistry: Recent Advances, Challenges, and Opportunities

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Zhang, Qiang es_ES
dc.contributor.author Yu, Jihong es_ES
dc.contributor.author Corma Canós, Avelino es_ES
dc.date.accessioned 2021-04-27T03:33:16Z
dc.date.available 2021-04-27T03:33:16Z
dc.date.issued 2020-11-05 es_ES
dc.identifier.issn 0935-9648 es_ES
dc.identifier.uri http://hdl.handle.net/10251/165611
dc.description.abstract [EN] C1 chemistry, which is the catalytic transformation of C1 molecules including CO, CO2, CH4, CH3OH, and HCOOH, plays an important role in providing energy and chemical supplies while meeting environmental requirements. Zeolites are highly efficient solid catalysts used in the chemical industry. The design and development of zeolite-based mono-, bi-, and multifunctional catalysts has led to a booming application of zeolite-based catalysts to C1 chemistry. Combining the advantages of zeolites and metallic catalytic species has promoted the catalytic production of various hydrocarbons (e.g., methane, light olefins, aromatics, and liquid fuels) and oxygenates (e.g., methanol, dimethyl ether, formic acid, and higher alcohols) from C1 molecules. The key zeolite descriptors that influence catalytic performance, such as framework topologies, nanoconfinement effects, Bronsted acidities, secondary-pore systems, particle sizes, extraframework cations and atoms, hydrophobicity and hydrophilicity, and proximity between acid and metallic sites are discussed to provide a deep understanding of the significance of zeolites to C1 chemistry. An outlook regarding challenges and opportunities for the conversion of C1 resources using zeolite-based catalysts to meet emerging energy and environmental demands is also presented. es_ES
dc.description.sponsorship The authors thank the National Natural Science Foundation of China (Grants 21920102005, 21835002, and 21621001), the National Key Research and Development Program of China (Grant 2016YFB0701100), the 111 Project of China (B17020), and the Spanish Government through "Severo Ochoa" (SEV-2016-0683, MINECO) and PGC2018-101247-B-I00 for supporting this work. es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Advanced Materials es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject C1 chemistry es_ES
dc.subject Catalytic transformations es_ES
dc.subject Hydrocarbons es_ES
dc.subject Oxygenates es_ES
dc.subject Zeolites es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Applications of Zeolites to C1 Chemistry: Recent Advances, Challenges, and Opportunities es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/adma.202002927 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-101247-B-I00/ES/RECONOCIMIENTO MOLECULAR EN CATALIZADORES SOLIDOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NKRDPC//2016YFB0701100/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSFC//21621001/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MOE//B17020/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSFC//21920102005/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSFC//21835002/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Zhang, Q.; Yu, J.; Corma Canós, A. (2020). Applications of Zeolites to C1 Chemistry: Recent Advances, Challenges, and Opportunities. Advanced Materials. 32(44):1-31. https://doi.org/10.1002/adma.202002927 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/adma.202002927 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 31 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 32 es_ES
dc.description.issue 44 es_ES
dc.identifier.pmid 32697378 es_ES
dc.relation.pasarela S\433285 es_ES
dc.contributor.funder Ministry of Education, China es_ES
dc.contributor.funder National Natural Science Foundation of China es_ES
dc.contributor.funder National Key Research and Development Program of China es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Zhou, W., Cheng, K., Kang, J., Zhou, C., Subramanian, V., Zhang, Q., & Wang, Y. (2019). New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels. Chemical Society Reviews, 48(12), 3193-3228. doi:10.1039/c8cs00502h es_ES
dc.description.references Martínez-Vargas, D. X., Sandoval-Rangel, L., Campuzano-Calderon, O., Romero-Flores, M., Lozano, F. J., Nigam, K. D. P., … Montesinos-Castellanos, A. (2019). Recent Advances in Bifunctional Catalysts for the Fischer–Tropsch Process: One-Stage Production of Liquid Hydrocarbons from Syngas. Industrial & Engineering Chemistry Research, 58(35), 15872-15901. doi:10.1021/acs.iecr.9b01141 es_ES
dc.description.references Du, C., Lu, P., & Tsubaki, N. (2019). Efficient and New Production Methods of Chemicals and Liquid Fuels by Carbon Monoxide Hydrogenation. ACS Omega, 5(1), 49-56. doi:10.1021/acsomega.9b03577 es_ES
dc.description.references Tomkins, P., Ranocchiari, M., & van Bokhoven, J. A. (2017). Direct Conversion of Methane to Methanol under Mild Conditions over Cu-Zeolites and beyond. Accounts of Chemical Research, 50(2), 418-425. doi:10.1021/acs.accounts.6b00534 es_ES
dc.description.references Dai, W., Wang, X., Wu, G., Guan, N., Hunger, M., & Li, L. (2011). Methanol-to-Olefin Conversion on Silicoaluminophosphate Catalysts: Effect of Brønsted Acid Sites and Framework Structures. ACS Catalysis, 1(4), 292-299. doi:10.1021/cs200016u es_ES
dc.description.references Galadima, A., & Muraza, O. (2015). Recent Developments on Silicoaluminates and Silicoaluminophosphates in the Methanol-to-Propylene Reaction: A Mini Review. Industrial & Engineering Chemistry Research, 54(18), 4891-4905. doi:10.1021/acs.iecr.5b00338 es_ES
dc.description.references Preuster, P., & Albert, J. (2018). Biogenic Formic Acid as a Green Hydrogen Carrier. Energy Technology, 6(3), 501-509. doi:10.1002/ente.201700572 es_ES
dc.description.references Onishi, N., Iguchi, M., Yang, X., Kanega, R., Kawanami, H., Xu, Q., & Himeda, Y. (2018). Development of Effective Catalysts for Hydrogen Storage Technology Using Formic Acid. Advanced Energy Materials, 9(23), 1801275. doi:10.1002/aenm.201801275 es_ES
dc.description.references Yarulina, I., Chowdhury, A. D., Meirer, F., Weckhuysen, B. M., & Gascon, J. (2018). Recent trends and fundamental insights in the methanol-to-hydrocarbons process. Nature Catalysis, 1(6), 398-411. doi:10.1038/s41929-018-0078-5 es_ES
dc.description.references Valentini, F., Kozell, V., Petrucci, C., Marrocchi, A., Gu, Y., Gelman, D., & Vaccaro, L. (2019). Formic acid, a biomass-derived source of energy and hydrogen for biomass upgrading. Energy & Environmental Science, 12(9), 2646-2664. doi:10.1039/c9ee01747j es_ES
dc.description.references Sun, L., Wang, Y., Guan, N., & Li, L. (2019). Methane Activation and Utilization: Current Status and Future Challenges. Energy Technology, 8(8), 1900826. doi:10.1002/ente.201900826 es_ES
dc.description.references Liu, J., He, Y., Yan, L., Ma, C., Zhang, C., Xiang, H., … Li, Y. (2020). Nano-ZrO2 as hydrogenation phase in bi-functional catalyst for syngas aromatization. Fuel, 263, 116803. doi:10.1016/j.fuel.2019.116803 es_ES
dc.description.references Li, W., He, Y., Li, H., Shen, D., Xing, C., & Yang, R. (2017). Spatial confinement effects of zeolite-based micro-capsule catalyst on tuned Fischer-Tropsch synthesis product distribution. Catalysis Communications, 98, 98-101. doi:10.1016/j.catcom.2017.05.008 es_ES
dc.description.references Lin, Q., Zhang, Q., Yang, G., Chen, Q., Li, J., Wei, Q., … Tsubaki, N. (2016). Insights into the promotional roles of palladium in structure and performance of cobalt-based zeolite capsule catalyst for direct synthesis of C5–C11 iso-paraffins from syngas. Journal of Catalysis, 344, 378-388. doi:10.1016/j.jcat.2016.10.012 es_ES
dc.description.references Kang, J., Wang, X., Peng, X., Yang, Y., Cheng, K., Zhang, Q., & Wang, Y. (2016). Mesoporous Zeolite Y-Supported Co Nanoparticles as Efficient Fischer–Tropsch Catalysts for Selective Synthesis of Diesel Fuel. Industrial & Engineering Chemistry Research, 55(51), 13008-13019. doi:10.1021/acs.iecr.6b03810 es_ES
dc.description.references Cai, M., Palčić, A., Subramanian, V., Moldovan, S., Ersen, O., Valtchev, V., … Khodakov, A. Y. (2016). Direct dimethyl ether synthesis from syngas on copper–zeolite hybrid catalysts with a wide range of zeolite particle sizes. Journal of Catalysis, 338, 227-238. doi:10.1016/j.jcat.2016.02.025 es_ES
dc.description.references Schwach, P., Pan, X., & Bao, X. (2017). Direct Conversion of Methane to Value-Added Chemicals over Heterogeneous Catalysts: Challenges and Prospects. Chemical Reviews, 117(13), 8497-8520. doi:10.1021/acs.chemrev.6b00715 es_ES
dc.description.references Li, Z., & Xu, Q. (2017). Metal-Nanoparticle-Catalyzed Hydrogen Generation from Formic Acid. Accounts of Chemical Research, 50(6), 1449-1458. doi:10.1021/acs.accounts.7b00132 es_ES
dc.description.references Corma, A. (1995). Inorganic Solid Acids and Their Use in Acid-Catalyzed Hydrocarbon Reactions. Chemical Reviews, 95(3), 559-614. doi:10.1021/cr00035a006 es_ES
dc.description.references Martínez, C., & Corma, A. (2011). Inorganic molecular sieves: Preparation, modification and industrial application in catalytic processes. Coordination Chemistry Reviews, 255(13-14), 1558-1580. doi:10.1016/j.ccr.2011.03.014 es_ES
dc.description.references Li, Y., Li, L., & Yu, J. (2017). Applications of Zeolites in Sustainable Chemistry. Chem, 3(6), 928-949. doi:10.1016/j.chempr.2017.10.009 es_ES
dc.description.references Database of Zeolite Structures http://www.iza‐structure.org/databases/(accessed: May 2020). es_ES
dc.description.references Kasipandi, S., & Bae, J. W. (2019). Recent Advances in Direct Synthesis of Value‐Added Aromatic Chemicals from Syngas by Cascade Reactions over Bifunctional Catalysts. Advanced Materials, 31(34), 1803390. doi:10.1002/adma.201803390 es_ES
dc.description.references Masudi, A., Jusoh, N. W. C., & Muraza, O. (2020). Opportunities for less-explored zeolitic materials in the syngas-to-olefins pathway over nanoarchitectured catalysts: a mini review. Catalysis Science & Technology, 10(6), 1582-1596. doi:10.1039/c9cy01875a es_ES
dc.description.references Saravanan, K., Ham, H., Tsubaki, N., & Bae, J. W. (2017). Recent progress for direct synthesis of dimethyl ether from syngas on the heterogeneous bifunctional hybrid catalysts. Applied Catalysis B: Environmental, 217, 494-522. doi:10.1016/j.apcatb.2017.05.085 es_ES
dc.description.references Sun, Y., Han, X., & Zhao, Z. (2019). Direct coating copper–zinc–aluminum oxalate with H-ZSM-5 to fabricate a highly efficient capsule-structured bifunctional catalyst for dimethyl ether production from syngas. Catalysis Science & Technology, 9(14), 3763-3770. doi:10.1039/c9cy00980a es_ES
dc.description.references Liu, C., Liu, S., Zhou, H., Su, J., Jiao, W., Zhang, L., … Xie, Z. (2019). Selective conversion of syngas to aromatics over metal oxide/HZSM-5 catalyst by matching the activity between CO hydrogenation and aromatization. Applied Catalysis A: General, 585, 117206. doi:10.1016/j.apcata.2019.117206 es_ES
dc.description.references Friedel, R. A., & Anderson, R. B. (1950). Composition of Synthetic Liquid Fuels. I. Product Distribution and Analysis of C5—C8 Paraffin Isomers from Cobalt Catalyst1. Journal of the American Chemical Society, 72(3), 1212-1215. doi:10.1021/ja01159a039 es_ES
dc.description.references Puskas, I., & Hurlbut, R. . (2003). Comments about the causes of deviations from the Anderson–Schulz–Flory distribution of the Fischer–Tropsch reaction products. Catalysis Today, 84(1-2), 99-109. doi:10.1016/s0920-5861(03)00305-5 es_ES
dc.description.references Leckel, D. (2009). Diesel Production from Fischer−Tropsch: The Past, the Present, and New Concepts. Energy & Fuels, 23(5), 2342-2358. doi:10.1021/ef900064c es_ES
dc.description.references Torres Galvis, H. M., & de Jong, K. P. (2013). Catalysts for Production of Lower Olefins from Synthesis Gas: A Review. ACS Catalysis, 3(9), 2130-2149. doi:10.1021/cs4003436 es_ES
dc.description.references Zhu, Y., Pan, X., Jiao, F., Li, J., Yang, J., Ding, M., … Bao, X. (2017). Role of Manganese Oxide in Syngas Conversion to Light Olefins. ACS Catalysis, 7(4), 2800-2804. doi:10.1021/acscatal.7b00221 es_ES
dc.description.references Xu, Y., Liu, D., & Liu, X. (2018). Conversion of syngas toward aromatics over hybrid Fe-based Fischer-Tropsch catalysts and HZSM-5 zeolites. Applied Catalysis A: General, 552, 168-183. doi:10.1016/j.apcata.2018.01.012 es_ES
dc.description.references Yang, G., He, J., Zhang, Y., Yoneyama, Y., Tan, Y., Han, Y., … Tsubaki, N. (2008). Design and Modification of Zeolite Capsule Catalyst, A Confined Reaction Field, and its Application in One-Step Isoparaffin Synthesis from Syngas. Energy & Fuels, 22(3), 1463-1468. doi:10.1021/ef700682y es_ES
dc.description.references Duyckaerts, N., Trotuş, I.-T., Swertz, A.-C., Schüth, F., & Prieto, G. (2016). In Situ Hydrocracking of Fischer–Tropsch Hydrocarbons: CO-Prompted Diverging Reaction Pathways for Paraffin and α-Olefin Primary Products. ACS Catalysis, 6(7), 4229-4238. doi:10.1021/acscatal.6b00904 es_ES
dc.description.references Jiao, F., Li, J., Pan, X., Xiao, J., Li, H., Ma, H., … Bao, X. (2016). Selective conversion of syngas to light olefins. Science, 351(6277), 1065-1068. doi:10.1126/science.aaf1835 es_ES
dc.description.references Mazonde, B., Cheng, S., Zhang, G., Javed, M., Gao, W., Zhang, Y., … Xing, C. (2018). A solvent-free in situ synthesis of a hierarchical Co-based zeolite catalyst and its application to tuning Fischer–Tropsch product selectivity. Catalysis Science & Technology, 8(11), 2802-2808. doi:10.1039/c8cy00243f es_ES
dc.description.references Varma, R. L., Bakhshi, N. N., & Mathews, J. F. (1990). Selective synthesis of hydrocarbons from syngas using nickel/ZSM-5 catalysts. Industrial & Engineering Chemistry Research, 29(9), 1753-1757. doi:10.1021/ie00105a002 es_ES
dc.description.references Wang, N., Sun, Q., & Yu, J. (2018). Ultrasmall Metal Nanoparticles Confined within Crystalline Nanoporous Materials: A Fascinating Class of Nanocatalysts. Advanced Materials, 31(1), 1803966. doi:10.1002/adma.201803966 es_ES
dc.description.references Nieskens, D. L. S., Lunn, J. D., & Malek, A. (2018). Understanding the Enhanced Lifetime of SAPO-34 in a Direct Syngas-to-Hydrocarbons Process. ACS Catalysis, 9(1), 691-700. doi:10.1021/acscatal.8b03465 es_ES
dc.description.references Ni, Y., Liu, Y., Chen, Z., Yang, M., Liu, H., He, Y., … Liu, Z. (2018). Realizing and Recognizing Syngas-to-Olefins Reaction via a Dual-Bed Catalyst. ACS Catalysis, 9(2), 1026-1032. doi:10.1021/acscatal.8b04794 es_ES
dc.description.references Wang, S., Wang, P., Shi, D., He, S., Zhang, L., Yan, W., … Fan, W. (2020). Direct Conversion of Syngas into Light Olefins with Low CO2 Emission. ACS Catalysis, 10(3), 2046-2059. doi:10.1021/acscatal.9b04629 es_ES
dc.description.references Liu, T., Lu, T., Yang, M., Zhou, L., Yang, X., Gao, B., & Su, Y. (2019). Enhanced Catalytic Performance of CuO–ZnO–Al2O3/SAPO-5 Bifunctional Catalysts for Direct Conversion of Syngas to Light Hydrocarbons and Insights into the Role of Zeolite Acidity. Catalysis Letters, 149(12), 3338-3348. doi:10.1007/s10562-019-02901-9 es_ES
dc.description.references Li, N., Jiao, F., Pan, X., Ding, Y., Feng, J., & Bao, X. (2018). Size Effects of ZnO Nanoparticles in Bifunctional Catalysts for Selective Syngas Conversion. ACS Catalysis, 9(2), 960-966. doi:10.1021/acscatal.8b04105 es_ES
dc.description.references Arslan, M. T., Qureshi, B. A., Gilani, S. Z. A., Cai, D., Ma, Y., Usman, M., … Wei, F. (2019). Single-Step Conversion of H2-Deficient Syngas into High Yield of Tetramethylbenzene. ACS Catalysis, 9(3), 2203-2212. doi:10.1021/acscatal.8b04548 es_ES
dc.description.references Su, J., Wang, D., Wang, Y., Zhou, H., Liu, C., Liu, S., … He, M. (2018). Direct Conversion of Syngas into Light Olefins over Zirconium-Doped Indium(III) Oxide and SAPO-34 Bifunctional Catalysts: Design of Oxide Component and Construction of Reaction Network. ChemCatChem, 10(7), 1536-1541. doi:10.1002/cctc.201702054 es_ES
dc.description.references Liu, X., Zhou, W., Yang, Y., Cheng, K., Kang, J., Zhang, L., … Wang, Y. (2018). Design of efficient bifunctional catalysts for direct conversion of syngas into lower olefins via methanol/dimethyl ether intermediates. Chemical Science, 9(20), 4708-4718. doi:10.1039/c8sc01597j es_ES
dc.description.references Cheng, K., Zhou, W., Kang, J., He, S., Shi, S., Zhang, Q., … Wang, Y. (2017). Bifunctional Catalysts for One-Step Conversion of Syngas into Aromatics with Excellent Selectivity and Stability. Chem, 3(2), 334-347. doi:10.1016/j.chempr.2017.05.007 es_ES
dc.description.references Plana-Pallejà, J., Abelló, S., Berrueco, C., & Montané, D. (2016). Effect of zeolite acidity and mesoporosity on the activity of Fischer–Tropsch Fe/ZSM-5 bifunctional catalysts. Applied Catalysis A: General, 515, 126-135. doi:10.1016/j.apcata.2016.02.004 es_ES
dc.description.references Zhao, B., Zhai, P., Wang, P., Li, J., Li, T., Peng, M., … Ma, D. (2017). Direct Transformation of Syngas to Aromatics over Na-Zn-Fe 5 C 2 and Hierarchical HZSM-5 Tandem Catalysts. Chem, 3(2), 323-333. doi:10.1016/j.chempr.2017.06.017 es_ES
dc.description.references Yang, X., Wang, R., Yang, J., Qian, W., Zhang, Y., Li, X., … Chen, D. (2020). Exploring the Reaction Paths in the Consecutive Fe-Based FT Catalyst–Zeolite Process for Syngas Conversion. ACS Catalysis, 10(6), 3797-3806. doi:10.1021/acscatal.9b05449 es_ES
dc.description.references Huang, J., Wang, W., Fei, Z., Liu, Q., Chen, X., Zhang, Z., … Qiao, X. (2019). Enhanced Light Olefin Production in Chloromethane Coupling over Mg/Ca Modified Durable HZSM-5 Catalyst. Industrial & Engineering Chemistry Research, 58(13), 5131-5139. doi:10.1021/acs.iecr.8b05544 es_ES
dc.description.references Li, J., He, Y., Tan, L., Zhang, P., Peng, X., Oruganti, A., … Tsubaki, N. (2018). Integrated tuneable synthesis of liquid fuels via Fischer–Tropsch technology. Nature Catalysis, 1(10), 787-793. doi:10.1038/s41929-018-0144-z es_ES
dc.description.references Subramanian, V., Zholobenko, V. L., Cheng, K., Lancelot, C., Heyte, S., Thuriot, J., … Khodakov, A. Y. (2015). The Role of Steric Effects and Acidity in the Direct Synthesis of iso -Paraffins from Syngas on Cobalt Zeolite Catalysts. ChemCatChem, 8(2), 380-389. doi:10.1002/cctc.201500777 es_ES
dc.description.references Jiao, F., Pan, X., Gong, K., Chen, Y., Li, G., & Bao, X. (2018). Shape‐Selective Zeolites Promote Ethylene Formation from Syngas via a Ketene Intermediate. Angewandte Chemie International Edition, 57(17), 4692-4696. doi:10.1002/anie.201801397 es_ES
dc.description.references Li, N., Jiao, F., Pan, X., Chen, Y., Feng, J., Li, G., & Bao, X. (2019). High‐Quality Gasoline Directly from Syngas by Dual Metal Oxide–Zeolite (OX‐ZEO) Catalysis. Angewandte Chemie International Edition, 58(22), 7400-7404. doi:10.1002/anie.201902990 es_ES
dc.description.references Boronat, M., & Corma, A. (2019). What Is Measured When Measuring Acidity in Zeolites with Probe Molecules? ACS Catalysis, 9(2), 1539-1548. doi:10.1021/acscatal.8b04317 es_ES
dc.description.references Li, C., Vidal-Moya, A., Miguel, P. J., Dedecek, J., Boronat, M., & Corma, A. (2018). Selective Introduction of Acid Sites in Different Confined Positions in ZSM-5 and Its Catalytic Implications. ACS Catalysis, 8(8), 7688-7697. doi:10.1021/acscatal.8b02112 es_ES
dc.description.references Su, J., Zhou, H., Liu, S., Wang, C., Jiao, W., Wang, Y., … He, M. (2019). Syngas to light olefins conversion with high olefin/paraffin ratio using ZnCrOx/AlPO-18 bifunctional catalysts. Nature Communications, 10(1). doi:10.1038/s41467-019-09336-1 es_ES
dc.description.references Noh, G., Shi, Z., Zones, S. I., & Iglesia, E. (2018). Isomerization and β-scission reactions of alkanes on bifunctional metal-acid catalysts: Consequences of confinement and diffusional constraints on reactivity and selectivity. Journal of Catalysis, 368, 389-410. doi:10.1016/j.jcat.2018.03.033 es_ES
dc.description.references Noh, G., Zones, S. I., & Iglesia, E. (2018). Consequences of Acid Strength and Diffusional Constraints for Alkane Isomerization and β-Scission Turnover Rates and Selectivities on Bifunctional Metal-Acid Catalysts. The Journal of Physical Chemistry C, 122(44), 25475-25497. doi:10.1021/acs.jpcc.8b08460 es_ES
dc.description.references Yang, J., Pan, X., Jiao, F., Li, J., & Bao, X. (2017). Direct conversion of syngas to aromatics. Chemical Communications, 53(81), 11146-11149. doi:10.1039/c7cc04768a es_ES
dc.description.references Qiu, T., Wang, L., Lv, S., Sun, B., Zhang, Y., Liu, Z., … Li, J. (2017). SAPO-34 zeolite encapsulated Fe3C nanoparticles as highly selective Fischer-Tropsch catalysts for the production of light olefins. Fuel, 203, 811-816. doi:10.1016/j.fuel.2017.05.043 es_ES
dc.description.references Di, Z., Zhao, T., Feng, X., & Luo, M. (2018). A Newly Designed Core-Shell-Like Zeolite Capsule Catalyst for Synthesis of Light Olefins from Syngas via Fischer–Tropsch Synthesis Reaction. Catalysis Letters, 149(2), 441-448. doi:10.1007/s10562-018-2624-9 es_ES
dc.description.references Přech, J., Strossi Pedrolo, D. R., Marcilio, N. R., Gu, B., Peregudova, A. S., Mazur, M., … Khodakov, A. Y. (2020). Core–Shell Metal Zeolite Composite Catalysts for In Situ Processing of Fischer–Tropsch Hydrocarbons to Gasoline Type Fuels. ACS Catalysis, 10(4), 2544-2555. doi:10.1021/acscatal.9b04421 es_ES
dc.description.references Weber, J. L., Krans, N. A., Hofmann, J. P., Hensen, E. J. M., Zecevic, J., de Jongh, P. E., & de Jong, K. P. (2020). Effect of proximity and support material on deactivation of bifunctional catalysts for the conversion of synthesis gas to olefins and aromatics. Catalysis Today, 342, 161-166. doi:10.1016/j.cattod.2019.02.002 es_ES
dc.description.references Wang, T., Xu, Y., Shi, C., Jiang, F., Liu, B., & Liu, X. (2019). Direct production of aromatics from syngas over a hybrid FeMn Fischer–Tropsch catalyst and HZSM-5 zeolite: local environment effect and mechanism-directed tuning of the aromatic selectivity. Catalysis Science & Technology, 9(15), 3933-3946. doi:10.1039/c9cy00750d es_ES
dc.description.references Zhang, Q., Chen, G., Wang, Y., Chen, M., Guo, G., Shi, J., … Yu, J. (2018). High-Quality Single-Crystalline MFI-Type Nanozeolites: A Facile Synthetic Strategy and MTP Catalytic Studies. Chemistry of Materials, 30(8), 2750-2758. doi:10.1021/acs.chemmater.8b00527 es_ES
dc.description.references Zhang, Q., Mayoral, A., Terasaki, O., Zhang, Q., Ma, B., Zhao, C., … Yu, J. (2019). Amino Acid-Assisted Construction of Single-Crystalline Hierarchical Nanozeolites via Oriented-Aggregation and Intraparticle Ripening. Journal of the American Chemical Society, 141(9), 3772-3776. doi:10.1021/jacs.8b11734 es_ES
dc.description.references Wen, C., Wang, C., Chen, L., Zhang, X., Liu, Q., & Ma, L. (2019). Effect of hierarchical ZSM-5 zeolite support on direct transformation from syngas to aromatics over the iron-based catalyst. Fuel, 244, 492-498. doi:10.1016/j.fuel.2019.02.041 es_ES
dc.description.references Cheng, K., Zhang, L., Kang, J., Peng, X., Zhang, Q., & Wang, Y. (2014). Selective Transformation of Syngas into Gasoline-Range Hydrocarbons over Mesoporous H-ZSM-5-Supported Cobalt Nanoparticles. Chemistry - A European Journal, 21(5), 1928-1937. doi:10.1002/chem.201405277 es_ES
dc.description.references Peng, X., Cheng, K., Kang, J., Gu, B., Yu, X., Zhang, Q., & Wang, Y. (2015). Impact of Hydrogenolysis on the Selectivity of the Fischer-Tropsch Synthesis: Diesel Fuel Production over Mesoporous Zeolite-Y-Supported Cobalt Nanoparticles. Angewandte Chemie International Edition, 54(15), 4553-4556. doi:10.1002/anie.201411708 es_ES
dc.description.references Flores, C., Batalha, N., Ordomsky, V. V., Zholobenko, V. L., Baaziz, W., Marcilio, N. R., & Khodakov, A. Y. (2018). Direct Production of Iso-Paraffins from Syngas over Hierarchical Cobalt-ZSM-5 Nanocomposites Synthetized by using Carbon Nanotubes as Sacrificial Templates. ChemCatChem, 10(10), 2291-2299. doi:10.1002/cctc.201701848 es_ES
dc.description.references Li, H., Hou, B., Wang, J., Qin, C., Zhong, M., Huang, X., … Li, D. (2018). Direct conversion of syngas to isoparaffins over hierarchical beta zeolite supported cobalt catalyst for Fischer-Tropsch synthesis. Molecular Catalysis, 459, 106-112. doi:10.1016/j.mcat.2018.08.002 es_ES
dc.description.references Min, J.-E., Kim, S., Kwak, G., Kim, Y. T., Han, S. J., Lee, Y., … Kim, S. K. (2018). Role of mesopores in Co/ZSM-5 for the direct synthesis of liquid fuel by Fischer–Tropsch synthesis. Catalysis Science & Technology, 8(24), 6346-6359. doi:10.1039/c8cy01931b es_ES
dc.description.references Wang, Y., Gao, W., Kazumi, S., Fang, Y., Shi, L., Yoneyama, Y., … Tsubaki, N. (2019). Solvent-free anchoring nano-sized zeolite on layered double hydroxide for highly selective transformation of syngas to gasoline-range hydrocarbons. Fuel, 253, 249-256. doi:10.1016/j.fuel.2019.05.022 es_ES
dc.description.references Xu, Y., Liu, J., Wang, J., Ma, G., Lin, J., Yang, Y., … Ding, M. (2019). Selective Conversion of Syngas to Aromatics over Fe3O4@MnO2 and Hollow HZSM-5 Bifunctional Catalysts. ACS Catalysis, 9(6), 5147-5156. doi:10.1021/acscatal.9b01045 es_ES
dc.description.references Xu, Y., Wang, J., Ma, G., Lin, J., & Ding, M. (2019). Designing of Hollow ZSM-5 with Controlled Mesopore Sizes To Boost Gasoline Production from Syngas. ACS Sustainable Chemistry & Engineering, 7(21), 18125-18132. doi:10.1021/acssuschemeng.9b05217 es_ES
dc.description.references Javed, M., Cheng, S., Zhang, G., Dai, P., Cao, Y., Lu, C., … Shan, S. (2018). Complete encapsulation of zeolite supported Co based core with silicalite-1 shell to achieve high gasoline selectivity in Fischer-Tropsch synthesis. Fuel, 215, 226-231. doi:10.1016/j.fuel.2017.10.042 es_ES
dc.description.references Javed, M., Zhang, G., Gao, W., Cao, Y., Dai, P., Ji, X., … Sun, J. (2019). From hydrophilic to hydrophobic: A promising approach to tackle high CO2 selectivity of Fe-based Fischer-Tropsch microcapsule catalysts. Catalysis Today, 330, 39-45. doi:10.1016/j.cattod.2018.08.010 es_ES
dc.description.references Luk, H. T., Mondelli, C., Ferré, D. C., Stewart, J. A., & Pérez-Ramírez, J. (2017). Status and prospects in higher alcohols synthesis from syngas. Chemical Society Reviews, 46(5), 1358-1426. doi:10.1039/c6cs00324a es_ES
dc.description.references Zhou, W., Kang, J., Cheng, K., He, S., Shi, J., Zhou, C., … Wang, Y. (2018). Direct Conversion of Syngas into Methyl Acetate, Ethanol, and Ethylene by Relay Catalysis via the Intermediate Dimethyl Ether. Angewandte Chemie International Edition, 57(37), 12012-12016. doi:10.1002/anie.201807113 es_ES
dc.description.references Cao, Z., Hu, T., Guo, J., Xie, J., Zhang, N., Zheng, J., … Chen, B. H. (2019). Stable and facile ethanol synthesis from syngas in one reactor by tandem combination CuZnAl-HZSM-5, modified-H-Mordenite with CuZnAl catalyst. Fuel, 254, 115542. doi:10.1016/j.fuel.2019.05.125 es_ES
dc.description.references Wang, C., Zhang, J., Qin, G., Wang, L., Zuidema, E., Yang, Q., … Xiao, F.-S. (2020). Direct Conversion of Syngas to Ethanol within Zeolite Crystals. Chem, 6(3), 646-657. doi:10.1016/j.chempr.2019.12.007 es_ES
dc.description.references Zhou, H., Zhu, W., Shi, L., Liu, H., Liu, S., Ni, Y., … Liu, Z. (2016). In situ DRIFT study of dimethyl ether carbonylation to methyl acetate on H-mordenite. Journal of Molecular Catalysis A: Chemical, 417, 1-9. doi:10.1016/j.molcata.2016.02.032 es_ES
dc.description.references Reule, A. A. C., Sawada, J. A., & Semagina, N. (2017). Effect of selective 4-membered ring dealumination on mordenite-catalyzed dimethyl ether carbonylation. Journal of Catalysis, 349, 98-109. doi:10.1016/j.jcat.2017.03.010 es_ES
dc.description.references Kang, J., He, S., Zhou, W., Shen, Z., Li, Y., Chen, M., … Wang, Y. (2020). Single-pass transformation of syngas into ethanol with high selectivity by triple tandem catalysis. Nature Communications, 11(1). doi:10.1038/s41467-020-14672-8 es_ES
dc.description.references Boronat, M., Martínez-Sánchez, C., Law, D., & Corma, A. (2008). Enzyme-like Specificity in Zeolites: A Unique Site Position in Mordenite for Selective Carbonylation of Methanol and Dimethyl Ether with CO. Journal of the American Chemical Society, 130(48), 16316-16323. doi:10.1021/ja805607m es_ES
dc.description.references CHEUNG, P., BHAN, A., SUNLEY, G., LAW, D., & IGLESIA, E. (2007). Site requirements and elementary steps in dimethyl ether carbonylation catalyzed by acidic zeolites. Journal of Catalysis, 245(1), 110-123. doi:10.1016/j.jcat.2006.09.020 es_ES
dc.description.references Blasco, T., Boronat, M., Concepción, P., Corma, A., Law, D., & Vidal-Moya, J. A. (2007). Carbonylation of Methanol on Metal–Acid Zeolites: Evidence for a Mechanism Involving a Multisite Active Center. Angewandte Chemie International Edition, 46(21), 3938-3941. doi:10.1002/anie.200700029 es_ES
dc.description.references LIU, J., XUE, H., HUANG, X., WU, P.-H., HUANG, S.-J., LIU, S.-B., & SHEN, W. (2010). Stability Enhancement of H-Mordenite in Dimethyl Ether Carbonylation to Methyl Acetate by Pre-adsorption of Pyridine. Chinese Journal of Catalysis, 31(7), 729-738. doi:10.1016/s1872-2067(09)60081-4 es_ES
dc.description.references Xue, H., Huang, X., Zhan, E., Ma, M., & Shen, W. (2013). Selective dealumination of mordenite for enhancing its stability in dimethyl ether carbonylation. Catalysis Communications, 37, 75-79. doi:10.1016/j.catcom.2013.03.033 es_ES
dc.description.references Li, Y., Sun, Q., Huang, S., Cheng, Z., Cai, K., Lv, J., & Ma, X. (2018). Dimethyl ether carbonylation over pyridine-modified MOR: Enhanced stability influenced by acidity. Catalysis Today, 311, 81-88. doi:10.1016/j.cattod.2017.08.050 es_ES
dc.description.references Lu, P., Chen, Q., Yang, G., Tan, L., Feng, X., Yao, J., … Tsubaki, N. (2019). Space-Confined Self-Regulation Mechanism from a Capsule Catalyst to Realize an Ethanol Direct Synthesis Strategy. ACS Catalysis, 10(2), 1366-1374. doi:10.1021/acscatal.9b02891 es_ES
dc.description.references K.Karl B. B.South (Maverick Synfuels) US8779215B2 2014. es_ES
dc.description.references Wang, N., Sun, Q., Bai, R., Li, X., Guo, G., & Yu, J. (2016). In Situ Confinement of Ultrasmall Pd Clusters within Nanosized Silicalite-1 Zeolite for Highly Efficient Catalysis of Hydrogen Generation. Journal of the American Chemical Society, 138(24), 7484-7487. doi:10.1021/jacs.6b03518 es_ES
dc.description.references Liu, L., Lopez-Haro, M., Lopes, C. W., Li, C., Concepcion, P., Simonelli, L., … Corma, A. (2019). Regioselective generation and reactivity control of subnanometric platinum clusters in zeolites for high-temperature catalysis. Nature Materials, 18(8), 866-873. doi:10.1038/s41563-019-0412-6 es_ES
dc.description.references Liu, L., Díaz, U., Arenal, R., Agostini, G., Concepción, P., & Corma, A. (2016). Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D. Nature Materials, 16(1), 132-138. doi:10.1038/nmat4757 es_ES
dc.description.references Bacariza, M. C., Graça, I., Lopes, J. M., & Henriques, C. (2019). Tuning Zeolite Properties towards CO 2 Methanation: An Overview. ChemCatChem, 11(10), 2388-2400. doi:10.1002/cctc.201900229 es_ES
dc.description.references Ronda‐Lloret, M., Rothenberg, G., & Shiju, N. R. (2019). A Critical Look at Direct Catalytic Hydrogenation of Carbon Dioxide to Olefins. ChemSusChem, 12(17), 3896-3914. doi:10.1002/cssc.201900915 es_ES
dc.description.references Sreedhar, I., Varun, Y., Singh, S. A., Venugopal, A., & Reddy, B. M. (2019). Developmental trends in CO2 methanation using various catalysts. Catalysis Science & Technology, 9(17), 4478-4504. doi:10.1039/c9cy01234f es_ES
dc.description.references Grim, R. G., Huang, Z., Guarnieri, M. T., Ferrell, J. R., Tao, L., & Schaidle, J. A. (2020). Transforming the carbon economy: challenges and opportunities in the convergence of low-cost electricity and reductive CO2 utilization. Energy & Environmental Science, 13(2), 472-494. doi:10.1039/c9ee02410g es_ES
dc.description.references Zhong, J., Yang, X., Wu, Z., Liang, B., Huang, Y., & Zhang, T. (2020). State of the art and perspectives in heterogeneous catalysis of CO2 hydrogenation to methanol. Chemical Society Reviews, 49(5), 1385-1413. doi:10.1039/c9cs00614a es_ES
dc.description.references Ma, Z., & Porosoff, M. D. (2019). Development of Tandem Catalysts for CO2 Hydrogenation to Olefins. ACS Catalysis, 9(3), 2639-2656. doi:10.1021/acscatal.8b05060 es_ES
dc.description.references Álvarez, A., Bansode, A., Urakawa, A., Bavykina, A. V., Wezendonk, T. A., Makkee, M., … Kapteijn, F. (2017). Challenges in the Greener Production of Formates/Formic Acid, Methanol, and DME by Heterogeneously Catalyzed CO2 Hydrogenation Processes. Chemical Reviews, 117(14), 9804-9838. doi:10.1021/acs.chemrev.6b00816 es_ES
dc.description.references Ye, R.-P., Ding, J., Gong, W., Argyle, M. D., Zhong, Q., Wang, Y., … Yao, Y.-G. (2019). CO2 hydrogenation to high-value products via heterogeneous catalysis. Nature Communications, 10(1). doi:10.1038/s41467-019-13638-9 es_ES
dc.description.references Schneck, F., Schendzielorz, F., Hatami, N., Finger, M., Würtele, C., & Schneider, S. (2018). Photochemically Driven Reverse Water-Gas Shift at Ambient Conditions mediated by a Nickel Pincer Complex. Angewandte Chemie International Edition, 57(44), 14482-14487. doi:10.1002/anie.201803396 es_ES
dc.description.references Van Santen, R. A., Markvoort, A. J., Filot, I. A. W., Ghouri, M. M., & Hensen, E. J. M. (2013). Mechanism and microkinetics of the Fischer–Tropsch reaction. Physical Chemistry Chemical Physics, 15(40), 17038. doi:10.1039/c3cp52506f es_ES
dc.description.references Zhou, C., Shi, J., Zhou, W., Cheng, K., Zhang, Q., Kang, J., & Wang, Y. (2019). Highly Active ZnO-ZrO2 Aerogels Integrated with H-ZSM-5 for Aromatics Synthesis from Carbon Dioxide. ACS Catalysis, 10(1), 302-310. doi:10.1021/acscatal.9b04309 es_ES
dc.description.references Li, H., Zhang, P., Guo, L., He, Y., Zeng, Y., Thongkam, M., … Tsubaki, N. (2020). A Well‐Defined Core–Shell‐Structured Capsule Catalyst for Direct Conversion of CO 2 into Liquefied Petroleum Gas. ChemSusChem, 13(8), 2060-2065. doi:10.1002/cssc.201903576 es_ES
dc.description.references Zhang, X., Zhang, A., Jiang, X., Zhu, J., Liu, J., Li, J., … Guo, X. (2019). Utilization of CO2 for aromatics production over ZnO/ZrO2-ZSM-5 tandem catalyst. Journal of CO2 Utilization, 29, 140-145. doi:10.1016/j.jcou.2018.12.002 es_ES
dc.description.references Chen, J., Wang, X., Wu, D., Zhang, J., Ma, Q., Gao, X., … Zhao, T.-S. (2019). Hydrogenation of CO2 to light olefins on CuZnZr@(Zn-)SAPO-34 catalysts: Strategy for product distribution. Fuel, 239, 44-52. doi:10.1016/j.fuel.2018.10.148 es_ES
dc.description.references Gao, P., Dang, S., Li, S., Bu, X., Liu, Z., Qiu, M., … Sun, Y. (2017). Direct Production of Lower Olefins from CO2 Conversion via Bifunctional Catalysis. ACS Catalysis, 8(1), 571-578. doi:10.1021/acscatal.7b02649 es_ES
dc.description.references Gao, J., Jia, C., & Liu, B. (2017). Direct and selective hydrogenation of CO2 to ethylene and propene by bifunctional catalysts. Catalysis Science & Technology, 7(23), 5602-5607. doi:10.1039/c7cy01549f es_ES
dc.description.references Dang, S., Li, S., Yang, C., Chen, X., Li, X., Zhong, L., … Sun, Y. (2019). Selective Transformation of CO 2 and H 2 into Lower Olefins over In 2 O 3 ‐ZnZrO x /SAPO‐34 Bifunctional Catalysts. ChemSusChem, 12(15), 3582-3591. doi:10.1002/cssc.201900958 es_ES
dc.description.references Hwang, A., Le, T. T., Shi, Z., Dai, H., Rimer, J. D., & Bhan, A. (2019). Effects of diffusional constraints on lifetime and selectivity in methanol-to-olefins catalysis on HSAPO-34. Journal of Catalysis, 369, 122-132. doi:10.1016/j.jcat.2018.10.031 es_ES
dc.description.references Wang, Y., Gao, W., Kazumi, S., Li, H., Yang, G., & Tsubaki, N. (2019). Direct and Oriented Conversion of CO 2 into Value‐Added Aromatics. Chemistry – A European Journal, 25(20), 5149-5153. doi:10.1002/chem.201806165 es_ES
dc.description.references Wang, Y., Tan, L., Tan, M., Zhang, P., Fang, Y., Yoneyama, Y., … Tsubaki, N. (2018). Rationally Designing Bifunctional Catalysts as an Efficient Strategy To Boost CO2 Hydrogenation Producing Value-Added Aromatics. ACS Catalysis, 9(2), 895-901. doi:10.1021/acscatal.8b01344 es_ES
dc.description.references Shoinkhorova, T., Dikhtiarenko, A., Ramirez, A., Dutta Chowdhury, A., Caglayan, M., Vittenet, J., … Gascon, J. (2019). Shaping of ZSM-5-Based Catalysts via Spray Drying: Effect on Methanol-to-Olefins Performance. ACS Applied Materials & Interfaces, 11(47), 44133-44143. doi:10.1021/acsami.9b14082 es_ES
dc.description.references Dokania, A., Dutta Chowdhury, A., Ramirez, A., Telalovic, S., Abou-Hamad, E., Gevers, L., … Gascon, J. (2020). Acidity modification of ZSM-5 for enhanced production of light olefins from CO2. Journal of Catalysis, 381, 347-354. doi:10.1016/j.jcat.2019.11.015 es_ES
dc.description.references Zhang, J., Zhang, M., Chen, S., Wang, X., Zhou, Z., Wu, Y., … Tan, Y. (2019). Hydrogenation of CO2 into aromatics over a ZnCrOx–zeolite composite catalyst. Chemical Communications, 55(7), 973-976. doi:10.1039/c8cc09019j es_ES
dc.description.references Wang, C., Guan, E., Wang, L., Chu, X., Wu, Z., Zhang, J., … Xiao, F.-S. (2019). Product Selectivity Controlled by Nanoporous Environments in Zeolite Crystals Enveloping Rhodium Nanoparticle Catalysts for CO2 Hydrogenation. Journal of the American Chemical Society, 141(21), 8482-8488. doi:10.1021/jacs.9b01555 es_ES
dc.description.references Chen, Y., Qiu, B., Liu, Y., & Zhang, Y. (2020). An active and stable nickel-based catalyst with embedment structure for CO2 methanation. Applied Catalysis B: Environmental, 269, 118801. doi:10.1016/j.apcatb.2020.118801 es_ES
dc.description.references Wei, J., Yao, R., Ge, Q., Wen, Z., Ji, X., Fang, C., … Sun, J. (2018). Catalytic Hydrogenation of CO2 to Isoparaffins over Fe-Based Multifunctional Catalysts. ACS Catalysis, 8(11), 9958-9967. doi:10.1021/acscatal.8b02267 es_ES
dc.description.references Li, Z., Qu, Y., Wang, J., Liu, H., Li, M., Miao, S., & Li, C. (2019). Highly Selective Conversion of Carbon Dioxide to Aromatics over Tandem Catalysts. Joule, 3(2), 570-583. doi:10.1016/j.joule.2018.10.027 es_ES
dc.description.references Ramirez, A., Dutta Chowdhury, A., Dokania, A., Cnudde, P., Caglayan, M., Yarulina, I., … Gascon, J. (2019). Effect of Zeolite Topology and Reactor Configuration on the Direct Conversion of CO2 to Light Olefins and Aromatics. ACS Catalysis, 9(7), 6320-6334. doi:10.1021/acscatal.9b01466 es_ES
dc.description.references Bacariza, M. C., Maleval, M., Graça, I., Lopes, J. M., & Henriques, C. (2019). Power-to-methane over Ni/zeolites: Influence of the framework type. Microporous and Mesoporous Materials, 274, 102-112. doi:10.1016/j.micromeso.2018.07.037 es_ES
dc.description.references Goel, S., Wu, Z., Zones, S. I., & Iglesia, E. (2012). Synthesis and Catalytic Properties of Metal Clusters Encapsulated within Small-Pore (SOD, GIS, ANA) Zeolites. Journal of the American Chemical Society, 134(42), 17688-17695. doi:10.1021/ja307370z es_ES
dc.description.references Goodarzi, F., Kang, L., Wang, F. R., Joensen, F., Kegnaes, S., & Mielby, J. (2018). Methanation of Carbon Dioxide over Zeolite-Encapsulated Nickel Nanoparticles. ChemCatChem, 10(7), 1566-1570. doi:10.1002/cctc.201701946 es_ES
dc.description.references Sápi, A., Kashaboina, U., Ábrahámné, K. B., Gómez-Pérez, J. F., Szenti, I., Halasi, G., … Kónya, Z. (2019). Synergetic of Pt Nanoparticles and H-ZSM-5 Zeolites for Efficient CO2 Activation: Role of Interfacial Sites in High Activity. Frontiers in Materials, 6. doi:10.3389/fmats.2019.00127 es_ES
dc.description.references Guo, L., Cui, Y., Li, H., Fang, Y., Prasert, R., Wu, J., … Tsubaki, N. (2019). Selective formation of linear-alpha olefins (LAOs) by CO2 hydrogenation over bimetallic Fe/Co-Y catalyst. Catalysis Communications, 130, 105759. doi:10.1016/j.catcom.2019.105759 es_ES
dc.description.references Quindimil, A., De-La-Torre, U., Pereda-Ayo, B., González-Marcos, J. A., & González-Velasco, J. R. (2018). Ni catalysts with La as promoter supported over Y- and BETA- zeolites for CO2 methanation. Applied Catalysis B: Environmental, 238, 393-403. doi:10.1016/j.apcatb.2018.07.034 es_ES
dc.description.references Chen, H., Mu, Y., Shao, Y., Chansai, S., Xu, S., Stere, C. E., … Fan, X. (2019). Coupling non-thermal plasma with Ni catalysts supported on BETA zeolite for catalytic CO2 methanation. Catalysis Science & Technology, 9(15), 4135-4145. doi:10.1039/c9cy00590k es_ES
dc.description.references Wei, J., Ge, Q., Yao, R., Wen, Z., Fang, C., Guo, L., … Sun, J. (2017). Directly converting CO2 into a gasoline fuel. Nature Communications, 8(1). doi:10.1038/ncomms15174 es_ES
dc.description.references Gao, P., Li, S., Bu, X., Dang, S., Liu, Z., Wang, H., … Sun, Y. (2017). Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst. Nature Chemistry, 9(10), 1019-1024. doi:10.1038/nchem.2794 es_ES
dc.description.references Bacariza, M. C., Bértolo, R., Graça, I., Lopes, J. M., & Henriques, C. (2017). The effect of the compensating cation on the catalytic performances of Ni/USY zeolites towards CO2 methanation. Journal of CO2 Utilization, 21, 280-291. doi:10.1016/j.jcou.2017.07.020 es_ES
dc.description.references Gomez, E., Nie, X., Lee, J. H., Xie, Z., & Chen, J. G. (2019). Tandem Reactions of CO2 Reduction and Ethane Aromatization. Journal of the American Chemical Society, 141(44), 17771-17782. doi:10.1021/jacs.9b08538 es_ES
dc.description.references Westermann, A., Azambre, B., Bacariza, M. C., Graça, I., Ribeiro, M. F., Lopes, J. M., & Henriques, C. (2015). Insight into CO2 methanation mechanism over NiUSY zeolites: An operando IR study. Applied Catalysis B: Environmental, 174-175, 120-125. doi:10.1016/j.apcatb.2015.02.026 es_ES
dc.description.references Walspurger, S., Elzinga, G. D., Dijkstra, J. W., Sarić, M., & Haije, W. G. (2014). Sorption enhanced methanation for substitute natural gas production: Experimental results and thermodynamic considerations. Chemical Engineering Journal, 242, 379-386. doi:10.1016/j.cej.2013.12.045 es_ES
dc.description.references Bacariza, M. C., Graça, I., Lopes, J. M., & Henriques, C. (2018). Enhanced activity of CO2 hydrogenation to CH4 over Ni based zeolites through the optimization of the Si/Al ratio. Microporous and Mesoporous Materials, 267, 9-19. doi:10.1016/j.micromeso.2018.03.010 es_ES
dc.description.references Ge, H., Zhang, B., Liang, H., Zhang, M., Fang, K., Chen, Y., & Qin, Y. (2020). Photocatalytic conversion of CO2 into light olefins over TiO2 nanotube confined Cu clusters with high ratio of Cu+. Applied Catalysis B: Environmental, 263, 118133. doi:10.1016/j.apcatb.2019.118133 es_ES
dc.description.references Chen, Z., Hu, Y., Wang, J., Shen, Q., Zhang, Y., Ding, C., … Gaponik, N. (2020). Boosting Photocatalytic CO2 Reduction on CsPbBr3 Perovskite Nanocrystals by Immobilizing Metal Complexes. Chemistry of Materials, 32(4), 1517-1525. doi:10.1021/acs.chemmater.9b04582 es_ES
dc.description.references Zhou, M., Wang, S., Yang, P., Huang, C., & Wang, X. (2018). Boron Carbon Nitride Semiconductors Decorated with CdS Nanoparticles for Photocatalytic Reduction of CO2. ACS Catalysis, 8(6), 4928-4936. doi:10.1021/acscatal.8b00104 es_ES
dc.description.references Tong, Y., Zhang, Y., Tong, N., Zhang, Z., Wang, Y., Zhang, X., … Wang, X. (2016). HZSM-5 zeolites containing impurity iron species for the photocatalytic reduction of CO2 with H2O. Catalysis Science & Technology, 6(20), 7579-7585. doi:10.1039/c6cy01237j es_ES
dc.description.references Zhu, S., Liang, S., Wang, Y., Zhang, X., Li, F., Lin, H., … Wang, X. (2016). Ultrathin nanosheets of molecular sieve SAPO-5: A new photocatalyst for efficient photocatalytic reduction of CO 2 with H 2 O to methane. Applied Catalysis B: Environmental, 187, 11-18. doi:10.1016/j.apcatb.2016.01.002 es_ES
dc.description.references Kianička, J., Čík, G., Šeršeň, F., Špánik, I., Sokolík, R., & Filo, J. (2019). Photo-Reduction of CO2 by VIS Light on Polythiophene-ZSM-5 Zeolite Hybrid Photo-Catalyst. Molecules, 24(5), 992. doi:10.3390/molecules24050992 es_ES
dc.description.references Tong, Y., Chen, L., Ning, S., Tong, N., Zhang, Z., Lin, H., … Wang, X. (2017). Photocatalytic reduction of CO2 to CO over the Ti–Highly dispersed HZSM-5 zeolite containing Fe. Applied Catalysis B: Environmental, 203, 725-730. doi:10.1016/j.apcatb.2016.10.065 es_ES
dc.description.references Hu, Y., Rakhmawaty, D., Matsuoka, M., Takeuchi, M., & Anpo, M. (2006). Synthesis, characterization and photocatalytic reactivity of Ti-containing micro- and mesoporous materials. Journal of Porous Materials, 13(3-4), 335-340. doi:10.1007/s10934-006-8027-0 es_ES
dc.description.references Jia, W., Liu, T., Li, Q., & Yang, J. (2019). Highly efficient photocatalytic reduction of CO2 on surface-modified Ti-MCM-41 zeolite. Catalysis Today, 335, 221-227. doi:10.1016/j.cattod.2018.11.046 es_ES
dc.description.references Olah, G. A. (2005). Beyond Oil and Gas: The Methanol Economy. Angewandte Chemie International Edition, 44(18), 2636-2639. doi:10.1002/anie.200462121 es_ES
dc.description.references Bonura, G., Migliori, M., Frusteri, L., Cannilla, C., Catizzone, E., Giordano, G., & Frusteri, F. (2018). Acidity control of zeolite functionality on activity and stability of hybrid catalysts during DME production via CO2 hydrogenation. Journal of CO2 Utilization, 24, 398-406. doi:10.1016/j.jcou.2018.01.028 es_ES
dc.description.references Frusteri, F., Bonura, G., Cannilla, C., Drago Ferrante, G., Aloise, A., Catizzone, E., … Giordano, G. (2015). Stepwise tuning of metal-oxide and acid sites of CuZnZr-MFI hybrid catalysts for the direct DME synthesis by CO2 hydrogenation. Applied Catalysis B: Environmental, 176-177, 522-531. doi:10.1016/j.apcatb.2015.04.032 es_ES
dc.description.references Bonura, G., Cannilla, C., Frusteri, L., Mezzapica, A., & Frusteri, F. (2017). DME production by CO2 hydrogenation: Key factors affecting the behaviour of CuZnZr/ferrierite catalysts. Catalysis Today, 281, 337-344. doi:10.1016/j.cattod.2016.05.057 es_ES
dc.description.references Ateka, A., Ereña, J., Bilbao, J., & Aguayo, A. T. (2019). Strategies for the Intensification of CO2 Valorization in the One-Step Dimethyl Ether Synthesis Process. Industrial & Engineering Chemistry Research, 59(2), 713-722. doi:10.1021/acs.iecr.9b05749 es_ES
dc.description.references Sánchez-Contador, M., Ateka, A., Aguayo, A. T., & Bilbao, J. (2018). Direct synthesis of dimethyl ether from CO and CO2 over a core-shell structured CuO-ZnO-ZrO2@SAPO-11 catalyst. Fuel Processing Technology, 179, 258-268. doi:10.1016/j.fuproc.2018.07.009 es_ES
dc.description.references Frusteri, F., Migliori, M., Cannilla, C., Frusteri, L., Catizzone, E., Aloise, A., … Bonura, G. (2017). Direct CO 2 -to-DME hydrogenation reaction: New evidences of a superior behaviour of FER-based hybrid systems to obtain high DME yield. Journal of CO2 Utilization, 18, 353-361. doi:10.1016/j.jcou.2017.01.030 es_ES
dc.description.references Dubois, J.-L., Sayama, K., & Arakawa, H. (1992). Conversion of CO2to Dimethylether and Methanol over Hybrid Catalysts. Chemistry Letters, 21(7), 1115-1118. doi:10.1246/cl.1992.1115 es_ES
dc.description.references Graciani, J., Mudiyanselage, K., Xu, F., Baber, A. E., Evans, J., Senanayake, S. D., … Rodriguez, J. A. (2014). Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO 2. Science, 345(6196), 546-550. doi:10.1126/science.1253057 es_ES
dc.description.references Shih, C. F., Zhang, T., Li, J., & Bai, C. (2018). Powering the Future with Liquid Sunshine. Joule, 2(10), 1925-1949. doi:10.1016/j.joule.2018.08.016 es_ES
dc.description.references Tackett, B. M., Gomez, E., & Chen, J. G. (2019). Net reduction of CO2 via its thermocatalytic and electrocatalytic transformation reactions in standard and hybrid processes. Nature Catalysis, 2(5), 381-386. doi:10.1038/s41929-019-0266-y es_ES
dc.description.references Li, H., Qiu, C., Ren, S., Dong, Q., Zhang, S., Zhou, F., … Yu, M. (2020). Na + -gated water-conducting nanochannels for boosting CO 2 conversion to liquid fuels. Science, 367(6478), 667-671. doi:10.1126/science.aaz6053 es_ES
dc.description.references Moore, T. A. (2012). Coalbed methane: A review. International Journal of Coal Geology, 101, 36-81. doi:10.1016/j.coal.2012.05.011 es_ES
dc.description.references Konno, Y., Fujii, T., Sato, A., Akamine, K., Naiki, M., Masuda, Y., … Nagao, J. (2017). Key Findings of the World’s First Offshore Methane Hydrate Production Test off the Coast of Japan: Toward Future Commercial Production. Energy & Fuels, 31(3), 2607-2616. doi:10.1021/acs.energyfuels.6b03143 es_ES
dc.description.references Hammond, C., Jenkins, R. L., Dimitratos, N., Lopez-Sanchez, J. A., ab Rahim, M. H., Forde, M. M., … Hutchings, G. J. (2012). Catalytic and Mechanistic Insights of the Low-Temperature Selective Oxidation of Methane over Cu-Promoted Fe-ZSM-5. Chemistry - A European Journal, 18(49), 15735-15745. doi:10.1002/chem.201202802 es_ES
dc.description.references Raynes, S., Shah, M. A., & Taylor, R. A. (2019). Direct conversion of methane to methanol with zeolites: towards understanding the role of extra-framework d-block metal and zeolite framework type. Dalton Transactions, 48(28), 10364-10384. doi:10.1039/c9dt00922a es_ES
dc.description.references Ravi, M., Ranocchiari, M., & van Bokhoven, J. A. (2017). The Direct Catalytic Oxidation of Methane to Methanol-A Critical Assessment. Angewandte Chemie International Edition, 56(52), 16464-16483. doi:10.1002/anie.201702550 es_ES
dc.description.references Mahyuddin, M. H., Shiota, Y., Staykov, A., & Yoshizawa, K. (2018). Theoretical Overview of Methane Hydroxylation by Copper–Oxygen Species in Enzymatic and Zeolitic Catalysts. Accounts of Chemical Research, 51(10), 2382-2390. doi:10.1021/acs.accounts.8b00236 es_ES
dc.description.references Mahyuddin, M. H., Shiota, Y., & Yoshizawa, K. (2019). Methane selective oxidation to methanol by metal-exchanged zeolites: a review of active sites and their reactivity. Catalysis Science & Technology, 9(8), 1744-1768. doi:10.1039/c8cy02414f es_ES
dc.description.references Park, H. N., Park, S. H., Shin, J. H., Jeong, S.-H., & Song, J. Y. (2019). Template-Free Electrochemical Growth of Ni-Decorated ZnO Nanorod Array: Application to an Anode of Lithium Ion Battery. Frontiers in Chemistry, 7. doi:10.3389/fchem.2019.00415 es_ES
dc.description.references Zhao, G., Adesina, A., Kennedy, E., & Stockenhuber, M. (2019). Formation of Surface Oxygen Species and the Conversion of Methane to Value-Added Products with N2O as Oxidant over Fe-Ferrierite Catalysts. ACS Catalysis, 10(2), 1406-1416. doi:10.1021/acscatal.9b03466 es_ES
dc.description.references Zhang, P., Yang, X., Hou, X., Mi, J., Yuan, Z., Huang, J., & Stampfl, C. (2019). Active sites and mechanism of the direct conversion of methane and carbon dioxide to acetic acid over the zinc-modified H-ZSM-5 zeolite. Catalysis Science & Technology, 9(22), 6297-6307. doi:10.1039/c9cy01749f es_ES
dc.description.references Wang, S., Guo, S., Luo, Y., Qin, Z., Chen, Y., Dong, M., … Wang, J. (2019). Direct synthesis of acetic acid from carbon dioxide and methane over Cu-modulated BEA, MFI, MOR and TON zeolites: a density functional theory study. Catalysis Science & Technology, 9(23), 6613-6626. doi:10.1039/c9cy01803d es_ES
dc.description.references Shahami, M., & Shantz, D. F. (2019). Zeolite acidity strongly influences hydrogen peroxide activation and oxygenate selectivity in the partial oxidation of methane over M,Fe-MFI (M: Ga, Al, B) zeolites. Catalysis Science & Technology, 9(11), 2945-2951. doi:10.1039/c9cy00619b es_ES
dc.description.references Fang, Z., Murayama, H., Zhao, Q., Liu, B., Jiang, F., Xu, Y., … Liu, X. (2019). Selective mild oxidation of methane to methanol or formic acid on Fe–MOR catalysts. Catalysis Science & Technology, 9(24), 6946-6956. doi:10.1039/c9cy01640f es_ES
dc.description.references Shen, Y., Zhan, Y., Li, S., Ning, F., Du, Y., Huang, Y., … Zhou, X. (2017). Hydrogen generation from methanol at near-room temperature. Chem. Sci., 8(11), 7498-7504. doi:10.1039/c7sc01778b es_ES
dc.description.references Yang, M., Fan, D., Wei, Y., Tian, P., & Liu, Z. (2019). Recent Progress in Methanol‐to‐Olefins (MTO) Catalysts. Advanced Materials, 31(50), 1902181. doi:10.1002/adma.201902181 es_ES
dc.description.references Rosenzweig, A. C., Frederick, C. A., Lippard, S. J., & Nordlund, P. auml;r. (1993). Crystal structure of a bacterial non-haem iron hydroxylase that catalyses the biological oxidation of methane. Nature, 366(6455), 537-543. doi:10.1038/366537a0 es_ES
dc.description.references Sirajuddin, S., & Rosenzweig, A. C. (2015). Enzymatic Oxidation of Methane. Biochemistry, 54(14), 2283-2294. doi:10.1021/acs.biochem.5b00198 es_ES
dc.description.references Gabrienko, A. A., Yashnik, S. A., Kolganov, A. A., Sheveleva, A. M., Arzumanov, S. S., Fedin, M. V., … Stepanov, A. G. (2020). Methane Activation on H-ZSM-5 Zeolite with Low Copper Loading. The Nature of Active Sites and Intermediates Identified with the Combination of Spectroscopic Methods. Inorganic Chemistry, 59(3), 2037-2050. doi:10.1021/acs.inorgchem.9b03462 es_ES
dc.description.references Wang, G., Chen, W., Huang, L., Liu, Z., Sun, X., & Zheng, A. (2019). Reactivity descriptors of diverse copper-oxo species on ZSM-5 zeolite towards methane activation. Catalysis Today, 338, 108-116. doi:10.1016/j.cattod.2019.05.007 es_ES
dc.description.references Burnett, L., Rysakova, M., Wang, K., González-Carballo, J., Tooze, R. P., & García-García, F. R. (2019). Isothermal cyclic conversion of methane to methanol using copper-exchanged ZSM-5 zeolite materials under mild conditions. Applied Catalysis A: General, 587, 117272. doi:10.1016/j.apcata.2019.117272 es_ES
dc.description.references Sushkevich, V. L., Palagin, D., & van Bokhoven, J. A. (2018). The Effect of the Active-Site Structure on the Activity of Copper Mordenite in the Aerobic and Anaerobic Conversion of Methane into Methanol. Angewandte Chemie International Edition, 57(29), 8906-8910. doi:10.1002/anie.201802922 es_ES
dc.description.references Dinh, K. T., Sullivan, M. M., Narsimhan, K., Serna, P., Meyer, R. J., Dincă, M., & Román-Leshkov, Y. (2019). Continuous Partial Oxidation of Methane to Methanol Catalyzed by Diffusion-Paired Copper Dimers in Copper-Exchanged Zeolites. Journal of the American Chemical Society, 141(29), 11641-11650. doi:10.1021/jacs.9b04906 es_ES
dc.description.references Sushkevich, V. L., Verel, R., & Bokhoven, J. A. (2020). Pathways of Methane Transformation over Copper‐Exchanged Mordenite as Revealed by In Situ NMR and IR Spectroscopy. Angewandte Chemie International Edition, 59(2), 910-918. doi:10.1002/anie.201912668 es_ES
dc.description.references Pappas, D. K., Martini, A., Dyballa, M., Kvande, K., Teketel, S., Lomachenko, K. A., … Borfecchia, E. (2018). The Nuclearity of the Active Site for Methane to Methanol Conversion in Cu-Mordenite: A Quantitative Assessment. Journal of the American Chemical Society, 140(45), 15270-15278. doi:10.1021/jacs.8b08071 es_ES
dc.description.references Ross, M. O., MacMillan, F., Wang, J., Nisthal, A., Lawton, T. J., Olafson, B. D., … Hoffman, B. M. (2019). Particulate methane monooxygenase contains only mononuclear copper centers. Science, 364(6440), 566-570. doi:10.1126/science.aav2572 es_ES
dc.description.references Ravi, M., Sushkevich, V. L., Knorpp, A. J., Newton, M. A., Palagin, D., Pinar, A. B., … van Bokhoven, J. A. (2019). Misconceptions and challenges in methane-to-methanol over transition-metal-exchanged zeolites. Nature Catalysis, 2(6), 485-494. doi:10.1038/s41929-019-0273-z es_ES
dc.description.references Sushkevich, V. L., & van Bokhoven, J. A. (2018). Effect of Brønsted acid sites on the direct conversion of methane into methanol over copper-exchanged mordenite. Catalysis Science & Technology, 8(16), 4141-4150. doi:10.1039/c8cy01055b es_ES
dc.description.references Narsimhan, K., Michaelis, V. K., Mathies, G., Gunther, W. R., Griffin, R. G., & Román-Leshkov, Y. (2015). Methane to Acetic Acid over Cu-Exchanged Zeolites: Mechanistic Insights from a Site-Specific Carbonylation Reaction. Journal of the American Chemical Society, 137(5), 1825-1832. doi:10.1021/ja5106927 es_ES
dc.description.references Shan, J., Li, M., Allard, L. F., Lee, S., & Flytzani-Stephanopoulos, M. (2017). Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts. Nature, 551(7682), 605-608. doi:10.1038/nature24640 es_ES
dc.description.references Wulfers, M. J., Teketel, S., Ipek, B., & Lobo, R. F. (2015). Conversion of methane to methanol on copper-containing small-pore zeolites and zeotypes. Chemical Communications, 51(21), 4447-4450. doi:10.1039/c4cc09645b es_ES
dc.description.references Park, M. B., Ahn, S. H., Mansouri, A., Ranocchiari, M., & van Bokhoven, J. A. (2017). Comparative Study of Diverse Copper Zeolites for the Conversion of Methane into Methanol. ChemCatChem, 9(19), 3705-3713. doi:10.1002/cctc.201700768 es_ES
dc.description.references Mahyuddin, M. H., Staykov, A., Shiota, Y., Miyanishi, M., & Yoshizawa, K. (2017). Roles of Zeolite Confinement and Cu–O–Cu Angle on the Direct Conversion of Methane to Methanol by [Cu2(μ-O)]2+-Exchanged AEI, CHA, AFX, and MFI Zeolites. ACS Catalysis, 7(6), 3741-3751. doi:10.1021/acscatal.7b00588 es_ES
dc.description.references Narsimhan, K., Iyoki, K., Dinh, K., & Román-Leshkov, Y. (2016). Catalytic Oxidation of Methane into Methanol over Copper-Exchanged Zeolites with Oxygen at Low Temperature. ACS Central Science, 2(6), 424-429. doi:10.1021/acscentsci.6b00139 es_ES
dc.description.references Hori, Y., Shiota, Y., Tsuji, T., Kodera, M., & Yoshizawa, K. (2017). Catalytic Performance of a Dicopper–Oxo Complex for Methane Hydroxylation. Inorganic Chemistry, 57(1), 8-11. doi:10.1021/acs.inorgchem.7b02563 es_ES
dc.description.references Xiao, P., Wang, Y., Nishitoba, T., Kondo, J. N., & Yokoi, T. (2019). Selective oxidation of methane to methanol with H2O2 over an Fe-MFI zeolite catalyst using sulfolane solvent. Chemical Communications, 55(20), 2896-2899. doi:10.1039/c8cc10026h es_ES
dc.description.references Szécsényi, Á., Li, G., Gascon, J., & Pidko, E. A. (2018). Mechanistic Complexity of Methane Oxidation with H2O2 by Single-Site Fe/ZSM-5 Catalyst. ACS Catalysis, 8(9), 7961-7972. doi:10.1021/acscatal.8b01672 es_ES
dc.description.references Sushkevich, V. L., Palagin, D., Ranocchiari, M., & van Bokhoven, J. A. (2017). Selective anaerobic oxidation of methane enables direct synthesis of methanol. Science, 356(6337), 523-527. doi:10.1126/science.aam9035 es_ES
dc.description.references Vogiatzis, K. D., Li, G., Hensen, E. J. M., Gagliardi, L., & Pidko, E. A. (2017). Electronic Structure of the [Cu3(μ-O)3]2+ Cluster in Mordenite Zeolite and Its Effects on the Methane to Methanol Oxidation. The Journal of Physical Chemistry C, 121(40), 22295-22302. doi:10.1021/acs.jpcc.7b08714 es_ES
dc.description.references Dandu, N. K., Reed, J. A., & Odoh, S. O. (2018). Performance of Density Functional Theory for Predicting Methane-to-Methanol Conversion by a Tri-Copper Complex. The Journal of Physical Chemistry C, 122(2), 1024-1036. doi:10.1021/acs.jpcc.7b09284 es_ES
dc.description.references Mahyuddin, M. H., Tanaka, T., Staykov, A., Shiota, Y., & Yoshizawa, K. (2018). Dioxygen Activation on Cu-MOR Zeolite: Theoretical Insights into the Formation of Cu2O and Cu3O3 Active Species. Inorganic Chemistry, 57(16), 10146-10152. doi:10.1021/acs.inorgchem.8b01329 es_ES
dc.description.references Snyder, B. E. R., Vanelderen, P., Schoonheydt, R. A., Sels, B. F., & Solomon, E. I. (2018). Second-Sphere Effects on Methane Hydroxylation in Cu-Zeolites. Journal of the American Chemical Society, 140(29), 9236-9243. doi:10.1021/jacs.8b05320 es_ES
dc.description.references Le, H. V., Parishan, S., Sagaltchik, A., Göbel, C., Schlesiger, C., Malzer, W., … Thomas, A. (2017). Solid-State Ion-Exchanged Cu/Mordenite Catalysts for the Direct Conversion of Methane to Methanol. ACS Catalysis, 7(2), 1403-1412. doi:10.1021/acscatal.6b02372 es_ES
dc.description.references Ikuno, T., Grundner, S., Jentys, A., Li, G., Pidko, E., Fulton, J., … Lercher, J. A. (2019). Formation of Active Cu-oxo Clusters for Methane Oxidation in Cu-Exchanged Mordenite. The Journal of Physical Chemistry C, 123(14), 8759-8769. doi:10.1021/acs.jpcc.8b10293 es_ES
dc.description.references Tomkins, P., Mansouri, A., Bozbag, S. E., Krumeich, F., Park, M. B., Alayon, E. M. C., … van Bokhoven, J. A. (2016). Isothermal Cyclic Conversion of Methane into Methanol over Copper‐Exchanged Zeolite at Low Temperature. Angewandte Chemie International Edition, 55(18), 5467-5471. doi:10.1002/anie.201511065 es_ES
dc.description.references Zhao, G., Benhelal, E., Adesina, A., Kennedy, E., & Stockenhuber, M. (2019). Comparison of Direct, Selective Oxidation of Methane by N2O over Fe-ZSM-5, Fe-Beta, and Fe-FER Catalysts. The Journal of Physical Chemistry C, 123(45), 27436-27447. doi:10.1021/acs.jpcc.9b04388 es_ES
dc.description.references Shah, M. A., Raynes, S., Apperley, D. C., & Taylor, R. A. (2020). Framework Effects on Activation and Functionalisation of Methane in Zinc‐Exchanged Zeolites. ChemPhysChem, 21(7), 673-679. doi:10.1002/cphc.201900973 es_ES
dc.description.references Snyder, B. E. R., Vanelderen, P., Bols, M. L., Hallaert, S. D., Böttger, L. H., Ungur, L., … Solomon, E. I. (2016). The active site of low-temperature methane hydroxylation in iron-containing zeolites. Nature, 536(7616), 317-321. doi:10.1038/nature19059 es_ES
dc.description.references Bols, M. L., Hallaert, S. D., Snyder, B. E. R., Devos, J., Plessers, D., Rhoda, H. M., … Sels, B. F. (2018). Spectroscopic Identification of the α-Fe/α-O Active Site in Fe-CHA Zeolite for the Low-Temperature Activation of the Methane C–H Bond. Journal of the American Chemical Society, 140(38), 12021-12032. doi:10.1021/jacs.8b05877 es_ES
dc.description.references Devos, J., Bols, M. L., Plessers, D., Goethem, C. V., Seo, J. W., Hwang, S.-J., … Dusselier, M. (2019). Synthesis–Structure–Activity Relations in Fe-CHA for C–H Activation: Control of Al Distribution by Interzeolite Conversion. Chemistry of Materials, 32(1), 273-285. doi:10.1021/acs.chemmater.9b03738 es_ES
dc.description.references Engedahl, U., Grönbeck, H., & Hellman, A. (2019). First-Principles Study of Oxidation State and Coordination of Cu-Dimers in Cu-SSZ-13 during Methane-to-Methanol Reaction Conditions. The Journal of Physical Chemistry C, 123(43), 26145-26150. doi:10.1021/acs.jpcc.9b07954 es_ES
dc.description.references Oord, R., Schmidt, J. E., & Weckhuysen, B. M. (2018). Methane-to-methanol conversion over zeolite Cu-SSZ-13, and its comparison with the selective catalytic reduction of NOx with NH3. Catalysis Science & Technology, 8(4), 1028-1038. doi:10.1039/c7cy02461d es_ES
dc.description.references Pappas, D. K., Borfecchia, E., Dyballa, M., Pankin, I. A., Lomachenko, K. A., Martini, A., … Beato, P. (2017). Methane to Methanol: Structure–Activity Relationships for Cu-CHA. Journal of the American Chemical Society, 139(42), 14961-14975. doi:10.1021/jacs.7b06472 es_ES
dc.description.references Knorpp, A. J., Newton, M. A., Mizuno, S. C. M., Zhu, J., Mebrate, H., Pinar, A. B., & van Bokhoven, J. A. (2019). Comparative performance of Cu-zeolites in the isothermal conversion of methane to methanol. Chemical Communications, 55(78), 11794-11797. doi:10.1039/c9cc05659a es_ES
dc.description.references Knorpp, A. J., Newton, M. A., Sushkevich, V. L., Zimmermann, P. P., Pinar, A. B., & van Bokhoven, J. A. (2019). The influence of zeolite morphology on the conversion of methane to methanol on copper-exchanged omega zeolite (MAZ). Catalysis Science & Technology, 9(11), 2806-2811. doi:10.1039/c9cy00013e es_ES
dc.description.references Ipek, B., Wulfers, M. J., Kim, H., Göltl, F., Hermans, I., Smith, J. P., … Lobo, R. F. (2017). Formation of [Cu2O2]2+ and [Cu2O]2+ toward C–H Bond Activation in Cu-SSZ-13 and Cu-SSZ-39. ACS Catalysis, 7(7), 4291-4303. doi:10.1021/acscatal.6b03005 es_ES
dc.description.references Zhu, J., Sushkevich, V. L., Knorpp, A. J., Newton, M. A., Mizuno, S. C. M., Wakihara, T., … van Bokhoven, J. A. (2020). Cu-Erionite Zeolite Achieves High Yield in Direct Oxidation of Methane to Methanol by Isothermal Chemical Looping. Chemistry of Materials, 32(4), 1448-1453. doi:10.1021/acs.chemmater.9b04223 es_ES
dc.description.references Wu, J.-F., Gao, X.-D., Wu, L.-M., Wang, W. D., Yu, S.-M., & Bai, S. (2019). Mechanistic Insights on the Direct Conversion of Methane into Methanol over Cu/Na–ZSM-5 Zeolite: Evidence from EPR and Solid-State NMR. ACS Catalysis, 9(9), 8677-8681. doi:10.1021/acscatal.9b02898 es_ES
dc.description.references Qi, G., Wang, Q., Xu, J., Trébosc, J., Lafon, O., Wang, C., … Deng, F. (2016). Synergic Effect of Active Sites in Zinc-Modified ZSM-5 Zeolites as Revealed by High-Field Solid-State NMR Spectroscopy. Angewandte Chemie International Edition, 55(51), 15826-15830. doi:10.1002/anie.201608322 es_ES
dc.description.references Agarwal, N., Freakley, S. J., McVicker, R. U., Althahban, S. M., Dimitratos, N., He, Q., … Hutchings, G. J. (2017). Aqueous Au-Pd colloids catalyze selective CH 4 oxidation to CH 3 OH with O 2 under mild conditions. Science, 358(6360), 223-227. doi:10.1126/science.aan6515 es_ES
dc.description.references Grundner, S., Markovits, M. A. C., Li, G., Tromp, M., Pidko, E. A., Hensen, E. J. M., … Lercher, J. A. (2015). Single-site trinuclear copper oxygen clusters in mordenite for selective conversion of methane to methanol. Nature Communications, 6(1). doi:10.1038/ncomms8546 es_ES
dc.description.references Xie, J., Jin, R., Li, A., Bi, Y., Ruan, Q., Deng, Y., … Tang, J. (2018). Highly selective oxidation of methane to methanol at ambient conditions by titanium dioxide-supported iron species. Nature Catalysis, 1(11), 889-896. doi:10.1038/s41929-018-0170-x es_ES
dc.description.references Jin, Z., Wang, L., Zuidema, E., Mondal, K., Zhang, M., Zhang, J., … Xiao, F.-S. (2020). Hydrophobic zeolite modification for in situ peroxide formation in methane oxidation to methanol. Science, 367(6474), 193-197. doi:10.1126/science.aaw1108 es_ES
dc.description.references Kato, Y., Yoshida, H., Satsuma, A., & Hattori, T. (2002). Photoinduced non-oxidative coupling of methane over H-zeolites around room temperature. Microporous and Mesoporous Materials, 51(3), 223-231. doi:10.1016/s1387-1811(02)00268-8 es_ES
dc.description.references Hu, Y., Anpo, M., & Wei, C. (2013). Effect of the local structures of V-oxides in MCM-41 on the photocatalytic properties for the partial oxidation of methane to methanol. Journal of Photochemistry and Photobiology A: Chemistry, 264, 48-55. doi:10.1016/j.jphotochem.2013.05.005 es_ES
dc.description.references Sastre, F., Fornés, V., Corma, A., & García, H. (2011). Selective, Room-Temperature Transformation of Methane to C1 Oxygenates by Deep UV Photolysis over Zeolites. Journal of the American Chemical Society, 133(43), 17257-17261. doi:10.1021/ja204559z es_ES
dc.description.references Murcia-López, S., Bacariza, M. C., Villa, K., Lopes, J. M., Henriques, C., Morante, J. R., & Andreu, T. (2017). Controlled Photocatalytic Oxidation of Methane to Methanol through Surface Modification of Beta Zeolites. ACS Catalysis, 7(4), 2878-2885. doi:10.1021/acscatal.6b03535 es_ES
dc.description.references Tan, P. (2016). Active phase, catalytic activity, and induction period of Fe/zeolite material in nonoxidative aromatization of methane. Journal of Catalysis, 338, 21-29. doi:10.1016/j.jcat.2016.01.027 es_ES
dc.description.references Rahman, M., Infantes-Molina, A., Boubnov, A., Bare, S. R., Stavitski, E., Sridhar, A., & Khatib, S. J. (2019). Increasing the catalytic stability by optimizing the formation of zeolite-supported Mo carbide species ex situ for methane dehydroaromatization. Journal of Catalysis, 375, 314-328. doi:10.1016/j.jcat.2019.06.002 es_ES
dc.description.references Vollmer, I., Ould-Chikh, S., Aguilar-Tapia, A., Li, G., Pidko, E., Hazemann, J.-L., … Gascon, J. (2019). Activity Descriptors Derived from Comparison of Mo and Fe as Active Metal for Methane Conversion to Aromatics. Journal of the American Chemical Society, 141(47), 18814-18824. doi:10.1021/jacs.9b09710 es_ES
dc.description.references Crabtree, R. H. (1995). Aspects of Methane Chemistry. Chemical Reviews, 95(4), 987-1007. doi:10.1021/cr00036a005 es_ES
dc.description.references Zheng, X., & Blowers, P. (2006). A computational study of methane catalytic reactions on zeolites. Journal of Molecular Catalysis A: Chemical, 246(1-2), 1-10. doi:10.1016/j.molcata.2005.10.009 es_ES
dc.description.references Kosinov, N., Wijpkema, A. S. G., Uslamin, E., Rohling, R., Coumans, F. J. A. G., Mezari, B., … Hensen, E. J. M. (2017). Confined Carbon Mediating Dehydroaromatization of Methane over Mo/ZSM-5. Angewandte Chemie International Edition, 57(4), 1016-1020. doi:10.1002/anie.201711098 es_ES
dc.description.references Vollmer, I., van der Linden, B., Ould-Chikh, S., Aguilar-Tapia, A., Yarulina, I., Abou-Hamad, E., … Gascon, J. (2018). On the dynamic nature of Mo sites for methane dehydroaromatization. Chemical Science, 9(21), 4801-4807. doi:10.1039/c8sc01263f es_ES
dc.description.references Martínez, A., & Peris, E. (2016). Non-oxidative methane dehydroaromatization on Mo/HZSM-5 catalysts: Tuning the acidic and catalytic properties through partial exchange of zeolite protons with alkali and alkaline-earth cations. Applied Catalysis A: General, 515, 32-44. doi:10.1016/j.apcata.2016.01.044 es_ES
dc.description.references Lim, T. H., Nam, K., Song, I. K., Lee, K.-Y., & Kim, D. H. (2018). Effect of Si/Al 2 ratios in Mo/H-MCM-22 on methane dehydroaromatization. Applied Catalysis A: General, 552, 11-20. doi:10.1016/j.apcata.2017.12.021 es_ES
dc.description.references Zhao, K., Jia, L., Wang, J., Hou, B., & Li, D. (2019). The influence of the Si/Al ratio of Mo/HZSM-5 on methane non-oxidative dehydroaromatization. New Journal of Chemistry, 43(10), 4130-4136. doi:10.1039/c9nj00114j es_ES
dc.description.references Gao, J., Zheng, Y., Jehng, J.-M., Tang, Y., Wachs, I. E., & Podkolzin, S. G. (2015). Identification of molybdenum oxide nanostructures on zeolites for natural gas conversion. Science, 348(6235), 686-690. doi:10.1126/science.aaa7048 es_ES
dc.description.references Morejudo, S. H., Zanón, R., Escolástico, S., Yuste-Tirados, I., Malerød-Fjeld, H., Vestre, P. K., … Kjølseth, C. (2016). Direct conversion of methane to aromatics in a catalytic co-ionic membrane reactor. Science, 353(6299), 563-566. doi:10.1126/science.aag0274 es_ES
dc.description.references Julian, I., Hueso, J. L., Lara, N., Solé-Daurá, A., Poblet, J. M., Mitchell, S. G., … Santamaría, J. (2019). Polyoxometalates as alternative Mo precursors for methane dehydroaromatization on Mo/ZSM-5 and Mo/MCM-22 catalysts. Catalysis Science & Technology, 9(21), 5927-5942. doi:10.1039/c9cy01490j es_ES
dc.description.references Kosinov, N., Uslamin, E. A., Meng, L., Parastaev, A., Liu, Y., & Hensen, E. J. M. (2019). Reversible Nature of Coke Formation on Mo/ZSM‐5 Methane Dehydroaromatization Catalysts. Angewandte Chemie International Edition, 58(21), 7068-7072. doi:10.1002/anie.201902730 es_ES
dc.description.references Zhu, P., Yang, G., Sun, J., Fan, R., Zhang, P., Yoneyama, Y., & Tsubaki, N. (2017). A hollow Mo/HZSM-5 zeolite capsule catalyst: preparation and enhanced catalytic properties in methane dehydroaromatization. Journal of Materials Chemistry A, 5(18), 8599-8607. doi:10.1039/c7ta02345f es_ES
dc.description.references Huang, X., Jiao, X., Lin, M., Wang, K., Jia, L., Hou, B., & Li, D. (2018). Coke distribution determines the lifespan of a hollow Mo/HZSM-5 capsule catalyst in CH4 dehydroaromatization. Catalysis Science & Technology, 8(22), 5740-5749. doi:10.1039/c8cy01391h es_ES
dc.description.references Wang, K., Huang, X., & Li, D. (2018). Hollow ZSM-5 zeolite grass ball catalyst in methane dehydroaromatization: One-step synthesis and the exceptional catalytic performance. Applied Catalysis A: General, 556, 10-19. doi:10.1016/j.apcata.2018.02.030 es_ES
dc.description.references Wu, Y., Emdadi, L., Schulman, E., Shu, Y., Tran, D. T., Wang, X., & Liu, D. (2018). Overgrowth of lamellar silicalite-1 on MFI and BEA zeolites and its consequences on non-oxidative methane aromatization reaction. Microporous and Mesoporous Materials, 263, 1-10. doi:10.1016/j.micromeso.2017.11.040 es_ES
dc.description.references Tian, P., Wei, Y., Ye, M., & Liu, Z. (2015). Methanol to Olefins (MTO): From Fundamentals to Commercialization. ACS Catalysis, 5(3), 1922-1938. doi:10.1021/acscatal.5b00007 es_ES
dc.description.references Sun, Q., Xie, Z., & Yu, J. (2017). The state-of-the-art synthetic strategies for SAPO-34 zeolite catalysts in methanol-to-olefin conversion. National Science Review, 5(4), 542-558. doi:10.1093/nsr/nwx103 es_ES
dc.description.references Olsbye, U., Svelle, S., Bjørgen, M., Beato, P., Janssens, T. V. W., Joensen, F., … Lillerud, K. P. (2012). Conversion of Methanol to Hydrocarbons: How Zeolite Cavity and Pore Size Controls Product Selectivity. Angewandte Chemie International Edition, 51(24), 5810-5831. doi:10.1002/anie.201103657 es_ES
dc.description.references Schulz, H. (2018). About the Mechanism of Methanol Conversion on Zeolites. Catalysis Letters, 148(5), 1263-1280. doi:10.1007/s10562-018-2342-3 es_ES
dc.description.references Ali, M. A., Ahmed, S., Al-Baghli, N., Malaibari, Z., Abutaleb, A., & Yousef, A. (2019). A Comprehensive Review Covering Conventional and Structured Catalysis for Methanol to Propylene Conversion. Catalysis Letters, 149(12), 3395-3424. doi:10.1007/s10562-019-02914-4 es_ES
dc.description.references Wu, X., Xu, S., Zhang, W., Huang, J., Li, J., Yu, B., … Liu, Z. (2017). Direct Mechanism of the First Carbon-Carbon Bond Formation in the Methanol-to-Hydrocarbons Process. Angewandte Chemie International Edition, 56(31), 9039-9043. doi:10.1002/anie.201703902 es_ES
dc.description.references Wu, X., Xu, S., Wei, Y., Zhang, W., Huang, J., Xu, S., … Liu, Z. (2018). Evolution of C–C Bond Formation in the Methanol-to-Olefins Process: From Direct Coupling to Autocatalysis. ACS Catalysis, 8(8), 7356-7361. doi:10.1021/acscatal.8b02385 es_ES
dc.description.references Svelle, S., Joensen, F., Nerlov, J., Olsbye, U., Lillerud, K.-P., Kolboe, S., & Bjørgen, M. (2006). Conversion of Methanol into Hydrocarbons over Zeolite H-ZSM-5:  Ethene Formation Is Mechanistically Separated from the Formation of Higher Alkenes. Journal of the American Chemical Society, 128(46), 14770-14771. doi:10.1021/ja065810a es_ES
dc.description.references BJORGEN, M., SVELLE, S., JOENSEN, F., NERLOV, J., KOLBOE, S., BONINO, F., … OLSBYE, U. (2007). Conversion of methanol to hydrocarbons over zeolite H-ZSM-5: On the origin of the olefinic species. Journal of Catalysis, 249(2), 195-207. doi:10.1016/j.jcat.2007.04.006 es_ES
dc.description.references Ferri, P., Li, C., Paris, C., Vidal-Moya, A., Moliner, M., Boronat, M., & Corma, A. (2019). Chemical and Structural Parameter Connecting Cavity Architecture, Confined Hydrocarbon Pool Species, and MTO Product Selectivity in Small-Pore Cage-Based Zeolites. ACS Catalysis, 9(12), 11542-11551. doi:10.1021/acscatal.9b04588 es_ES
dc.description.references Guo, H., Ge, T., Lv, J., Du, C., Zhou, J., Liu, Z., & Hua, Z. (2018). Mesoporogen-Free Synthesis of High-Silica Hierarchically Structured ZSM-5 Zeolites and their Superior Performance for the Methanol-to-Propylene Reaction. European Journal of Inorganic Chemistry, 2019(1), 51-58. doi:10.1002/ejic.201800926 es_ES
dc.description.references Zhang, J., Xu, L., Zhang, Y., Huang, Z., Zhang, X., Zhang, X., … Xu, L. (2018). Hydrogen transfer versus olefins methylation: On the formation trend of propene in the methanol-to-hydrocarbons reaction over Beta zeolites. Journal of Catalysis, 368, 248-260. doi:10.1016/j.jcat.2018.10.015 es_ES
dc.description.references Liu, Y., Kirchberger, F. M., Müller, S., Eder, M., Tonigold, M., Sanchez-Sanchez, M., & Lercher, J. A. (2019). Critical role of formaldehyde during methanol conversion to hydrocarbons. Nature Communications, 10(1). doi:10.1038/s41467-019-09449-7 es_ES
dc.description.references Chen, J., Li, J., Yuan, C., Xu, S., Wei, Y., Wang, Q., … Liu, Z. (2014). Elucidating the olefin formation mechanism in the methanol to olefin reaction over AlPO-18 and SAPO-18. Catalysis Science & Technology, 4(9), 3268. doi:10.1039/c4cy00551a es_ES
dc.description.references Jiao, X., Huang, X., & Wang, K. (2019). In situ UV-Raman spectroscopy of the coking-caused deactivation mechanism over an Mo/HMCM-22 catalyst in methane dehydroaromatization. Catalysis Science & Technology, 9(23), 6552-6555. doi:10.1039/c9cy01932d es_ES
dc.description.references Wang, S., Wang, P., Qin, Z., Chen, Y., Dong, M., Li, J., … Fan, W. (2018). Relation of Catalytic Performance to the Aluminum Siting of Acidic Zeolites in the Conversion of Methanol to Olefins, Viewed via a Comparison between ZSM-5 and ZSM-11. ACS Catalysis, 8(6), 5485-5505. doi:10.1021/acscatal.8b01054 es_ES
dc.description.references Wang, C., Chu, Y., Xu, J., Wang, Q., Qi, G., Gao, P., … Deng, F. (2018). Extra-Framework Aluminum-Assisted Initial C−C Bond Formation in Methanol-to-Olefins Conversion on Zeolite H-ZSM-5. Angewandte Chemie International Edition, 57(32), 10197-10201. doi:10.1002/anie.201805609 es_ES
dc.description.references Nishitoba, T., Yoshida, N., Kondo, J. N., & Yokoi, T. (2018). Control of Al Distribution in the CHA-Type Aluminosilicate Zeolites and Its Impact on the Hydrothermal Stability and Catalytic Properties. Industrial & Engineering Chemistry Research, 57(11), 3914-3922. doi:10.1021/acs.iecr.7b04985 es_ES
dc.description.references Zhang, L., Wang, S., Shi, D., Qin, Z., Wang, P., Wang, G., … Wang, J. (2020). Methanol to olefins over H-RUB-13 zeolite: regulation of framework aluminum siting and acid density and their relationship to the catalytic performance. Catalysis Science & Technology, 10(6), 1835-1847. doi:10.1039/c9cy02419k es_ES
dc.description.references Molino, A., Holzinger, J., Łukaszuk, K. A., Rojo-Gama, D., Gunnæs, A. E., Skibsted, J., … Lillerud, K. P. (2019). Synthesis of ZSM-23 (MTT) zeolites with different crystal morphology and intergrowths: effects on the catalytic performance in the conversion of methanol to hydrocarbons. Catalysis Science & Technology, 9(23), 6782-6792. doi:10.1039/c9cy01068h es_ES
dc.description.references Yarulina, I., De Wispelaere, K., Bailleul, S., Goetze, J., Radersma, M., Abou-Hamad, E., … Gascon, J. (2018). Structure–performance descriptors and the role of Lewis acidity in the methanol-to-propylene process. Nature Chemistry, 10(8), 804-812. doi:10.1038/s41557-018-0081-0 es_ES
dc.description.references Moliner, M., Martínez, C., & Corma, A. (2013). Synthesis Strategies for Preparing Useful Small Pore Zeolites and Zeotypes for Gas Separations and Catalysis. Chemistry of Materials, 26(1), 246-258. doi:10.1021/cm4015095 es_ES
dc.description.references Dusselier, M., & Davis, M. E. (2018). Small-Pore Zeolites: Synthesis and Catalysis. Chemical Reviews, 118(11), 5265-5329. doi:10.1021/acs.chemrev.7b00738 es_ES
dc.description.references Zhang, J., Huang, Z., Xu, L., Zhang, X., Zhang, X., Yuan, Y., & Xu, L. (2019). Verifying the olefin formation mechanism of the methanol-to-hydrocarbons reaction over H-ZSM-48. Catalysis Science & Technology, 9(9), 2132-2143. doi:10.1039/c8cy02621a es_ES
dc.description.references Liu, Z., Dong, X., Zhu, Y., Emwas, A.-H., Zhang, D., Tian, Q., & Han, Y. (2015). Investigating the Influence of Mesoporosity in Zeolite Beta on Its Catalytic Performance for the Conversion of Methanol to Hydrocarbons. ACS Catalysis, 5(10), 5837-5845. doi:10.1021/acscatal.5b01350 es_ES
dc.description.references Ruddy, D. A., Hensley, J. E., Nash, C. P., Tan, E. C. D., Christensen, E., Farberow, C. A., … Schaidle, J. A. (2019). Methanol to high-octane gasoline within a market-responsive biorefinery concept enabled by catalysis. Nature Catalysis, 2(7), 632-640. doi:10.1038/s41929-019-0319-2 es_ES
dc.description.references Yang, M., Li, B., Gao, M., Lin, S., Wang, Y., Xu, S., … Liu, Z. (2020). High Propylene Selectivity in Methanol Conversion over a Small-Pore SAPO Molecular Sieve with Ultra-Small Cage. ACS Catalysis, 10(6), 3741-3749. doi:10.1021/acscatal.9b04703 es_ES
dc.description.references Wang, J., Li, J., Xu, S., Zhi, Y., Wei, Y., He, Y., … Liu, Z. (2015). Methanol to hydrocarbons reaction over HZSM-22 and SAPO-11: Effect of catalyst acid strength on reaction and deactivation mechanism. Chinese Journal of Catalysis, 36(8), 1392-1402. doi:10.1016/s1872-2067(15)60953-6 es_ES
dc.description.references Gallego, E. M., Portilla, M. T., Paris, C., León-Escamilla, A., Boronat, M., Moliner, M., & Corma, A. (2017). «Ab initio» synthesis of zeolites for preestablished catalytic reactions. Science, 355(6329), 1051-1054. doi:10.1126/science.aal0121 es_ES
dc.description.references Li, C., Paris, C., Martínez-Triguero, J., Boronat, M., Moliner, M., & Corma, A. (2018). Synthesis of reaction‐adapted zeolites as methanol-to-olefins catalysts with mimics of reaction intermediates as organic structure‐directing agents. Nature Catalysis, 1(7), 547-554. doi:10.1038/s41929-018-0104-7 es_ES
dc.description.references Sun, C., Wang, Y., Zhao, A., Wang, X., Wang, C., Zhang, X., … Zhao, T. (2020). Synthesis of nano-sized SAPO-34 with morpholine-treated micrometer-seeds and their catalytic performance in methanol-to-olefin reactions. Applied Catalysis A: General, 589, 117314. doi:10.1016/j.apcata.2019.117314 es_ES
dc.description.references Zhang, L., Liu, H., Yue, Y., Olsbye, U., & Bao, X. (2019). Design and in situ synthesis of hierarchical SAPO-34@kaolin composites as catalysts for methanol to olefins. Catalysis Science & Technology, 9(22), 6438-6451. doi:10.1039/c9cy01663e es_ES
dc.description.references Xu, Z., Li, J., Huang, Y., Ma, H., Qian, W., Zhang, H., & Ying, W. (2019). Size control of SSZ-13 crystals with APAM and its influence on the coking behaviour during MTO reaction. Catalysis Science & Technology, 9(11), 2888-2897. doi:10.1039/c9cy00412b es_ES
dc.description.references Shao, J., Fu, T., Ma, Z., Zhang, C., Li, H., Cui, L., & Li, Z. (2019). Facile creation of hierarchical nano-sized ZSM-5 with a large external surface area via desilication–recrystallization of silicalite-1 for conversion of methanol to hydrocarbons. Catalysis Science & Technology, 9(23), 6647-6658. doi:10.1039/c9cy01053j es_ES
dc.description.references Sun, Q., Wang, N., Bai, R., Chen, G., Shi, Z., Zou, Y., & Yu, J. (2018). Mesoporogen-Free Synthesis of Hierarchical SAPO-34 with Low Template Consumption and Excellent Methanol-to-Olefin Conversion. ChemSusChem, 11(21), 3812-3820. doi:10.1002/cssc.201801486 es_ES
dc.description.references Zhang, Q., Xiang, S., Zhang, Q., Wang, B., Mayoral, A., Liu, W., … Yu, J. (2019). Breaking the Si/Al Limit of Nanosized β Zeolites: Promoting Catalytic Production of Lactide. Chemistry of Materials, 32(2), 751-758. doi:10.1021/acs.chemmater.9b04023 es_ES
dc.description.references Bai, R., Song, Y., Li, Y., & Yu, J. (2019). Creating Hierarchical Pores in Zeolite Catalysts. Trends in Chemistry, 1(6), 601-611. doi:10.1016/j.trechm.2019.05.010 es_ES
dc.description.references Gallego, E. M., Paris, C., Díaz-Rey, M. R., Martínez-Armero, M. E., Martínez-Triguero, J., Martínez, C., … Corma, A. (2017). Simple organic structure directing agents for synthesizing nanocrystalline zeolites. Chemical Science, 8(12), 8138-8149. doi:10.1039/c7sc02858j es_ES
dc.description.references Margarit, V. J., Díaz-Rey, M. R., Navarro, M. T., Martínez, C., & Corma, A. (2018). Direct Synthesis of Nano-Ferrierite along the 10-Ring-Channel Direction Boosts Their Catalytic Behavior. Angewandte Chemie International Edition, 57(13), 3459-3463. doi:10.1002/anie.201711418 es_ES
dc.description.references Martínez-Franco, R., Paris, C., Martínez-Armero, M. E., Martínez, C., Moliner, M., & Corma, A. (2016). High-silica nanocrystalline Beta zeolites: efficient synthesis and catalytic application. Chemical Science, 7(1), 102-108. doi:10.1039/c5sc03019f es_ES
dc.description.references Gallego, E. M., Paris, C., Martínez, C., Moliner, M., & Corma, A. (2018). Nanosized MCM-22 zeolite using simple non-surfactant organic growth modifiers: synthesis and catalytic applications. Chemical Communications, 54(71), 9989-9992. doi:10.1039/c8cc05356a es_ES
dc.description.references Zhu, Y.-L., Dai, H., Duan, Y., Chen, Q., & Zhang, M. (2020). Excellent Methanol to Olefin Performance of SAPO-34 Crystal Deriving from the Mixed Micropore, Mesopore, and Macropore Architecture. Crystal Growth & Design, 20(4), 2623-2631. doi:10.1021/acs.cgd.0c00002 es_ES
dc.description.references Wang, N., Hou, Y., Sun, W., Cai, D., Chen, Z., Liu, L., … Wei, F. (2019). Modulation of b-axis thickness within MFI zeolite: Correlation with variation of product diffusion and coke distribution in the methanol-to-hydrocarbons conversion. Applied Catalysis B: Environmental, 243, 721-733. doi:10.1016/j.apcatb.2018.11.023 es_ES
dc.description.references Kim, S., Park, G., Woo, M. H., Kwak, G., & Kim, S. K. (2019). Control of Hierarchical Structure and Framework-Al Distribution of ZSM-5 via Adjusting Crystallization Temperature and Their Effects on Methanol Conversion. ACS Catalysis, 9(4), 2880-2892. doi:10.1021/acscatal.8b04493 es_ES
dc.description.references Gallego, E. M., Li, C., Paris, C., Martín, N., Martínez-Triguero, J., Boronat, M., … Corma, A. (2018). Making Nanosized CHA Zeolites with Controlled Al Distribution for Optimizing Methanol-to-Olefin Performance. Chemistry - A European Journal, 24(55), 14631-14635. doi:10.1002/chem.201803637 es_ES
dc.description.references Martín, N., Li, Z., Martínez-Triguero, J., Yu, J., Moliner, M., & Corma, A. (2016). Nanocrystalline SSZ-39 zeolite as an efficient catalyst for the methanol-to-olefin (MTO) process. Chemical Communications, 52(36), 6072-6075. doi:10.1039/c5cc09719c es_ES
dc.description.references Martínez-Franco, R., Li, Z., Martínez-Triguero, J., Moliner, M., & Corma, A. (2016). Improving the catalytic performance of SAPO-18 for the methanol-to-olefins (MTO) reaction by controlling the Si distribution and crystal size. Catalysis Science & Technology, 6(8), 2796-2806. doi:10.1039/c5cy02298c es_ES
dc.description.references Li, Z., Martínez-Triguero, J., Yu, J., & Corma, A. (2015). Conversion of methanol to olefins: Stabilization of nanosized SAPO-34 by hydrothermal treatment. Journal of Catalysis, 329, 379-388. doi:10.1016/j.jcat.2015.05.025 es_ES
dc.description.references Li, Z., Martínez-Triguero, J., Concepción, P., Yu, J., & Corma, A. (2013). Methanol to olefins: activity and stability of nanosized SAPO-34 molecular sieves and control of selectivity by silicon distribution. Physical Chemistry Chemical Physics, 15(35), 14670. doi:10.1039/c3cp52247d es_ES
dc.description.references Schlapbach, L., & Züttel, A. (2001). Hydrogen-storage materials for mobile applications. Nature, 414(6861), 353-358. doi:10.1038/35104634 es_ES
dc.description.references Mellmann, D., Sponholz, P., Junge, H., & Beller, M. (2016). Formic acid as a hydrogen storage material – development of homogeneous catalysts for selective hydrogen release. Chemical Society Reviews, 45(14), 3954-3988. doi:10.1039/c5cs00618j es_ES
dc.description.references Zhu, Q.-L., & Xu, Q. (2015). Liquid organic and inorganic chemical hydrides for high-capacity hydrogen storage. Energy & Environmental Science, 8(2), 478-512. doi:10.1039/c4ee03690e es_ES
dc.description.references Grasemann, M., & Laurenczy, G. (2012). Formic acid as a hydrogen source – recent developments and future trends. Energy & Environmental Science, 5(8), 8171. doi:10.1039/c2ee21928j es_ES
dc.description.references He, T., Pachfule, P., Wu, H., Xu, Q., & Chen, P. (2016). Hydrogen carriers. Nature Reviews Materials, 1(12). doi:10.1038/natrevmats.2016.59 es_ES
dc.description.references Gu, X., Lu, Z.-H., Jiang, H.-L., Akita, T., & Xu, Q. (2011). Synergistic Catalysis of Metal–Organic Framework-Immobilized Au–Pd Nanoparticles in Dehydrogenation of Formic Acid for Chemical Hydrogen Storage. Journal of the American Chemical Society, 133(31), 11822-11825. doi:10.1021/ja200122f es_ES
dc.description.references Martis, M., Mori, K., Fujiwara, K., Ahn, W.-S., & Yamashita, H. (2013). Amine-Functionalized MIL-125 with Imbedded Palladium Nanoparticles as an Efficient Catalyst for Dehydrogenation of Formic Acid at Ambient Temperature. The Journal of Physical Chemistry C, 117(44), 22805-22810. doi:10.1021/jp4069027 es_ES
dc.description.references Ke, F., Wang, L., & Zhu, J. (2015). An efficient room temperature core–shell AgPd@MOF catalyst for hydrogen production from formic acid. Nanoscale, 7(18), 8321-8325. doi:10.1039/c4nr07582j es_ES
dc.description.references Dai, H., Xia, B., Wen, L., Du, C., Su, J., Luo, W., & Cheng, G. (2015). Synergistic catalysis of AgPd@ZIF-8 on dehydrogenation of formic acid. Applied Catalysis B: Environmental, 165, 57-62. doi:10.1016/j.apcatb.2014.09.065 es_ES
dc.description.references Ojeda, M., & Iglesia, E. (2009). Formic Acid Dehydrogenation on Au-Based Catalysts at Near-Ambient Temperatures. Angewandte Chemie International Edition, 48(26), 4800-4803. doi:10.1002/anie.200805723 es_ES
dc.description.references Song, F.-Z., Zhu, Q.-L., Tsumori, N., & Xu, Q. (2015). Diamine-Alkalized Reduced Graphene Oxide: Immobilization of Sub-2 nm Palladium Nanoparticles and Optimization of Catalytic Activity for Dehydrogenation of Formic Acid. ACS Catalysis, 5(9), 5141-5144. doi:10.1021/acscatal.5b01411 es_ES
dc.description.references Wang, Z.-L., Wang, H.-L., Yan, J.-M., Ping, Y., O, S.-I., Li, S.-J., & Jiang, Q. (2014). DNA-directed growth of ultrafine CoAuPd nanoparticles on graphene as efficient catalysts for formic acid dehydrogenation. Chemical Communications, 50(21), 2732. doi:10.1039/c3cc49821b es_ES
dc.description.references Zhu, Q.-L., Tsumori, N., & Xu, Q. (2014). Sodium hydroxide-assisted growth of uniform Pd nanoparticles on nanoporous carbon MSC-30 for efficient and complete dehydrogenation of formic acid under ambient conditions. Chem. Sci., 5(1), 195-199. doi:10.1039/c3sc52448e es_ES
dc.description.references Cheng, J., Gu, X., Sheng, X., Liu, P., & Su, H. (2016). Exceptional size-dependent catalytic activity enhancement in the room-temperature hydrogen generation from formic acid over bimetallic nanoparticles supported by porous carbon. Journal of Materials Chemistry A, 4(5), 1887-1894. doi:10.1039/c5ta08534a es_ES
dc.description.references Navlani-García, M., Martis, M., Lozano-Castelló, D., Cazorla-Amorós, D., Mori, K., & Yamashita, H. (2015). Investigation of Pd nanoparticles supported on zeolites for hydrogen production from formic acid dehydrogenation. Catalysis Science & Technology, 5(1), 364-371. doi:10.1039/c4cy00667d es_ES
dc.description.references Gallas-Hulin, A., Mielby, J., & Kegnaes, S. (2016). Efficient Production of Hydrogen from Decomposition of Formic Acid over Zeolite Incorporated Gold Nanoparticles. ChemistrySelect, 1(13), 3942-3945. doi:10.1002/slct.201600831 es_ES
dc.description.references Amos, R. I. J., Heinroth, F., Chan, B., Ward, A. J., Zheng, S., Haynes, B. S., … Radom, L. (2015). Hydrogen from Formic Acid via Its Selective Disproportionation over Nanodomain-Modified Zeolites. ACS Catalysis, 5(7), 4353-4362. doi:10.1021/cs501677b es_ES
dc.description.references Supronowicz, W., Ignatyev, I. A., Lolli, G., Wolf, A., Zhao, L., & Mleczko, L. (2015). Formic acid: a future bridge between the power and chemical industries. Green Chemistry, 17(5), 2904-2911. doi:10.1039/c5gc00249d es_ES
dc.description.references Sun, Q., Wang, N., Bing, Q., Si, R., Liu, J., Bai, R., … Yu, J. (2017). Subnanometric Hybrid Pd-M(OH)2, M = Ni, Co, Clusters in Zeolites as Highly Efficient Nanocatalysts for Hydrogen Generation. Chem, 3(3), 477-493. doi:10.1016/j.chempr.2017.07.001 es_ES
dc.description.references Corma, A. (2016). Heterogeneous Catalysis: Understanding for Designing, and Designing for Applications. Angewandte Chemie International Edition, 55(21), 6112-6113. doi:10.1002/anie.201601231 es_ES
dc.description.references Yang, W., Fidelis, T. T., & Sun, W.-H. (2019). Machine Learning in Catalysis, From Proposal to Practicing. ACS Omega, 5(1), 83-88. doi:10.1021/acsomega.9b03673 es_ES
dc.description.references Moliner, M., Román-Leshkov, Y., & Corma, A. (2019). Machine Learning Applied to Zeolite Synthesis: The Missing Link for Realizing High-Throughput Discovery. Accounts of Chemical Research, 52(10), 2971-2980. doi:10.1021/acs.accounts.9b00399 es_ES
dc.description.references Li, Y., Li, X., Liu, J., Duan, F., & Yu, J. (2015). In silico prediction and screening of modular crystal structures via a high-throughput genomic approach. Nature Communications, 6(1). doi:10.1038/ncomms9328 es_ES
dc.description.references Kumar, A., Song, K., Liu, L., Han, Y., & Bhan, A. (2018). Absorptive Hydrogen Scavenging for Enhanced Aromatics Yield During Non‐oxidative Methane Dehydroaromatization on Mo/H‐ZSM‐5 Catalysts. Angewandte Chemie International Edition, 57(47), 15577-15582. doi:10.1002/anie.201809433 es_ES
dc.description.references Li, Y., & Yu, J. (2016). Genetic engineering of inorganic functional modular materials. Chemical Science, 7(6), 3472-3481. doi:10.1039/c6sc00123h es_ES
dc.description.references Gaillac, R., Chibani, S., & Coudert, F.-X. (2020). Speeding Up Discovery of Auxetic Zeolite Frameworks by Machine Learning. Chemistry of Materials, 32(6), 2653-2663. doi:10.1021/acs.chemmater.0c00434 es_ES
dc.description.references Li, J., Qi, M., Kong, J., Wang, J., Yan, Y., Huo, W., … Xu, Y. (2010). Computational prediction of the formation of microporous aluminophosphates with desired structural features. Microporous and Mesoporous Materials, 129(1-2), 251-255. doi:10.1016/j.micromeso.2009.10.001 es_ES
dc.description.references Hajjar, Z., Khodadadi, A., Mortazavi, Y., Tayyebi, S., & Soltanali, S. (2016). Artificial intelligence modeling of DME conversion to gasoline and light olefins over modified nano ZSM-5 catalysts. Fuel, 179, 79-86. doi:10.1016/j.fuel.2016.03.046 es_ES
dc.description.references Tran, K., & Ulissi, Z. W. (2018). Active learning across intermetallics to guide discovery of electrocatalysts for CO2 reduction and H2 evolution. Nature Catalysis, 1(9), 696-703. doi:10.1038/s41929-018-0142-1 es_ES
dc.description.references Wang, S., Li, R., Li, D., Zhang, Z.-Y., Liu, G., Liang, H., … Li, Y. (2018). Fabrication of bioactive 3D printed porous titanium implants with Sr ion-incorporated zeolite coatings for bone ingrowth. Journal of Materials Chemistry B, 6(20), 3254-3261. doi:10.1039/c8tb00328a es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem