- -

Synthesis, post-synthetic modification and stability of a 2D styryl ammonium lead iodide hybrid material

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Synthesis, post-synthetic modification and stability of a 2D styryl ammonium lead iodide hybrid material

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Peng, Yong es_ES
dc.contributor.author Albero-Sancho, Josep es_ES
dc.contributor.author García Gómez, Hermenegildo es_ES
dc.date.accessioned 2021-04-28T03:31:28Z
dc.date.available 2021-04-28T03:31:28Z
dc.date.issued 2020-01-14 es_ES
dc.identifier.issn 1477-9226 es_ES
dc.identifier.uri http://hdl.handle.net/10251/165714
dc.description.abstract [EN] A new hybrid lead iodide material (HP1) having 4-vinylphenylene ammonium as the organic cation has been prepared. The structural formula based on chemical analysis of HP1 corresponds to PbI2.5(4-styrylammonium)(0.5). The crystallinity of HP1 was confirmed by powder X-ray diffraction and high resolution transmission electron microscopy. The presence of the styryl ammonium moiety in HP1 allows post-synthetic modification by radical copolymerization with styrene to obtain the HP2 material with higher hydrophobicity. Stability tests reveal that both HP1 and HP2 show hydrogen evolution in the dark, indicating about 0.6% partial decomposition of the hybrid material. This hydrogen evolution increases by a factor of 3 when HP1 and HP2 are exposed to visible light. X-ray photoelectron spectroscopy analysis shows an increase of NH2 groups and a decrease of NH3+ units suggesting that the origin of hydrogen evolution is the deprotonation of ammonium ions. es_ES
dc.description.sponsorship Financial support from the Spanish Ministry of Economy and Competitiveness (Severo Ochoa SEV2016, and RTI2018-890237-CO2-R1) and the Generalitat Valenciana (Prometeo 2017/083) is gratefully acknowledged. Yong Peng also thanks the Universitat Politecnica de Valencia for a predoctoral scholarship. es_ES
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation.ispartof Dalton Transactions es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Synthesis, post-synthetic modification and stability of a 2D styryl ammonium lead iodide hybrid material es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/C9DT04285G es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RTI2018-890237-CO2-R1 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F083/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Peng, Y.; Albero-Sancho, J.; García Gómez, H. (2020). Synthesis, post-synthetic modification and stability of a 2D styryl ammonium lead iodide hybrid material. Dalton Transactions. 49(2):395-403. https://doi.org/10.1039/C9DT04285G es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/C9DT04285G es_ES
dc.description.upvformatpinicio 395 es_ES
dc.description.upvformatpfin 403 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 49 es_ES
dc.description.issue 2 es_ES
dc.relation.pasarela S\398878 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N., & Snaith, H. J. (2012). Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science, 338(6107), 643-647. doi:10.1126/science.1228604 es_ES
dc.description.references Boix, P. P., Agarwala, S., Koh, T. M., Mathews, N., & Mhaisalkar, S. G. (2015). Perovskite Solar Cells: Beyond Methylammonium Lead Iodide. The Journal of Physical Chemistry Letters, 6(5), 898-907. doi:10.1021/jz502547f es_ES
dc.description.references Eames, C., Frost, J. M., Barnes, P. R. F., O’Regan, B. C., Walsh, A., & Islam, M. S. (2015). Ionic transport in hybrid lead iodide perovskite solar cells. Nature Communications, 6(1). doi:10.1038/ncomms8497 es_ES
dc.description.references Kato, Y., Ono, L. K., Lee, M. V., Wang, S., Raga, S. R., & Qi, Y. (2015). Silver Iodide Formation in Methyl Ammonium Lead Iodide Perovskite Solar Cells with Silver Top Electrodes. Advanced Materials Interfaces, 2(13), 1500195. doi:10.1002/admi.201500195 es_ES
dc.description.references Malinkiewicz, O., Yella, A., Lee, Y. H., Espallargas, G. M., Graetzel, M., Nazeeruddin, M. K., & Bolink, H. J. (2013). Perovskite solar cells employing organic charge-transport layers. Nature Photonics, 8(2), 128-132. doi:10.1038/nphoton.2013.341 es_ES
dc.description.references Christians, J. A., Manser, J. S., & Kamat, P. V. (2015). Multifaceted Excited State of CH3NH3PbI3. Charge Separation, Recombination, and Trapping. The Journal of Physical Chemistry Letters, 6(11), 2086-2095. doi:10.1021/acs.jpclett.5b00594 es_ES
dc.description.references Stranks, S. D., Eperon, G. E., Grancini, G., Menelaou, C., Alcocer, M. J. P., Leijtens, T., … Snaith, H. J. (2013). Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber. Science, 342(6156), 341-344. doi:10.1126/science.1243982 es_ES
dc.description.references Xing, G., Mathews, N., Sun, S., Lim, S. S., Lam, Y. M., Grätzel, M., … Sum, T. C. (2013). Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH 3 NH 3 PbI 3. Science, 342(6156), 344-347. doi:10.1126/science.1243167 es_ES
dc.description.references Albero, J., & García, H. (2017). Luminescence control in hybrid perovskites and their applications. Journal of Materials Chemistry C, 5(17), 4098-4110. doi:10.1039/c7tc00714k es_ES
dc.description.references Correa-Baena, J.-P., Abate, A., Saliba, M., Tress, W., Jesper Jacobsson, T., Grätzel, M., & Hagfeldt, A. (2017). The rapid evolution of highly efficient perovskite solar cells. Energy & Environmental Science, 10(3), 710-727. doi:10.1039/c6ee03397k es_ES
dc.description.references Jeon, N. J., Na, H., Jung, E. H., Yang, T.-Y., Lee, Y. G., Kim, G., … Seo, J. (2018). A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nature Energy, 3(8), 682-689. doi:10.1038/s41560-018-0200-6 es_ES
dc.description.references Sahli, F., Werner, J., Kamino, B. A., Bräuninger, M., Monnard, R., Paviet-Salomon, B., … Ballif, C. (2018). Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. Nature Materials, 17(9), 820-826. doi:10.1038/s41563-018-0115-4 es_ES
dc.description.references Dhakshinamoorthy, A., Navalon, S., Corma, A., & Garcia, H. (2012). Photocatalytic CO2 reduction by TiO2 and related titanium containing solids. Energy & Environmental Science, 5(11), 9217. doi:10.1039/c2ee21948d es_ES
dc.description.references Albero, J., Asiri, A. M., & García, H. (2016). Influence of the composition of hybrid perovskites on their performance in solar cells. Journal of Materials Chemistry A, 4(12), 4353-4364. doi:10.1039/c6ta00334f es_ES
dc.description.references Park, S., Chang, W. J., Lee, C. W., Park, S., Ahn, H.-Y., & Nam, K. T. (2016). Photocatalytic hydrogen generation from hydriodic acid using methylammonium lead iodide in dynamic equilibrium with aqueous solution. Nature Energy, 2(1). doi:10.1038/nenergy.2016.185 es_ES
dc.description.references Niu, G., Guo, X., & Wang, L. (2015). Review of recent progress in chemical stability of perovskite solar cells. Journal of Materials Chemistry A, 3(17), 8970-8980. doi:10.1039/c4ta04994b es_ES
dc.description.references Sharma, S. K., Phadnis, C., Das, T. K., Kumar, A., Kavaipatti, B., Chowdhury, A., & Yella, A. (2019). Reversible Dimensionality Tuning of Hybrid Perovskites with Humidity: Visualization and Application to Stable Solar Cells. Chemistry of Materials, 31(9), 3111-3117. doi:10.1021/acs.chemmater.8b04115 es_ES
dc.description.references Berhe, T. A., Su, W.-N., Chen, C.-H., Pan, C.-J., Cheng, J.-H., Chen, H.-M., … Hwang, B.-J. (2016). Organometal halide perovskite solar cells: degradation and stability. Energy & Environmental Science, 9(2), 323-356. doi:10.1039/c5ee02733k es_ES
dc.description.references Wang, R., Mujahid, M., Duan, Y., Wang, Z., Xue, J., & Yang, Y. (2019). A Review of Perovskites Solar Cell Stability. Advanced Functional Materials, 29(47), 1808843. doi:10.1002/adfm.201808843 es_ES
dc.description.references Ma, J., Fang, C., Chen, C., Jin, L., Wang, J., Wang, S., … Li, D. (2019). Chiral 2D Perovskites with a High Degree of Circularly Polarized Photoluminescence. ACS Nano, 13(3), 3659-3665. doi:10.1021/acsnano.9b00302 es_ES
dc.description.references Tremblay, M.-H., Thouin, F., Leisen, J., Bacsa, J., Srimath Kandada, A. R., Hoffman, J. M., … Marder, S. R. (2019). (4NPEA)2PbI4 (4NPEA = 4-Nitrophenylethylammonium): Structural, NMR, and Optical Properties of a 3 × 3 Corrugated 2D Hybrid Perovskite. Journal of the American Chemical Society, 141(11), 4521-4525. doi:10.1021/jacs.8b13207 es_ES
dc.description.references Spanopoulos, I., Hadar, I., Ke, W., Tu, Q., Chen, M., Tsai, H., … Kanatzidis, M. G. (2019). Uniaxial Expansion of the 2D Ruddlesden–Popper Perovskite Family for Improved Environmental Stability. Journal of the American Chemical Society, 141(13), 5518-5534. doi:10.1021/jacs.9b01327 es_ES
dc.description.references Febriansyah, B., Koh, T. M., John, R. A., Ganguly, R., Li, Y., Bruno, A., … England, J. (2018). Inducing Panchromatic Absorption and Photoconductivity in Polycrystalline Molecular 1D Lead-Iodide Perovskites through π-Stacked Viologens. Chemistry of Materials, 30(17), 5827-5830. doi:10.1021/acs.chemmater.8b02038 es_ES
dc.description.references Zhao, Y.-Q., Ma, Q.-R., Liu, B., Yu, Z.-L., Yang, J., & Cai, M.-Q. (2018). Layer-dependent transport and optoelectronic property in two-dimensional perovskite: (PEA)2PbI4. Nanoscale, 10(18), 8677-8688. doi:10.1039/c8nr00997j es_ES
dc.description.references Byun, J., Cho, H., Wolf, C., Jang, M., Sadhanala, A., Friend, R. H., … Lee, T.-W. (2016). Efficient Visible Quasi-2D Perovskite Light-Emitting Diodes. Advanced Materials, 28(34), 7515-7520. doi:10.1002/adma.201601369 es_ES
dc.description.references Li, N., Zhu, Z., Chueh, C.-C., Liu, H., Peng, B., Petrone, A., … Jen, A. K.-Y. (2016). Mixed Cation FAxPEA1-xPbI3with Enhanced Phase and Ambient Stability toward High-Performance Perovskite Solar Cells. Advanced Energy Materials, 7(1), 1601307. doi:10.1002/aenm.201601307 es_ES
dc.description.references Arabpour Roghabadi, F., Alidaei, M., Mousavi, S. M., Ashjari, T., Tehrani, A. S., Ahmadi, V., & Sadrameli, S. M. (2019). Stability progress of perovskite solar cells dependent on the crystalline structure: From 3D ABX3 to 2D Ruddlesden–Popper perovskite absorbers. Journal of Materials Chemistry A, 7(11), 5898-5933. doi:10.1039/c8ta10444a es_ES
dc.description.references Khuong, K. S., Jones, W. H., Pryor, W. A., & Houk, K. N. (2005). The Mechanism of the Self-Initiated Thermal Polymerization of Styrene. Theoretical Solution of a Classic Problem. Journal of the American Chemical Society, 127(4), 1265-1277. doi:10.1021/ja0448667 es_ES
dc.description.references Yao, K., Wang, X., Li, F., & Zhou, L. (2015). Mixed perovskite based on methyl-ammonium and polymeric-ammonium for stable and reproducible solar cells. Chemical Communications, 51(84), 15430-15433. doi:10.1039/c5cc05879a es_ES
dc.description.references Bubnova, O. (2016). 2D materials: Hybrid interfaces. Nature Nanotechnology. doi:10.1038/nnano.2016.13 es_ES
dc.description.references Saidaminov, M. I., Abdelhady, A. L., Murali, B., Alarousu, E., Burlakov, V. M., Peng, W., … Bakr, O. M. (2015). High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization. Nature Communications, 6(1). doi:10.1038/ncomms8586 es_ES
dc.description.references Baikie, T., Fang, Y., Kadro, J. M., Schreyer, M., Wei, F., Mhaisalkar, S. G., … White, T. J. (2013). Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. Journal of Materials Chemistry A, 1(18), 5628. doi:10.1039/c3ta10518k es_ES
dc.description.references Dou, L., Wong, A. B., Yu, Y., Lai, M., Kornienko, N., Eaton, S. W., … Yang, P. (2015). Atomically thin two-dimensional organic-inorganic hybrid perovskites. Science, 349(6255), 1518-1521. doi:10.1126/science.aac7660 es_ES
dc.description.references Milot, R. L., Sutton, R. J., Eperon, G. E., Haghighirad, A. A., Martinez Hardigree, J., Miranda, L., … Herz, L. M. (2016). Charge-Carrier Dynamics in 2D Hybrid Metal–Halide Perovskites. Nano Letters, 16(11), 7001-7007. doi:10.1021/acs.nanolett.6b03114 es_ES
dc.description.references Véron, A. C., Linden, A., Leclaire, N. A., Roedern, E., Hu, S., Ren, W., … Nüesch, F. A. (2018). One-Dimensional Organic–Inorganic Hybrid Perovskite Incorporating Near-Infrared-Absorbing Cyanine Cations. The Journal of Physical Chemistry Letters, 9(9), 2438-2442. doi:10.1021/acs.jpclett.8b00458 es_ES
dc.description.references Peng, Y., Albero, J., Álvarez, E., & García, H. (2019). Hybrid benzidinium lead iodide perovskites with a 1D structure as photoinduced electron transfer photocatalysts. Sustainable Energy & Fuels, 3(9), 2356-2360. doi:10.1039/c9se00182d es_ES
dc.description.references Wang, S., Ono, L. K., Leyden, M. R., Kato, Y., Raga, S. R., Lee, M. V., & Qi, Y. (2015). Smooth perovskite thin films and efficient perovskite solar cells prepared by the hybrid deposition method. Journal of Materials Chemistry A, 3(28), 14631-14641. doi:10.1039/c5ta03593g es_ES
dc.description.references Zhang, F., & Srinivasan, M. P. (2007). Multilayered Gold-Nanoparticle/Polyimide Composite Thin Film through Layer-by-Layer Assembly. Langmuir, 23(20), 10102-10108. doi:10.1021/la0635045 es_ES
dc.description.references Singh, T., Öz, S., Sasinska, A., Frohnhoven, R., Mathur, S., & Miyasaka, T. (2018). Sulfate‐Assisted Interfacial Engineering for High Yield and Efficiency of Triple Cation Perovskite Solar Cells with Alkali‐Doped TiO 2 Electron‐Transporting Layers. Advanced Functional Materials, 28(14), 1706287. doi:10.1002/adfm.201706287 es_ES
dc.description.references Yang, J., & Kelly, T. L. (2016). Decomposition and Cell Failure Mechanisms in Lead Halide Perovskite Solar Cells. Inorganic Chemistry, 56(1), 92-101. doi:10.1021/acs.inorgchem.6b01307 es_ES
dc.description.references Huang, W., Manser, J. S., Kamat, P. V., & Ptasinska, S. (2015). Evolution of Chemical Composition, Morphology, and Photovoltaic Efficiency of CH3NH3PbI3 Perovskite under Ambient Conditions. Chemistry of Materials, 28(1), 303-311. doi:10.1021/acs.chemmater.5b04122 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem